Placental Bioenergetics and Antioxidant Homeostasis in Maternal Obesity and Gestational Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
2.2. Placental Tissue Collection
2.3. Protein Expression Analysis—SDS PAGE and Western Blot
2.4. Placental ATP Production
2.5. Mitochondrial Respiration Analysis—High-Resolution Respirometry (HRR)
2.6. Statistical Analysis
3. Results
3.1. Clinical Data
3.2. Molecular Data
3.2.1. Cyclophilin D Protein Expression
3.2.2. Mitochondrial Respiratory Chain Proteins Expression
3.2.3. Pro/Antioxidant Proteins Expression
3.2.4. ATP Production
3.2.5. Mitochondrial Respiration
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Obesity Federation. World Obesity Atlas 2023. Available online: https://www.worldobesity.org/resources/resource-library/world-obesity-atlas-2023 (accessed on 16 February 2024).
- Creanga, A.A.; Catalano, P.M.; Bateman, B.T. Obesity in pregnancy. N. Engl. J. Med. 2022, 387, 248–259. [Google Scholar] [CrossRef]
- Hanson, M.A.; Bardsley, A.; De-Regil, L.M.; Moore, S.E.; Oken, E.; Poston, L.; Ma, R.C.; McAuliffe, F.M.; Maleta, K.; Purandare, C.N.; et al. The International Federation of Gynecology and Obstetrics (FIGO) recommendations on adolescent, preconception, and maternal nutrition: “Think Nutrition First”. Int. J. Gynaecol. Obstet. 2015, 131 (Suppl. S4), S213–S253. [Google Scholar] [CrossRef]
- Thiele, K.; Diao, L.; Arck, P.C. Immunometabolism, pregnancy, and nutrition. Semin. Immunopathol. 2018, 40, 157–174. [Google Scholar] [CrossRef]
- Goyal, D.; Limesand, S.W.; Goyal, R. Epigenetic responses and the developmental origins of health and disease. J. Endocrinol. 2019, 242, T105–T119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.X.W.; Candia, A.A.; Sferruzzi-Perri, A.N. Placental inflammation, oxidative stress, and fetal outcomes in maternal obesity. Trends Endocrinol. Metab. 2024, 35, 638–647. [Google Scholar] [CrossRef]
- O’Reilly, J.R.; Reynolds, R.M. The risk of maternal obesity to the long-term health of the offspring. Clin. Endocrinol. 2013, 78, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Hutchins, F.; Krafty, R.; El Khoudary, S.R.; Catov, J.; Colvin, A.; Barinas-Mitchell, E.; Brooks, M.M. Gestational weight gain and long-term maternal obesity risk: A multiple-bias analysis. Epidemiology 2021, 32, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Gohir, W.; Ratcliffe, E.M.; Sloboda, D.M. Of the bugs that shape us: Maternal obesity, the gut microbiome, and long-term disease risk. Pediatr. Res. 2015, 77, 196–204. [Google Scholar] [CrossRef]
- Barker, D.J.; Winter, P.D.; Osmond, C.; Margetts, B.; Simmonds, S.J. Weight in infancy and death from ischaemic heart disease. Lancet 1989, 2, 577–580. [Google Scholar] [CrossRef]
- Agosti, M.; Tandoi, F.; Morlacchi, L.; Bossi, A. Nutritional and metabolic programming during the first thousand days of life. Pediatr. Med. Chir. 2017, 39, 157. [Google Scholar] [CrossRef]
- Zavatta, A.; Parisi, F.; Mandò, C.; Scaccabarozzi, C.; Savasi, V.M.; Cetin, I. Role of inflammaging on the reproductive function and pregnancy. Clin. Rev. Allergy Immunol. 2023, 64, 145–160. [Google Scholar] [CrossRef] [PubMed]
- Kerr, B.; Leiva, A.; Farías, M.; Contreras-Duarte, S.; Toledo, F.; Stolzenbach, F.; Silva, L.; Sobrevia, L. Foetoplacental epigenetic changes associated with maternal metabolic dysfunction. Placenta 2018, 69, 146–152. [Google Scholar] [CrossRef]
- Sugino, K.Y.; Janssen, R.C.; McMahan, R.H.; Zimmerman, C.; Friedman, J.E.; Jonscher, K.R. Vertical transfer of maternal gut microbes to offspring of western diet-fed dams drives reduced levels of tryptophan metabolites and postnatal innate immune response. Nutrients 2024, 16, 1808. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.L.; Zhang, L.; Callahan, M.L.; Bahorski, J.; Lewis, C.E.; Hidalgo, B.A.; Durant, N.; Harper, L.M.; Battarbee, A.N.; Habegger, K.; et al. Mother-child cardiometabolic health 4–10 years after pregnancy complicated by obesity with and without gestational diabetes. Obes. Sci. Pract. 2022, 8, 627–640. [Google Scholar] [CrossRef] [PubMed]
- Serati, A.; Novielli, C.; Anelli, G.M.; Mandalari, M.; Parisi, F.; Cetin, I.; Paleari, R.; Mandò, C. Characterization of maternal circulating microRNAs in obese pregnancies and gestational diabetes mellitus. Antioxidants 2023, 12, 515. [Google Scholar] [CrossRef] [PubMed]
- Quotah, O.F.; Poston, L.; Flynn, A.C.; White, S.L. Metabolic profiling of pregnant women with obesity: An exploratory study in women at greater risk of gestational diabetes. Metabolites 2022, 12, 922. [Google Scholar] [CrossRef] [PubMed]
- Catalano, P.M. The impact of gestational diabetes and maternal obesity on the mother and her offspring. J. Dev. Orig. Health Dis. 2010, 1, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Musumeci, A.; McElwain, C.J.; Manna, S.; McCarthy, F.; McCarthy, C. Exposure to gestational diabetes mellitus increases subclinical inflammation mediated in part by obesity. Clin. Exp. Immunol. 2024, 216, 280–292. [Google Scholar] [CrossRef]
- Rees, A.; Richards, O.; Allen-Kormylo, A.; Jones, N.; Thornton, C.A. Maternal body mass index is associated with an altered immunological profile at 28 weeks of gestation. Clin. Exp. Immunol. 2022, 208, 114–128. [Google Scholar] [CrossRef]
- Tossetta, G.; Fantone, S.; Gesuita, R.; Di Renzo, G.C.; Meyyazhagan, A.; Tersigni, C.; Scambia, G.; Di Simone, N.; Marzioni, D. HtrA1 in gestational diabetes mellitus: A possible biomarker? Diagnostics 2022, 12, 2705. [Google Scholar] [CrossRef]
- Luo, R.; Fell, D.B.; Corsi, D.J.; Taljaard, M.; Wen, S.W.; Walker, M.C. Temporal trends in gestational diabetes mellitus and associated risk factors in Ontario, Canada, 2012–2020: A population-based cohort study. J. Obstet. Gynaecol. Can. 2024, 46, 102573. [Google Scholar] [CrossRef] [PubMed]
- Mackeen, A.D.; Boyd, V.E.; Schuster, M.; Young, A.J.; Gray, C.; Angras, K. The impact of prepregnancy body mass index on pregnancy and neonatal outcomes. J. Osteopath. Med. 2024. [Google Scholar] [CrossRef] [PubMed]
- Lappas, M.; Yee, K.; Permezel, M.; Rice, G.E. Release and regulation of leptin, resistin and adiponectin from human placenta, fetal membranes, and maternal adipose tissue and skeletal muscle from normal and gestational diabetes mellitus-complicated pregnancies. J. Endocrinol. 2005, 186, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Perugini, J.; Di Mercurio, E.; Tossetta, G.; Severi, I.; Monaco, F.; Reguzzoni, M.; Tomasetti, M.; Dani, C.; Cinti, S.; Giordano, A. Biological effects of ciliary neurotrophic factor on hMADS adipocytes. Front. Endocrinol. 2019, 10, 768. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, D.; Muñoz, Y.; Ortiz, M.; Maliqueo, M.; Chouinard-Watkins, R.; Valenzuela, R. Impact of maternal obesity on the metabolism and bioavailability of polyunsaturated fatty acids during pregnancy and breastfeeding. Nutrients 2020, 13, 19. [Google Scholar] [CrossRef]
- Castro-Rodríguez, D.C.; Rodríguez-González, G.L.; Menjivar, M.; Zambrano, E. Maternal interventions to prevent adverse fetal programming outcomes due to maternal malnutrition: Evidence in animal models. Placenta 2020, 102, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Hebert, J.F.; Myatt, L. Placental mitochondrial dysfunction with metabolic diseases: Therapeutic approaches. Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1867, 165967. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, C.; Taricco, E.; Cardellicchio, M.; Mandò, C.; Massari, M.; Savasi, V.; Cetin, I. The role of obesity and gestational diabetes on placental size and fetal oxygenation. Placenta 2021, 103, 59–63. [Google Scholar] [CrossRef]
- Diceglie, C.; Anelli, G.M.; Martelli, C.; Serati, A.; Lo Dico, A.; Lisso, F.; Parisi, F.; Novielli, C.; Paleari, R.; Cetin, I.; et al. Placental antioxidant defenses and autophagy-related genes in maternal obesity and gestational diabetes mellitus. Nutrients 2021, 13, 1303. [Google Scholar] [CrossRef]
- Anelli, G.M.; Cardellicchio, M.; Novielli, C.; Antonazzo, P.; Mazzocco, M.I.; Cetin, I.; Mandò, C. Mitochondrial content and hepcidin are increased in obese pregnant mothers. J. Matern. Fetal Neonatal Med. 2018, 31, 2388–2395. [Google Scholar] [CrossRef]
- Myatt, L.; Maloyan, A. Obesity and placental function. Semin. Reprod. Med. 2016, 34, 42–49. [Google Scholar] [PubMed]
- Howell, K.R.; Powell, T.L. Effects of maternal obesity on placental function and fetal development. Reproduction 2017, 153, R97–R108. [Google Scholar] [CrossRef]
- Duffley, E.; Grynspan, D.; Scott, H.; Lafrenière, A.; Borba Vieira de Andrade, C.; Bloise, E.; Connor, K.L. Gestational age, infection, and suboptimal maternal prepregnancy BMI independently associate with placental histopathology in a cohort of pregnancies without major maternal comorbidities. J. Clin. Med. 2024, 13, 3378. [Google Scholar] [CrossRef] [PubMed]
- Hietalati, S.; Pham, D.; Arora, H.; Mochizuki, M.; Santiago, G.; Vaught, J.; Lin, E.T.; Mestan, K.K.; Parast, M.; Jacobs, M.B. Placental pathology and fetal growth outcomes in pregnancies complicated by maternal obesity. Int. J. Obes. 2024. [Google Scholar] [CrossRef]
- Holland, O.; Dekker Nitert, M.; Gallo, L.A.; Vejzovic, M.; Fisher, J.J.; Perkins, A.V. Review: Placental mitochondrial function and structure in gestational disorders. Placenta 2017, 54, 2–9. [Google Scholar] [CrossRef]
- Lu, M.; Sferruzzi-Perri, A.N. Placental mitochondrial function in response to gestational exposures. Placenta 2021, 104, 124–137. [Google Scholar] [CrossRef]
- Fisher, J.J.; Bartho, L.A.; Perkins, A.V.; Holland, O.J. Placental mitochondria and reactive oxygen species in the physiology and pathophysiology of pregnancy. Clin. Exp. Pharmacol. Physiol. 2020, 47, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Li, Z.; Zhang, D.; Chen, C.; Zhang, H. Excessive ER-phagy mediated by FAM134B contributes to trophoblast cell mitochondrial dysfunction in preeclampsia. Acta Biochim. Biophys. Sin. 2024. [Google Scholar] [CrossRef]
- Barrientos, G.; Schuman, M.L.; Landa, M.S.; Robello, E.; Incardona, C.; Conrad, M.L.; Galleano, M.; García, S.I. Therapeutic effect of alpha lipoic acid in a rat preclinical model of preeclampsia: Focus on maternal signs, fetal growth and placental function. Antioxidants 2024, 13, 730. [Google Scholar] [CrossRef]
- Bonora, M.; Patergnani, S.; Rimessi, A.; De Marchi, E.; Suski, J.M.; Bononi, A.; Giorgi, C.; Marchi, S.; Missiroli, S.; Poletti, F.; et al. ATP synthesis and storage. Purinergic Signal. 2012, 8, 343–357. [Google Scholar] [CrossRef]
- Pan, M.; Zhou, J.; Wang, J.; Cao, W.; Li, L.; Wang, L. The role of placental aging in adverse pregnancy outcomes: A mitochondrial perspective. Life Sci. 2023, 329, 121924. [Google Scholar] [CrossRef] [PubMed]
- Hadlock, F.P.; Shah, Y.P.; Kanon, D.J.; Lindsey, J.V. Fetal crown-rump length: Reevaluation of relation to menstrual age (5–18 weeks) with high-resolution real-time US. Radiology 1992, 182, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (US) and National Research Council (US) committee to reexamine IOM pregnancy weight guidelines. In Weight Gain during Pregnancy: Reexamining the Guidelines; Rasmussen, K.M.; Yaktine, A.L. (Eds.) National Academies Press (US): Washington, DC, USA, 2009. [Google Scholar]
- Hod, M.; Kapur, A.; Sacks, D.A.; Hadar, E.; Agarwal, M.; Di Renzo, G.C.; Cabero Roura, L.; McIntyre, H.D.; Morris, J.L.; Divakar, H. The International Federation of Gynecology and Obstetrics (FIGO) initiative on gestational diabetes mellitus: A pragmatic guide for diagnosis, management, and care. Int. J. Gynaecol. Obstet. 2015, 131 (Suppl. S3), S173–S211. [Google Scholar] [CrossRef] [PubMed]
- International Association of Diabetes and Pregnancy Study Groups Consensus Panel. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 2010, 33, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Casati, D.; Lanna, M.; Mando, C.; Zavatta, A.; Nelva Stellio, L.; Faiola, S.; Laoreti, A.; Anelli, G.M.; Cetin, I. Fetal oxygen and glucose utilization of uncomplicated monochorionic twins: Adapting to the intrauterine environment. Placenta 2023, 132, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Anelli, G.M.; Mandò, C.; Letizia, T.; Mazzocco, M.I.; Novielli, C.; Lisso, F.; Personeni, C.; Vago, T.; Cetin, I. Placental ESRRG-CYP19A1 expressions and circulating 17-beta estradiol in IUGR pregnancies. Front. Pediatr. 2019, 7, 154. [Google Scholar] [CrossRef] [PubMed]
- Giovarelli, M.; Serati, A.; Zecchini, S.; Guelfi, F.; Clementi, E.; Mandò, C. Cryopreserved placental biopsies maintain mitochondrial activity for high-resolution respirometry. Mol. Med. 2023, 29, 45. [Google Scholar] [CrossRef] [PubMed]
- Chida, J.; Yamane, K.; Takei, T.; Kido, H. An efficient extraction method for quantitation of adenosine triphosphate in mammalian tissues and cells. Anal. Chim. Acta. 2012, 727, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Pedrotti, S.; Caccia, R.; Neguembor, M.V.; Garcia-Manteiga, J.M.; Ferri, G.; de Palma, C.; Canu, T.; Giovarelli, M.; Marra, P.; Fiocchi, A.; et al. The Suv420h histone methyltransferases regulate PPAR-gamma and energy expenditure in response to environmental stimuli. Sci. Adv. 2019, 5, eaav1472. [Google Scholar] [CrossRef]
- Carli, S.; Chaabane, L.; Butti, C.; De Palma, C.; Aimar, P.; Salio, C.; Vignoli, A.; Giustetto, M.; Landsberger, N.; Frasca, A. In vivo magnetic resonance spectroscopy in the brain of Cdkl5 null mice reveals a metabolic profile indicative of mitochondrial dysfunctions. J. Neurochem. 2021, 157, 1253–1269. [Google Scholar] [CrossRef]
- Holland, O.J.; Hickey, A.J.R.; Alvsaker, A.; Moran, S.; Hedges, C.; Chamley, L.W.; Perkins, A.V. Changes in mitochondrial respiration in the human placenta over gestation. Placenta 2017, 57, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Sormunen-Harju, H.; Huvinen, E.; Girchenko, P.V.; Kajantie, E.; Villa, P.M.; Hämäläinen, E.K.; Lahti-Pulkkinen, M.; Laivuori, H.; Räikkönen, K.; Koivusalo, S.B. Metabolomic profiles of nonobese and obese women with gestational diabetes. J. Clin. Endocrinol. Metab. 2023, 108, 2862–2870. [Google Scholar] [CrossRef] [PubMed]
- Musa, E.; Salazar-Petres, E.; Arowolo, A.; Levitt, N.; Matjila, M.; Sferruzzi-Perri, A.N. Obesity and gestational diabetes independently and collectively induce specific effects on placental structure, inflammation and endocrine function in a cohort of South African women. J. Physiol. 2023, 601, 1287–1306. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.N.; Tain, Y.L. The Good, the Bad, and the Ugly of pregnancy nutrients and developmental programming of adult disease. Nutrients 2019, 11, 894. [Google Scholar] [CrossRef]
- Kelly, A.C.; Powell, T.L.; Jansson, T. Placental function in maternal obesity. Clin. Sci. 2020, 134, 961–984. [Google Scholar] [CrossRef]
- Schneider, H. Placental oxygen consumption. Part II: In vitro studies—A review. Placenta 2000, 21 (Suppl. A), S38–S44. [Google Scholar] [CrossRef]
- Burton, G.J. Oxygen, the Janus gas; its effects on human placental development and function. J. Anat. 2009, 215, 27–35. [Google Scholar] [CrossRef]
- Hung, T.H.; Skepper, J.N.; Charnock-Jones, D.S.; Burton, G.J. Hypoxia-reoxygenation: A potent inducer of apoptotic changes in the human placenta and possible etiological factor in preeclampsia. Circ. Res. 2002, 90, 1274–1281. [Google Scholar] [CrossRef]
- Kenney, M.C.; Chwa, M.; Atilano, S.R.; Falatoonzadeh, P.; Ramirez, C.; Malik, D.; Tarek, M.; Del Carpio, J.C.; Nesburn, A.B.; Boyer, D.S.; et al. Molecular and bioenergetic differences between cells with African versus European inherited mitochondrial DNA haplogroups: Implications for population susceptibility to diseases. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2014, 2, 208–219. [Google Scholar] [CrossRef]
- Gómez-Durán, A.; Pacheu-Grau, D.; López-Gallardo, E.; Díez-Sánchez, C.; Montoya, J.; López-Pérez, M.J.; Ruiz-Pesini, E. Unmasking the causes of multifactorial disorders: OXPHOS differences between mitochondrial haplogroups. Hum. Mol. Genet. 2010, 17, 3343–3353. [Google Scholar] [CrossRef]
- Neikirk, K.; Kabugi, K.; Mungai, M.; Kula, B.; Smith, N.; Hinton, A.O., Jr. Ethnicity-related differences in mitochondrial regulation by insulin stimulation in diabetes. J. Cell Physiol. 2024. early view. [Google Scholar] [CrossRef]
- Dalfra, M.G.; Burlina, S.; Lapolla, A. Weight gain during pregnancy: A narrative review on the recent evidences. Diabetes Res. Clin. Pract. 2022, 188, 109913. [Google Scholar] [CrossRef] [PubMed]
- Pauwels, S.; Ghosh, M.; Duca, R.C.; Bekaert, B.; Freson, K.; Huybrechts, I.; Langie, S.A.S.; Koppen, G.; Devlieger, R.; Godderis, L. Maternal intake of methyl-group donors affects DNA methylation of metabolic genes in infants. Clin. Epigenetics 2017, 9, 16. [Google Scholar] [CrossRef] [PubMed]
- Mandò, C.; Abati, S.; Anelli, G.M.; Favero, C.; Serati, A.; Dioni, L.; Zambon, M.; Albetti, B.; Bollati, V.; Cetin, I. Epigenetic profiling in the saliva of obese pregnant women. Nutrients 2022, 14, 2122. [Google Scholar] [CrossRef] [PubMed]
- Assi, E.; D’Addio, F.; Mandò, C.; Maestroni, A.; Loretelli, C.; Ben Nasr, M.; Usuelli, V.; Abdelsalam, A.; Seelam, A.J.; Pastore, I.; et al. Placental proteome abnormalities in women with gestational diabetes and large-for-gestational-age newborns. BMJ Open Diabetes Res. Care. 2020, 8, e001586. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.; Avesani, M.; Johnson, M.R.; Di Salvo, G.; Savvidou, M.D. Maternal cardiovascular adaptation to pregnancy in obese pregnant women. Acta Obstet. Gynecol. Scand. 2024, 103, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Åmark, H.; Sirotkina, M.; Westgren, M.; Papadogiannakis, N.; Persson, M. Is obesity in pregnancy associated with signs of chronic fetal hypoxia? Acta Obstet. Gynecol. Scand. 2020, 99, 1649–1656. [Google Scholar] [CrossRef] [PubMed]
- Pardo, F.; Subiabre, M.; Fuentes, G.; Toledo, F.; Silva, L.; Villalobos-Labra, R.; Sobrevia, L. Altered foetoplacental vascular endothelial signalling to insulin in diabesity. Mol. Aspects Med. 2019, 66, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Silveira, M.A.D.; Marcondes, J.P.C.; Lara, J.R.; Scarano, W.R.; Calderón, I.M.P.; Rudge, M.V.C.; Salvadori, D.M.F. Mitochondrial-related gene associated to obesity can be modulated by in utero hyperglycemic environment. Reprod. Toxicol. 2019, 85, 59–64. [Google Scholar] [CrossRef]
- Alwarfaly, S.; Abdulsid, A.; Hanretty, K.; Lyall, F. Paraoxonase 2 protein is spatially expressed in the human placenta and selectively reduced in labour. PLoS ONE 2014, 9, e96754. [Google Scholar] [CrossRef]
- Sa, R.; Ma, J.; Yang, J.; Li, D.F.; Du, J.; Jia, J.C.; Li, Z.Y.; Huang, N.; A, L.; Sha, R.; et al. High TXNIP expression accelerates the migration and invasion of the GDM placenta trophoblast. BMC Pregnancy Childbirth 2023, 23, 235. [Google Scholar] [CrossRef] [PubMed]
- Sobrevia, L.; Valero, P.; Grismaldo, A.; Villalobos-Labra, R.; Pardo, F.; Subiabre, M.; Armstrong, G.; Toledo, F.; Vega, S.; Cornejo, M.; et al. Mitochondrial dysfunction in the fetoplacental unit in gestational diabetes mellitus. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165948. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Cano, A.M.; Calzada-Mendoza, C.C.; Estrada-Gutierrez, G.; Mendoza-Ortega, J.A.; Perichart-Perera, O. Nutrients, mitochondrial function, and perinatal health. Nutrients 2020, 12, 2166. [Google Scholar] [CrossRef] [PubMed]
- Mele, J.; Muralimanoharan, S.; Maloyan, A.; Myatt, L. Impaired mitochondrial function in human placenta with increased maternal adiposity. Am. J. Physiol. Endocrinol. Metabol. 2014, 307, E419–E425. [Google Scholar] [CrossRef] [PubMed]
- Massari, M.; Novielli, C.; Mandò, C.; Di Francesco, S.; Della Porta, M.; Cazzola, R.; Panteghini, M.; Savasi, V.; Maggini, S.; Schaefer, E.; et al. Multiple micronutrients and docosahexaenoic acid supplementation during pregnancy: A randomized controlled study. Nutrients 2020, 12, 2432. [Google Scholar] [CrossRef]
- Tiffon, C. The impact of nutrition and environmental epigenetics on human health and disease. Int. J. Mol. Sci. 2018, 19, 3425. [Google Scholar] [CrossRef]
Average ± Standard Deviation | p | ||
---|---|---|---|
pregestational BMI (kg/m2) | NW | 21.64 ± 1.93 | <0.001 |
OB_GDM(−) | 33.48 ± 2.69 *** | ||
OB_GDM(+) | 34.38 ± 2.34 *** | ||
OB_all | 33.80 ± 2.57 *** | <0.001 | |
maternal age (years) | NW | 34.3 ± 3.6 | n.s. |
OB_GDM(−) | 30.2 ± 6.0 | ||
OB_GDM(+) | 34.8 ± 4.4 | ||
OB_all | 31.8 ± 5.9 | n.s. | |
GWG (kg) | NW | 12.19 ± 2.64 | 0.017 |
OB_GDM(−) | 8.39 ± 5.36 * | ||
OB_GDM(+) | 6.17 ± 6.56 ** | ||
OB_all | 7.65 ± 5.76 ** | 0.006 | |
nulliparous, n (%) | NW | 4 (23%) | n.s. |
OB_GDM(−) | 1 (5%) | ||
OB_GDM(+) | 2 (20%) | ||
OB_all | 3 (10%) | n.s. | |
gestational age (weeks) | NW | 39.1 ± 0.2 | n.s. |
OB_GDM(−) | 39.1 ± 0.3 | ||
OB_GDM(+) | 39.1 ± 0.2 | ||
OB_all | 39.1 ± 0.3 | n.s. | |
neonatal weight, N (g) | NW | 3468 ± 285 | n.s. |
OB_GDM(−) | 3374 ± 332 | ||
OB_GDM(+) | 3329 ± 346 | ||
OB_all | 3358 ± 331 | n.s. | |
neonatal sex, females/males (n) | NW | 9/8 | n.s. |
OB_GDM(−) | 6/12 | ||
OB_GDM(+) | 5/5 | ||
OB_all | 11/17 | n.s. | |
placental major diameter (cm) | NW | 18.8 ± 2.0 | n.s. |
OB_GDM(−) | 18.4 ± 1.6 | ||
OB_GDM(+) | 19.9 ± 3.7 | ||
OB_all | 18.9 ± 2.5 | n.s. | |
placental minor diameter (cm) | NW | 15.7 ± 1.9 | n.s. |
OB_GDM(−) | 15.4 ± 2.2 | ||
OB_GDM(+) | 15.7 ± 1.0 | ||
OB_all | 15.5 ± 1.9 | n.s. | |
placental weight, P (g) | NW | 446.4 ± 76.4 | n.s. |
OB_GDM(−) | 488.2 ± 76.28 | ||
OB_GDM(+) | 509.0 ± 65.9 | ||
OB_all | 495.6 ± 72.2 * | 0.04 | |
placental surface (cm3) | NW | 234.7 ± 50.0 | n.s. |
OB_GDM(−) | 224.0 ± 44.5 | ||
OB_GDM(+) | 245.6 ± 49.6 | ||
OB_all | 231.2 ± 46.5 | n.s. | |
placental thickness (cm) | NW | 1.97 ± 0.46 | n.s. |
OB_GDM(−) | 2.24 ± 0.46 | ||
OB_GDM(+) | 2.16 ± 0.54 | ||
OB_all | 2.21 ± 0.48 | n.s. | |
placental efficiency N/P | NW | 7.99 ± 1.38 | 0.002 |
OB_GDM(−) | 7.03 ± 1.04 * | ||
OB_GDM(+) | 6.25 ± 0.63 *** | ||
OB_all | 6.77 ± 0.98 * | 0.04 |
Average ± Standard Deviation | p | ||
---|---|---|---|
pH UA | NW | 7.32 ± 0.049 | n.s. |
OB_GDM(−) | 7.29 ± 0.052 | ||
OB_GDM(+) | 7.31 ± 0.049 | ||
OB_all | 7.30 ± 0.052 | n.s. | |
pH UV | NW | 7.37 ± 0.044 | n.s. |
OB_GDM(−) | 7.34 ± 0.060 | ||
OB_GDM(+) | 7.35 ± 0.044 | ||
OB_all | 7.34 ± 0.055 | n.s. | |
pO2 UV (mmHg) | NW | 26.44 ± 5.08 | n.s. |
OB_GDM(−) | 21.33 ± 8.72 | ||
OB_GDM(+) | 21.38 ± 6.39 | ||
OB_all | 21.35 ± 7.69 * | 0.045 | |
satO2 UV (g/dL) | NW | 54.57 ± 16.74 | n.s. |
OB_GDM(−) | 39.98 ± 23.69 | ||
OB_GDM(+) | 41.57 ± 18.98 | ||
OB_all | 40.54 ± 21.54 | n.s. | |
pCO2 UV (mmHg) | NW | 41.90 ± 5.64 | n.s. |
OB_GDM(−) | 46.85 ± 8.66 | ||
OB_GDM(+) | 47.17 ± 6.09 | ||
OB_all | 46.97 ± 7.63 * | 0.047 | |
glucose UV (mg/dL) | NW | 66.62 ± 7.46 | n.s. |
OB_GDM(−) | 62.83 ± 9.35 | ||
OB_GDM(+) | 64.25 ± 9.38 | ||
OB_all | 63.40 ± 9.14 | n.s. | |
lactate UV (mmol/L) | NW | 1.59 ± 0.37 | n.s. |
OB_GDM(−) | 1.90 ± 0.70 | ||
OB_GDM(+) | 1.80 ± 0.45 | ||
OB_all | 1.86 ± 0.60 | n.s. | |
OGTT I (mg/dL) | NW | 83.09 ± 3.51 | n.s. |
OB_GDM(−) | 81.00 ± 7.20 | ||
OB_GDM(+) | 84.63 ± 13.23 | ||
OB_all | 82.53 ± 10.01 | n.s. | |
OGTT II (mg/dL) | NW | 130.55 ± 21.68 | 0.015 |
OB_GDM(−) | 117.64 ± 30.77 †† | ||
OB_GDM(+) | 159.00 ± 33.91 | ||
OB_all | 135.05 ± 37.60 | n.s. | |
OGTT III (mg/dL) | NW | 108.82 ± 32.74 †† | 0.003 |
OB_GDM(−) | 99.82 ± 24.26 ††† | ||
OB_GDM(+) | 159.63 ± 32.89 | ||
OB_all | 125.00 ± 40.84 | n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandò, C.; Castiglioni, S.; Novielli, C.; Anelli, G.M.; Serati, A.; Parisi, F.; Lubrano, C.; Zocchi, M.; Ottria, R.; Giovarelli, M. Placental Bioenergetics and Antioxidant Homeostasis in Maternal Obesity and Gestational Diabetes. Antioxidants 2024, 13, 858. https://doi.org/10.3390/antiox13070858
Mandò C, Castiglioni S, Novielli C, Anelli GM, Serati A, Parisi F, Lubrano C, Zocchi M, Ottria R, Giovarelli M. Placental Bioenergetics and Antioxidant Homeostasis in Maternal Obesity and Gestational Diabetes. Antioxidants. 2024; 13(7):858. https://doi.org/10.3390/antiox13070858
Chicago/Turabian StyleMandò, Chiara, Sara Castiglioni, Chiara Novielli, Gaia Maria Anelli, Anaïs Serati, Francesca Parisi, Chiara Lubrano, Monica Zocchi, Roberta Ottria, and Matteo Giovarelli. 2024. "Placental Bioenergetics and Antioxidant Homeostasis in Maternal Obesity and Gestational Diabetes" Antioxidants 13, no. 7: 858. https://doi.org/10.3390/antiox13070858
APA StyleMandò, C., Castiglioni, S., Novielli, C., Anelli, G. M., Serati, A., Parisi, F., Lubrano, C., Zocchi, M., Ottria, R., & Giovarelli, M. (2024). Placental Bioenergetics and Antioxidant Homeostasis in Maternal Obesity and Gestational Diabetes. Antioxidants, 13(7), 858. https://doi.org/10.3390/antiox13070858