Effects of Hyperbaric (Non-Thermal) Sanitization and the Method of Extracting Pomegranate Juice on Its Antioxidant and Antihypertensive Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extraction Process
2.1.1. Extraction of Aril Juice Using a Manual Method
2.1.2. Cold Pressing Extraction of Juice from Arils
2.2. Physicochemical Characterization
2.2.1. Bromatological Analysis
2.2.2. pH
2.2.3. Color Determination
2.2.4. Fourier Transform Infrared Spectroscopy (FT-IR)
2.2.5. Microbiological Analysis
2.2.6. Total Phenols Determination
2.2.7. Flavonoids Determination
2.2.8. Determination of Total Monomeric Anthocyanin Content Using the pH Differential Method for Total Anthocyanins (AT)
- Mw (molecular weight) = 449.2 g/mol for cyanidin-3-glucoside (cyd-3-glu).
- DF = dilution factor established in D.
- 1 = pathlength in cm.
- ε = 26,900 molar extinction coefficient, in L mol−1 cm−1, for cyd-3-glu.
- The factor for conversion from g into mg was 1000.
- A = absorbance.
- Mw = molecular weight.
- DF = dilution factor.
2.2.9. Determination of ABTS Radical Scavenging
2.2.10. Determination of DPPH Radical Scavenging
2.3. Inhibition of Angiotensin Converting Enzyme (ACE) Activity by Pomegranate Juice
- StdSlope = slope of the standard curve subtracted from the blank (RFU/nmol);
- DF = dilution factor (if the sample was not diluted, the DF value was 1);
- SlopeSample = slope of the sample curve subtracted from the blank (RFU/min).
2.4. Statistical Analysis
3. Results and Discussions
3.1. Bromatological Analysis
3.2. pH Value
3.3. Color Determination
3.4. Fourier Transform Infrared Spectroscopy (FT-IR)
3.5. Microbiological Analysis
3.6. Phenols, Flavonoids, and Anthocyanins Content in Juice from Arils
3.6.1. Phenols
3.6.2. Flavonoids
3.6.3. Anthocyanins
3.7. Determination of Scavenging of ABTS and DPPH Radicals
3.8. Antihypertensive Analysis
Analysis In Vivo
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vega-García, C.C.; García-Niño, W.R. Efectos benéficos de los compuestos antioxidantes de la granada (Punica granatum L.) en patologías asociadas con el estrés oxidante. Tequio 2022, 5, 67–94. [Google Scholar] [CrossRef]
- SADER. La Granada, Dulce Comienzo del Otoño. Available online: https://www.gob.mx/agricultura/articulos/la-granada-dulce-comienzo-del-otono (accessed on 12 July 2024).
- Aleksandrova, S.; Alexova, R.; Dragomanova, S. Preventive and Therapeutic Effects of Punica granatum L. Polyphenols in Neurological Conditions. Int. J. Mol. Sci. 2023, 24, 1856. [Google Scholar] [CrossRef] [PubMed]
- Lavoro, A.; Falzone, L.; Gattuso, G.; Salemi, R.; Cultrera, G.; Leone, G.M.; Scandurra, G.; Candido, S.; Libra, M. Pomegranate: A promising avenue against the most common chronic diseases and their associated risk factors (Review). Int. J. Funct. Nutr. 2021, 2, 6. [Google Scholar] [CrossRef]
- Zhao, X.; Yuan, Z. Anthocyanins from pomegranate (Punica granatum L.) and their role in antioxidant capacities in vitro. Chem. Biodivers. 2021, 18, e2100399. [Google Scholar] [CrossRef]
- Zarfeshany, A.; Asgary, S.; Javanmard, S.H. Potent health effects of pomegranate. Adv. Biomed. Res. 2014, 3, 100. [Google Scholar] [CrossRef]
- Mphahlele, R.R.; Fawole, O.A.; Mokwena, L.M.; Opara, U.L. Effect of extraction method on chemical, volatile composition and antioxidant properties of pomegranate juice. S. Afr. J. Bot. 2016, 103, 135–144. [Google Scholar] [CrossRef]
- Khaksar, G.; Assatarakul, K.; Sirikantaramas, S. Effect of cold-pressed and normal centrifugal juicing on quality attributes of fresh juices: Do cold-pressed juices harbor a superior nutritional quality and antioxidant capacity? Heliyon 2019, 5, e01917. [Google Scholar] [CrossRef]
- Olmedilla-Alonso, B.; Granado-Lorencio, F.; de Ancos, B.; Sánchez-Moreno, C.; Martín-Belloso, O.; Blanco, I.; Herrero-Barbudo, C.; Elez-Martínez, P.; Plaza, L.; Cano, M.P. Greater bioavailability of xanthophylls compared to carotenes from orange juice (high-pressure processed, pulsed electric field treated, low-temperature pasteurised, and freshly squeezed) in a crossover study in healthy individuals. Food Chem. 2022, 371, 130821. [Google Scholar] [CrossRef] [PubMed]
- Atmaca, B.; Demiray, M.; Akdemir Evrendilek, G.; Bulut, N.; Uzuner, S. High-Pressure Processing of Traditional Hardaliye Drink: Effect on Quality and Shelf-Life Extension. Foods 2023, 12, 2876. [Google Scholar] [CrossRef]
- Delgado Olivares, L.; Betanzos Cabrera, G.; Sumaya Martínez, M.T. Importancia de los antioxidantes dietarios en la disminución del estrés oxidativo. Investig. Cienc. 2010, 18, 10–15. Available online: https://www.redalyc.org/articulo.oa?id=67415744003 (accessed on 24 January 2024).
- Quiñones, M.; Miguel, M.; Aleixandre, A. Los polifenoles, compuestos de origen natural con efectos saludables sobre el sistema cardiovascular. Nutr. Hosp. 2012, 27, 76–89. Available online: https://scielo.isciii.es/scielo.php?script=sci_abstract&pid=S0212-16112012000100009 (accessed on 5 February 2024). [PubMed]
- Ponce-Gutiérrez, Y.; Ponce-Gutierrez, A.; Rodríguez-León, A.; Cabrera-García, K. Papel del estrés oxidativo en la patogénesis de la hipertensión arterial. CorSalud 2014, 6, 181–192. Available online: https://www.medigraphic.com/pdfs/corsalud/cor-2014/cor142h.pdf (accessed on 30 May 2024).
- Wang, D.; Özen, C.; Abu-Reidah, I.M.; Chigurupati, S.; Patra, J.K.; Horbanczuk, J.O.; Jóźwik, A.; Tzvetkov, N.T.; Uhrin, P.; Atanasov, A.G. Vasculoprotective Effects of Pomegranate (Punica granatum L.). Front. Pharmacol. 2018, 9, 544. [Google Scholar] [CrossRef] [PubMed]
- Al-Jarallah, A.; Igdoura, F.; Zhang, Y.; Tenedero, C.B.; White, E.J.; MacDonald, M.E.; Igdoura, S.A.; Trigatti, B.L. The effect of pomegranate extract on coronary artery atherosclerosis in SR-BI/APOE double knockout mice. Atherosclerosis 2013, 228, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Uzuner, S. Pomegranate. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Jaiswal, A.K., Ed.; Academic Press: London, UK, 2020; pp. 549–563. [Google Scholar] [CrossRef]
- Priyanka, P.; Sayed, H.; Joshi, A.; Jadhav, B. Comparative evaluation of physico-chemical properties of two varieties of pomogranate fruits-Ganesh and Arakta. Afr. J. Food Sci. 2013, 7, 428–430. [Google Scholar] [CrossRef]
- Vardin, H.; Fenercioǧlu, H. Study on the development of pomegranate juice processing technology: Clarification of pomegranate juice. Food/Nahrung 2003, 47, 300–303. [Google Scholar] [CrossRef]
- Conidi, C.; Drioli, E.; Cassano, A. Perspective of Membrane Technology in Pomegranate Juice Processing: A Review. Foods 2020, 9, 889. [Google Scholar] [CrossRef]
- Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Holcroft, D.M.; Kader, A.A. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J. Agric. Food Chem. 2000, 48, 4581–4589. [Google Scholar] [CrossRef]
- Mousavi, Z.; Mousavi, S.; Razavi, S.; Emam-Djomeh, Z.; Kiani, H. Fermentation of pomegranate juice by probiotic lactic acid bacteria. World J. Microbiol. Biotechnol. 2011, 27, 123–128. [Google Scholar] [CrossRef]
- Campos-Lozada, G.; Pérez-Marroquín, X.A.; Callejas-Quijada, G.; Campos-Montiel, R.G.; Morales-Peñaloza, A.; León-López, A.; Aguirre-Álvarez, G. The Effect of High-Intensity Ultrasound and Natural Oils on the Extraction and Antioxidant Activity of Lycopene from Tomato (Solanum lycopersicum) Waste. Antioxidants 2022, 11, 1404. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Ding, H.; Luo, S.; Sun, X.; Wang, N.; Wang, Y. Comparison of high hydrostatic pressure and thermal processing on microorganisms and quality of anthocyanin-rich fruit puree. Front. Food Sci. Technol. 2022, 2, 911283. [Google Scholar] [CrossRef]
- Cervantes Hernández, I. Efecto de Pulsos Electricos Moderados Sobre el Jugo de Granada; Universidad Autónoma Agraria Antonio Narro: Saltillo, Mexico, 2016. [Google Scholar]
- Arendse, E.; Nieuwoudt, H.; Fawole, O.A.; Opara, U.L. Effect of different extraction methods on the quality and biochemical attributes of pomegranate juice and the application of Fourier transformed infrared spectroscopy in discriminating between different extraction methods. Front. Plant Sci. 2021, 12, 702575. [Google Scholar] [CrossRef] [PubMed]
- Mathias-Rettig, K.; Ah-Hen, K. El color en los alimentos un criterio de calidad medible. Agro Sur 2014, 42, 57–66. [Google Scholar] [CrossRef]
- López-Díaz, A.; Rios-Corripio, M.A.; Ramírez-Corona, N.; López-Malo, A.; Palou, E. Effect of short wave ultraviolet radiation on selected properties of edible films formulated with pomegranate juice and chitosan. Rev. Mex. Ing. Química 2018, 17, 63–73. Available online: https://rmiq.org/iqfvp/Numbers/V17/No1/Alim17.pdf (accessed on 24 June 2024). [CrossRef]
- Leopold, L.; Leopold, N.; Diehl, H.; Socaciu, C. Quantification of carbohydrates in fruit juices using FTIR spectroscopy and multivariate analysis. Spectroscopy 2011, 26, 93–104. [Google Scholar] [CrossRef]
- Bertucco, A.; Vetter, G. High Pressure Process Technology: Fundamentals and Applications; Elsevier Science: Amsterdam, The Netherlands, 2001; Volume 9. [Google Scholar]
- Tewari, S.; Sehrawat, R.; Nema, P.K.; Kaur, B.P. Preservation effect of high pressure processing on ascorbic acid of fruits and vegetables: A review. J. Food Biochem. 2017, 41, e12319. [Google Scholar] [CrossRef]
- Ramaswamy, H.S.; Zaman, S.U.; Smith, J.P. High pressure destruction kinetics of Escherichia coli (O157:H7) and Listeria monocytogenes (Scott A) in a fish slurry. J. Food Eng. 2008, 87, 99–106. [Google Scholar] [CrossRef]
- Daher, D.; Le Gourrierec, S.; Pérez-Lamela, C. Effect of High Pressure Processing on the Microbial Inactivation in Fruit Preparations and Other Vegetable Based Beverages. Agriculture 2017, 7, 72. [Google Scholar] [CrossRef]
- Sabokbar, N.; Khodaiyan, F. Total phenolic content and antioxidant activities of pomegranate juice and whey based novel beverage fermented by kefir grains. J. Food Sci. Technol. 2016, 53, 739–747. [Google Scholar] [CrossRef]
- Bar-Ya’akov, I.; Tian, L.; Amir, R.; Holland, D. Primary Metabolites, Anthocyanins, and Hydrolyzable Tannins in the Pomegranate Fruit. Front. Plant Sci. 2019, 10, 620. [Google Scholar] [CrossRef] [PubMed]
- Bopitiya, D.; Madhujith, T. Antioxidant potential of pomegranate (Punica granatum L.) cultivars grown in Sri Lanka. Trop. Agric. Res. 2012, 24, 71–81. Available online: https://pdfs.semanticscholar.org/fa34/82d03652aa3bc78022116e2af99495e41695.pdf (accessed on 24 June 2024). [CrossRef]
- Akhavan, H.; Barzegar, M.; Weidlich, H.; Zimmermann, B.F. Phenolic compounds and antioxidant activity of juices from ten Iranian pomegranate cultivars depend on extraction. J. Chem. 2015, 2015, 907101. [Google Scholar] [CrossRef]
- Esposto, S.; Veneziani, G.; Taticchi, A.; Urbani, S.; Selvaggini, R.; Sordini, B.; Daidone, L.; Gironi, G.; Servili, M. Chemical Composition, Antioxidant Activity, and Sensory Characterization of Commercial Pomegranate Juices. Antioxidants 2021, 10, 1381. [Google Scholar] [CrossRef]
- Tezcan, F.; Gültekin-Özgüven, M.; Diken, T.; Özçelik, B.; Erim, F.B. Antioxidant activity and total phenolic, organic acid and sugar content in commercial pomegranate juices. Food Chem. 2009, 115, 873–877. [Google Scholar] [CrossRef]
- Gözlekçi, S.; Saraçoğlu, O.; Onursal, E.; Ozgen, M. Total phenolic distribution of juice, peel, and seed extracts of four pomegranate cultivars. Pharmacogn. Mag. 2011, 7, 161–164. [Google Scholar] [CrossRef]
- Derakhshan, Z.; Ferrante, M.; Tadi, M.; Ansari, F.; Heydari, A.; Hosseini, M.S.; Conti, G.O.; Sadrabad, E.K. Antioxidant activity and total phenolic content of ethanolic extract of pomegranate peels, juice and seeds. Food Chem. Toxicol. 2018, 114, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Mena, P.; Gironés-Vilaplana, A.; Martí, N.; García-Viguera, C. Pomegranate varietal wines: Phytochemical composition and quality parameters. Food Chem. 2012, 133, 108–115. [Google Scholar] [CrossRef]
- Rios-Corripio, G.; Guerrero-Beltrán, J. Antioxidant and physicochemical characteristics of unfermented and fermented pomegranate (Punica granatum L.) beverages. J. Food Sci. Technol. 2019, 56, 132–139. [Google Scholar] [CrossRef]
- Gutierrez Acero, M.L. Influencia de la Inclusión de Cáscara y Pasteurización en la Elaboración de un Jugo de Granada (Punica Granatum) Variedad Wonderful de Ite-Tacna; Universidad Nacional Jorge Basadre Grohmann: Lima, Perú, 2017. [Google Scholar]
- Alper, N.; Bahceci, K.; Acar, J. Influence of processing and pasteurization on color values and total phenolic compounds of pomegranate juice. J. Food Process. Preserv. 2005, 29, 357–368. [Google Scholar] [CrossRef]
- Herceg, Z.; Kovačević, D.B.; Kljusurić, J.G.; Jambrak, A.R.; Zorić, Z.; Dragović-Uzelac, V. Gas phase plasma impact on phenolic compounds in pomegranate juice. Food Chem. 2016, 190, 665–672. [Google Scholar] [CrossRef]
- Guiné, R.d.P.F.; Barroca, M.J. Influence of processing and storage on fruit juices phenolic compounds. Int. J. Med. Biol. Front. 2014, 20, 45–58. Available online: https://www.researchgate.net/publication/277197260_Influence_of_processing_and_storage_on_fruit_juices_phenolic_compounds#fullTextFileContent (accessed on 27 March 2024).
- Agcam, E.; Akyıldız, A.; Akdemir Evrendilek, G. Comparison of phenolic compounds of orange juice processed by pulsed electric fields (PEF) and conventional thermal pasteurisation. Food Chem. 2014, 143, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Chaikham, P.; Apichartsrangkoon, A. Comparison of dynamic viscoelastic and physicochemical properties of pressurised and pasteurised longan juices with xanthan addition. Food Chem. 2012, 134, 2194–2200. [Google Scholar] [CrossRef]
- Chen, D.; Xi, H.; Guo, X.; Qin, Z.; Pang, X.; Hu, X.; Liao, X.; Wu, J. Comparative study of quality of cloudy pomegranate juice treated by high hydrostatic pressure and high temperature short time. Innov. Food Sci. Emerg. Technol. 2013, 19, 85–94. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef]
- Faggio, C.; Sureda, A.; Morabito, S.; Sanches-Silva, A.; Mocan, A.; Nabavi, S.F.; Nabavi, S.M. Flavonoids and platelet aggregation: A brief review. Eur. J. Pharmacol. 2017, 807, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wasila, H.; Liu, L.; Yuan, T.; Gao, Z.; Zhao, B.; Ahmad, I. Physicochemical characteristics, polyphenol compositions and antioxidant potential of pomegranate juices from 10 Chinese cultivars and the environmental factors analysis. Food Chem. 2015, 175, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Fahmy, H.; Hegazi, N.; El-Shamy, S.; Farag, M.A. Pomegranate juice as a functional food: A comprehensive review of its polyphenols, therapeutic merits, and recent patents. Food Funct. 2020, 11, 5768–5781. [Google Scholar] [CrossRef]
- El Kar, C.; Ferchichi, A.; Attia, F.; Bouajila, J. Pomegranate (Punica granatum) juices: Chemical composition, micronutrient cations, and antioxidant capacity. J. Food Sci. 2011, 76, C795–C800. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Qi, X.; Li, J.; Cao, Z.; Liu, X.; Yu, Q.; Xu, Y.; Qin, G. Metabolic Profiles of Pomegranate Juices during Fruit Development and the Redirection of Flavonoid Metabolism. Horticulturae 2023, 9, 881. [Google Scholar] [CrossRef]
- Aloqbi, A.; Omar, U.; Yousr, M.; Grace, M.; Lila, M.A.; Howell, N. Antioxidant activity of pomegranate juice and punicalagin. Nat. Sci. 2016, 8, 235–246. [Google Scholar] [CrossRef]
- Farahmand, M.; Golmakani, M.T.; Mesbahi, G.; Farahnaky, A. Investigating the Effects of Large-Scale Processing on Phytochemicals and Antioxidant Activity of Pomegranate Juice. J. Food Process. Preserv. 2017, 41, 1–11. [Google Scholar] [CrossRef]
- Mena, P.; García-Viguera, C.; Navarro-Rico, J.; Moreno, D.A.; Bartual, J.; Saura, D.; Martí, N. Phytochemical characterisation for industrial use of pomegranate (Punica granatum L.) cultivars grown in Spain. J. Sci. Food Agric. 2011, 91, 1893–1906. [Google Scholar] [CrossRef] [PubMed]
- Kalaycıoğlu, Z.; Erim, F.B. Total phenolic contents, antioxidant activities, and bioactive ingredients of juices from pomegranate cultivars worldwide. Food Chem. 2017, 221, 496–507. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, L.; Pereira, J.A.; Lopéz-Cortés, I.; Salazar, D.M.; Ramalhosa, E.C. Physicochemical Changes and Antioxidant Activity of Juice, Skin, Pellicle and Seed of Pomegranate (cv. Mollar de Elche) at Different Stages of Ripening. Food Technol. Biotechnol. 2015, 53, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Martín, J.; Asuero, A.G. High hydrostatic pressure for recovery of anthocyanins: Effects, performance, and applications. Sep. Purif. Rev. 2021, 50, 159–176. [Google Scholar] [CrossRef]
- Aguirre-Cruz, G.; León-López, A.; Cruz-Gómez, V.; Jiménez-Alvarado, R.; Aguirre-Álvarez, G. Collagen Hydrolysates for Skin Protection: Oral Administration and Topical Formulation. Antioxidants 2020, 9, 181. [Google Scholar] [CrossRef]
- Ilyasov, I.R.; Beloborodov, V.L.; Selivanova, I.A.; Terekhov, R.P. ABTS/PP Decolorization Assay of Antioxidant Capacity Reaction Pathways. Int. J. Mol. Sci. 2020, 21, 1131. [Google Scholar] [CrossRef]
- OMS. Hipertensión. Available online: https://www.who.int/es/health-topics/hypertension#tab=tab_1 (accessed on 12 July 2024).
- Barati Boldaji, R.; Akhlaghi, M.; Sagheb, M.M.; Esmaeilinezhad, Z. Pomegranate juice improves cardiometabolic risk factors, biomarkers of oxidative stress and inflammation in hemodialysis patients: A randomized crossover trial. J. Sci. Food Agric. 2020, 100, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Campos-Nonato, I.; Hernández-Barrera, L.; Flores-Coria, A.; Gómez-Álvarez, E.; Barquera, S. Prevalence, diagnosis and control of hypertension in Mexican adults with vulnerable condition. Results of the Ensanut 100k. Salud Publica De Mex. 2019, 61, 888–897. [Google Scholar] [CrossRef] [PubMed]
- Al-Dujaili, E.A.S.; Casey, C.; Stockton, A. Antioxidant Properties and Beneficial Cardiovascular Effects of a Natural Extract of Pomegranate in Healthy Volunteers: A Randomized Preliminary Single-Blind Controlled Study. Antioxidants 2022, 11, 2124. [Google Scholar] [CrossRef] [PubMed]
- Amponsah-Offeh, M.; Diaba-Nuhoho, P.; Speier, S.; Morawietz, H. Oxidative Stress, Antioxidants and Hypertension. Antioxidants 2023, 12, 281. [Google Scholar] [CrossRef]
- Aviram, M.; Dornfeld, L. Pomegranate juice consumption inhibits serum angiotensin converting enzyme activity and reduces systolic blood pressure. Atherosclerosis 2001, 158, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Stockton, A.; Farhat, G.; McDougall, G.J.; Al-Dujaili, E.A.S. Effect of pomegranate extract on blood pressure and anthropometry in adults: A double-blind placebo-controlled randomised clinical trial. J. Nutr. Sci. 2017, 6, e39. [Google Scholar] [CrossRef]
- Stowe, C.B. The effects of pomegranate juice consumption on blood pressure and cardiovascular health. Complement. Ther. Clin. Pract. 2011, 17, 113–115. [Google Scholar] [CrossRef]
- Margalef, M.; Bravo, F.I.; Muguerza, B.; Arola-Arnal, A. Natural Angiotensin Converting Enzyme (ACE) Inhibitors with Antihypertensive Properties. In Natural Products Targeting Clinically Relevant Enzymes; Wiley: Hoboken, NJ, USA, 2017; pp. 45–67. [Google Scholar] [CrossRef]
Samples | Moisture (%) | Total Solids (%) | Fat (%) | Ash (%) | Protein (%) | Carbohydrates (%) |
---|---|---|---|---|---|---|
Man-P | ||||||
Mech-Hyp |
Samples | L | a* | b* |
---|---|---|---|
Man-P | |||
Mech-Hyp |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos-Lozada, G.; Hernández-Miranda, J.; del Valle-Mondragón, L.; Ortiz-Polo, A.; Betanzos-Cabrera, G.; Aguirre-Álvarez, G. Effects of Hyperbaric (Non-Thermal) Sanitization and the Method of Extracting Pomegranate Juice on Its Antioxidant and Antihypertensive Properties. Antioxidants 2024, 13, 1009. https://doi.org/10.3390/antiox13081009
Campos-Lozada G, Hernández-Miranda J, del Valle-Mondragón L, Ortiz-Polo A, Betanzos-Cabrera G, Aguirre-Álvarez G. Effects of Hyperbaric (Non-Thermal) Sanitization and the Method of Extracting Pomegranate Juice on Its Antioxidant and Antihypertensive Properties. Antioxidants. 2024; 13(8):1009. https://doi.org/10.3390/antiox13081009
Chicago/Turabian StyleCampos-Lozada, Gieraldin, Jonathan Hernández-Miranda, Leonardo del Valle-Mondragón, Araceli Ortiz-Polo, Gabriel Betanzos-Cabrera, and Gabriel Aguirre-Álvarez. 2024. "Effects of Hyperbaric (Non-Thermal) Sanitization and the Method of Extracting Pomegranate Juice on Its Antioxidant and Antihypertensive Properties" Antioxidants 13, no. 8: 1009. https://doi.org/10.3390/antiox13081009
APA StyleCampos-Lozada, G., Hernández-Miranda, J., del Valle-Mondragón, L., Ortiz-Polo, A., Betanzos-Cabrera, G., & Aguirre-Álvarez, G. (2024). Effects of Hyperbaric (Non-Thermal) Sanitization and the Method of Extracting Pomegranate Juice on Its Antioxidant and Antihypertensive Properties. Antioxidants, 13(8), 1009. https://doi.org/10.3390/antiox13081009