A Sustainable Approach to Valuable Polyphenol and Iridoid Antioxidants from Medicinal Plant By-Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Plant Material
2.3. Preliminary Plant Material Analysis
2.4. Extractions
2.4.1. Conventional Hydroethanolic Extraction
2.4.2. Hydroethanolic Ultrasound-Assisted Extraction
2.4.3. Natural Deep Eutectic Solvent Coupled with Ultrasound-Assisted Extraction
2.4.4. NADES Ultrasound-Assisted Extraction
2.5. Determination of Total Polyphenol Content
2.6. DPPH Antioxidant Activity
2.7. FRAP (Ferric-Reducing Antioxidant Power)
2.8. HPLC Polyphenol Profiling
2.9. HPLC Determination of Iridoids
2.10. Green Assessment
3. Results and Discussion
3.1. Preliminary Plant Material Analysis
3.2. Total Polyphenol Content
3.2.1. Conventional Hydroethanolic Extraction
3.2.2. Hydroethanolic Ultrasound-Assisted Extraction
3.2.3. Natural Deep Eutectic Solvent Coupled with Ultrasound-Assisted Extraction
3.3. Antioxidant Activity
3.4. HPLC Polyphenol Profiling
3.5. HPLC Determination of Iridoids
3.6. Green Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sas, I.; Grytsyk, A.; Koliadzhyn, T.; Koshovyi, O. Comparative Study of Phenolic Compounds of the Herb of Betonica L. Genus Species of Flora of Ukraine. Sci. Pharm. Sci. 2021, 29, 66–75. [Google Scholar]
- Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Suleria, H.A.R. Natural Polyphenols: An Overview. Int. J. Food Prop. 2017, 20, 1689–1699. [Google Scholar] [CrossRef]
- Dalbanjan, N.P.; Eelager, M.P.; Korgaonkar, K.; Gonal, B.N.; Kadapure, A.J.; Arakera, S.B.; Kumar, S.P. Descriptive review on conversion of waste residues into valuable bionanocomposites for a circular bioeconomy. Nano Struct. Nano Objects 2024, 39, 101265. [Google Scholar] [CrossRef]
- Tsegaye, B.; Jaiswal, S.; Jaiswal, A.K. Food Waste Biorefinery: Pathway towards Circular Bioeconomy. Foods 2021, 10, 1174. [Google Scholar] [CrossRef] [PubMed]
- Gugel, I.; Marchetti, F.; Costa, S.; Gugel, I.; Baldini, E.; Vertuani, S.; Manfredini, S. 2G-Lactic Acid from Olive Oil Supply Chain Waste: Olive Leaves Upcycling via Lactobacillus casei Fermentation. Appl. Microbiol. Biotechnol. 2024, 108, 379. [Google Scholar] [CrossRef]
- Pereira, A.; Añibarro-Ortega, M.; Kostić, M.; Nogueira, A.; Soković, M.; Pinela, J.; Barros, L. Upcycling Quince Peel into Bioactive Ingredients and Fiber Concentrates through Multicomponent Extraction Processes. Antioxidants 2023, 12, 260. [Google Scholar] [CrossRef]
- Di Donato, P.; Taurisano, V.; Tommonaro, G.; Pasquale, V.; Jiménez, J.M.S.; de Pascual-Teresa, S.; Poli, A.; Nicolaus, B. Biological Properties of Polyphenols Extracts from Agro Industry’s Wastes. Waste Biomass Valorization 2018, 9, 1567–1578. [Google Scholar] [CrossRef]
- Mouratoglou, E.; Malliou, V.; Makris, D.P. Novel Glycerol-Based Natural Eutectic Mixtures and Their Efficiency in the Ultrasound-Assisted Extraction of Antioxidant Polyphenols from Agri-Food Waste Biomass. Waste Biomass Valorization 2016, 7, 1377–1387. [Google Scholar] [CrossRef]
- Li, A.-N.; Li, S.; Zhang, Y.-J.; Xu, X.-R.; Chen, Y.-M.; Li, H.-B. Resources and Biological Activities of Natural Polyphenols. Nutrients 2014, 6, 6020–6047. [Google Scholar] [CrossRef]
- Tsao, R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef]
- Oreopoulou, A.; Tsimogiannis, D.; Oreopoulou, V. Extraction of Polyphenols from Aromatic and Medicinal Plants: An Overview of the Methods and the Effect of Extraction Parameters. In Polyphenols in Plants, 2nd ed.; Watson, R.R., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 243–259. [Google Scholar]
- Senthil Kumar, P.; Arun Kumar, N.; Sivakumar, R.; Kaushik, C. Experimentation on Solvent Extraction of Polyphenols from Natural Waste. J. Mater. Sci. 2009, 44, 5894–5899. [Google Scholar] [CrossRef]
- Jovanović, M.; Mudrić, J.; Drinić, Z.; Matejić, J.; Kitić, D.; Bigović, D.; Šavikin, K. Optimization of Ultrasound-Assisted Extraction of Bitter Compounds and Polyphenols from Willow Gentian Underground Parts. Sep. Purif. Technol. 2022, 281, 119868. [Google Scholar] [CrossRef]
- Dai, Y.; Van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvents as New Potential Media for Green Technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Wils, L.; Hilali, S.; Boudesocque-Delaye, L. Biomass Valorization Using Natural Deep Eutectic Solvents: What’s New in France? Molecules 2021, 26, 6556. [Google Scholar] [CrossRef] [PubMed]
- Mamilla, J.L.; Novak, U.; Grilc, M.; Likozar, B. Natural Deep Eutectic Solvents (DES) for Fractionation of Waste Lignocellulosic Biomass and Its Cascade Conversion to Value-Added Bio-Based Chemicals. Biomass Bioenergy 2019, 120, 417–425. [Google Scholar] [CrossRef]
- Beckett, E.L.; Martin, C.; Yates, Z.; Veysey, M.; Duesing, K.; Lucock, M. Bitter Taste Genetics–the Relationship to Tasting, Liking, Consumption and Health. Food Funct. 2014, 5, 3040–3054. [Google Scholar] [CrossRef]
- Turner, A.; Veysey, M.; Keely, S.; Scarlett, C.; Lucock, M.; Beckett, E.L. Interactions between Bitter Taste, Diet and Dysbiosis: Consequences for Appetite and Obesity. Nutrients 2018, 10, 1336. [Google Scholar] [CrossRef]
- Aberham, A.; Pieri, V.; Croom, E.M., Jr.; Ellmerer, E.; Stuppner, H. Analysis of Iridoids, Secoiridoids and Xanthones in Centaurium erythraea, Frasera caroliniensis and Gentiana lutea Using LC–MS and RP-HPLC. J. Pharm. Biomed. Anal. 2011, 54, 517–525. [Google Scholar] [CrossRef]
- Thiex, N.J.; Manson, H.; Anderson, S.; Persson, J.-Å. Collaborators: Determination of Crude Protein in Animal Feed, Forage, Grain, and Oilseeds by Using Block Digestion with a Copper Catalyst and Steam Distillation into Boric Acid: Collaborative Study. J. AOAC Int. 2002, 85, 309–317. [Google Scholar] [CrossRef]
- Thiex, N. Evaluation of Analytical Methods for the Determination of Moisture, Crude Protein, Crude Fat, and Crude Fiber in Distillers Dried Grains with Solubles. J. AOAC Int. 2009, 92, 61–73. [Google Scholar] [CrossRef]
- Mortensen, A.B.; Wallin, H. Gravimetric Determination of Ash in Foods: NMKL Collaborative Study. J. Assoc. Off. Anal. Chem. 1989, 72, 481–483. [Google Scholar] [CrossRef]
- Thiex, N.; Van Erem, T. Comparisons of Karl Fischer Method with Oven Methods for Determination of Water in Forages and Animal Feeds. J. AOAC Int. 1999, 82, 799–808. [Google Scholar] [CrossRef]
- Updegraff, D.M. Semimicro Determination of Cellulose Inbiological Materials. Anal. Biochem. 1969, 32, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Romani, A.; Baldi, A.; Tattini, M.; Vincieri, F.F. Extraction, Purification Procedures and HPLC-RI Analysis of Carbohydrates in Olive (Olea europaea L.) Plants. Chromatographia 1994, 39, 35–39. [Google Scholar] [CrossRef]
- Fallacara, A.; Marchetti, F.; Pozzoli, M.; Citernesi, U.R.; Manfredini, S.; Vertuani, S. Formulation and Characterization of Native and Crosslinked Hyaluronic Acid Microspheres for Dermal Delivery of Sodium Ascorbyl Phosphate: A Comparative Study. Pharmaceutics 2018, 10, 254. [Google Scholar] [CrossRef]
- Nastasijević, B.; Lazarević-Pašti, T.; Dimitrijević-Branković, S.; Pašti, I.; Vujačić, A.; Joksić, G.; Vasić, V. Inhibition of Myeloperoxidase and Antioxidative Activity of Gentiana lutea Extracts. J. Pharm. Biomed. Anal. 2012, 66, 191–196. [Google Scholar] [CrossRef]
- Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Tailoring Properties of Natural Deep Eutectic Solvents with Water to Facilitate Their Applications. Food Chem. 2015, 187, 14–19. [Google Scholar] [CrossRef]
- Gómez-Urios, C.; Vinas-Ospino, A.; Puchades-Colera, P.; Blesa, J.; López-Malo, D.; Frígola, A.; Esteve, M.J. Choline Chloride-Based Natural Deep Eutectic Solvents for the Extraction and Stability of Phenolic Compounds, Ascorbic Acid, and Antioxidant Capacity from Citrus sinensis Peel. LWT 2023, 177, 114595. [Google Scholar] [CrossRef]
- Zhan, A.; Niu, D.; Li, K.; Li, J. Characterization of Some Sucrose-Based Deep Eutectic Solvents and Their Effect on the Solubility of Piroxicam. J. Mol. Liq. 2023, 377, 121556. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Baldisserotto, A.; Barbari, R.; Tupini, C.; Buzzi, R.; Durini, E.; Lampronti, I.; Manfredini, S.; Baldini, E.; Vertuani, S. Multifunctional Profiling of Moringa oleifera Leaf Extracts for Topical Application: A Comparative Study of Different Collection Time. Antioxidants 2023, 12, 411. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, J.; Rangarajan, M.; Shao, Y.; LaVoie, E.J.; Huang, T.-C.; Ho, C.-T. Antioxidative Phenolic Compounds from Sage (Salvia officinalis). J. Agric. Food Chem. 1998, 46, 4869–4873. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Aberham, A.; Schwaiger, S.; Stuppner, H.; Ganzera, M. Quantitative Analysis of Iridoids, Secoiridoids, Xanthones and Xanthone Glycosides in Gentiana lutea L. Roots by RP-HPLC and LC–MS. J. Pharm. Biomed. Anal. 2007, 45, 437–442. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J. A New Tool for the Evaluation of the Analytical Procedure: Green Analytical Procedure Index. Talanta 2018, 181, 204–209. [Google Scholar] [CrossRef]
- Wojnowski, W.; Tobiszewski, M.; Pena-Pereira, F.; Psillakis, E. AGREEprep–Analytical Greenness Metric for Sample Preparation. TrAC Trends Anal. Chem. 2022, 149, 116553. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE—Analytical GREEnness Metric Approach and Software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef] [PubMed]
- Elboughdiri, N. Effect of Time, Solvent-Solid Ratio, Ethanol Concentration and Temperature on Extraction Yield of Phenolic Compounds from Olive Leaves. Eng. Technol. Appl. Sci. Res. 2018, 8, 2805–2808. [Google Scholar] [CrossRef]
- Shi, J.; Yu, J.; Pohorly, J.; Young, J.C.; Bryan, M.; Wu, Y. Optimization of the Extraction of Polyphenols from Grape Seed Meal by Aqueous Ethanol Solution. J. Food Agric. Env. 2003, 1, 42–47. [Google Scholar]
- Goldstein, D.; Chin, J. Interaction of Ethanol with Biological Membranes. Fed. Proc. 1981, 40, 2073–2076. [Google Scholar]
- Boussetta, N.; Soichi, E.; Lanoisellé, J.-L.; Vorobiev, E. Valorization of Oilseed Residues: Extraction of Polyphenols from Flaxseed Hulls by Pulsed Electric Fields. Ind. Crop. Prod. 2014, 52, 347–353. [Google Scholar] [CrossRef]
- Li, B.; Smith, B.; Hossain, M.M. Extraction of Phenolics from Citrus Peels: II. Enzyme-Assisted Extraction Method. Sep. Purif. Technol. 2006, 48, 189–196. [Google Scholar] [CrossRef]
- Dzah, C.S.; Duan, Y.; Zhang, H.; Boateng, N.A.S.; Ma, H. Latest Developments in Polyphenol Recovery and Purification from Plant By-Products: A Review. Trends Food Sci. Technol. 2020, 99, 375–388. [Google Scholar] [CrossRef]
- Wang, J.; Sun, B.; Cao, Y.; Tian, Y.; Li, X. Optimisation of Ultrasound-Assisted Extraction of Phenolic Compounds from Wheat Bran. Food Chem. 2008, 106, 804–810. [Google Scholar] [CrossRef]
- Vetal, M.D.; Lade, V.G.; Rathod, V.K. Extraction of Ursolic Acid from Ocimum sanctum by Ultrasound: Process Intensification and Kinetic Studies. Chem. Eng. Process. Process Intensif. 2013, 69, 24–30. [Google Scholar] [CrossRef]
- Maran, J.P.; Manikandan, S.; Thirugnanasambandham, K.; Nivetha, C.V.; Dinesh, R. Box–Behnken Design Based Statistical Modeling for Ultrasound-Assisted Extraction of Corn Silk Polysaccharide. Carbohydr. Polym. 2013, 92, 604–611. [Google Scholar] [CrossRef]
- Dong, J.; Liu, Y.; Liang, Z.; Wang, W. Investigation on Ultrasound-Assisted Extraction of Salvianolic Acid B from Salvia miltiorrhiza Root. Ultrason. Sonochem. 2010, 17, 61–65. [Google Scholar] [CrossRef]
- Nam, M.W.; Zhao, J.; Lee, M.S.; Jeong, J.H.; Lee, J. Enhanced Extraction of Bioactive Natural Products Using Tailor-Made Deep Eutectic Solvents: Application to Flavonoid Extraction from Flos Sophorae. Green Chem. 2015, 17, 1718–1727. [Google Scholar] [CrossRef]
- Ozturk, B.; Parkinson, C.; Gonzalez-Miquel, M. Extraction of Polyphenolic Antioxidants from Orange Peel Waste Using Deep Eutectic Solvents. Sep. Purif. Technol. 2018, 206, 1–13. [Google Scholar] [CrossRef]
- de los Ángeles Fernández, M.; Boiteux, J.; Espino, M.; Gomez, F.J.; Silva, M.F. Natural Deep Eutectic Solvents-Mediated Extractions: The Way Forward for Sustainable Analytical Developments. Anal. Chim. Acta 2018, 1038, 1–10. [Google Scholar] [CrossRef]
- Nolasco, M.M.; Pedro, S.N.; Vilela, C.; Vaz, P.D.; Ribeiro-Claro, P.; Rudić, S.; Parker, S.F.; Freire, C.S.; Freire, M.G.; Silvestre, A.J. Water in Deep Eutectic Solvents: New Insights from Inelastic Neutron Scattering Spectroscopy. Front. Phys. 2022, 10, 834571. [Google Scholar] [CrossRef]
- Ma, C.; Laaksonen, A.; Liu, C.; Lu, X.; Ji, X. The Peculiar Effect of Water on Ionic Liquids and Deep Eutectic Solvents. Chem. Soc. Rev. 2018, 47, 8685–8720. [Google Scholar] [CrossRef]
- Gabriele, F.; Chiarini, M.; Germani, R.; Tiecco, M.; Spreti, N. Effect of Water Addition on Choline Chloride/Glycol Deep Eutectic Solvents: Characterization of Their Structural and Physicochemical Properties. J. Mol. Liq. 2019, 291, 111301. [Google Scholar] [CrossRef]
- Shah, D.; Mjalli, F.S. Effect of Water on the Thermo-Physical Properties of Reline: An Experimental and Molecular Simulation Based Approach. Phys. Chem. Chem. Phys. 2014, 16, 23900–23907. [Google Scholar] [CrossRef]
- El Achkar, T.; Greige-Gerges, H.; Fourmentin, S. Basics and Properties of Deep Eutectic Solvents: A Review. Environ. Chem. Lett. 2021, 19, 3397–3408. [Google Scholar] [CrossRef]
- Rebocho, S.; Mano, F.; Cassel, E.; Anacleto, B.; do Rosário Bronze, M.; Paiva, A.; Duarte, A.R.C. Fractionated Extraction of Polyphenols from Mate Tea Leaves Using a Combination of Hydrophobic/Hydrophilic NADES. Curr. Res. Food Sci. 2022, 5, 571–580. [Google Scholar] [CrossRef]
- Lanjekar, K.J.; Gokhale, S.; Rathod, V.K. Utilization of Waste Mango Peels for Extraction of Polyphenolic Antioxidants by Ultrasound-Assisted Natural Deep Eutectic Solvent. Bioresour. Technol. Rep. 2022, 18, 101074. [Google Scholar]
- Bubalo, M.C.; Ćurko, N.; Tomašević, M.; Ganić, K.K.; Redovniković, I.R. Green Extraction of Grape Skin Phenolics by Using Deep Eutectic Solvents. Food Chem. 2016, 200, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Soukaina, K.; Safa, Z.; Soukaina, H.; Hicham, C.; Bouchra, C. Choline Chloride-Based Deep Eutectic Solvents (NADES): Potential Use as Green Extraction Media for Polyphenols from Mentha pulegium, Antioxidant Activity, and Antifungal Activity. Microchem. J. 2024, 199, 110174. [Google Scholar] [CrossRef]
- Bakirtzi, C.; Triantafyllidou, K.; Makris, D.P. Novel Lactic Acid-Based Natural Deep Eutectic Solvents: Efficiency in the Ultrasound-Assisted Extraction of Antioxidant Polyphenols from Common Native Greek Medicinal Plants. J. Appl. Res. Med. Aromat. Plants 2016, 3, 120–127. [Google Scholar]
- Clarke, G.; Ting, K.N.; Wiart, C.; Fry, J. High Correlation of 2, 2-Diphenyl-1-Picrylhydrazyl (DPPH) Radical Scavenging, Ferric Reducing Activity Potential and Total Phenolics Content Indicates Redundancy in Use of All Three Assays to Screen for Antioxidant Activity of Extracts of Plants from the Malaysian Rainforest. Antioxidants 2013, 2, 1–10. [Google Scholar] [PubMed]
- García, A.; Rodríguez-Juan, E.; Rodríguez-Gutiérrez, G.; Rios, J.J.; Fernández-Bolaños, J. Extraction of Phenolic Compounds from Virgin Olive Oil by Deep Eutectic Solvents (DESs). Food Chem. 2016, 197, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.-Y.; Xu, P.; Yang, F.-X.; Wu, H.; Zong, M.-H.; Lou, W.-Y. Biocompatible Deep Eutectic Solvents Based on Choline Chloride: Characterization and Application to the Extraction of Rutin from Sophora japonica. ACS Sustain. Chem. Eng. 2015, 3, 2746–2755. [Google Scholar] [CrossRef]
- Ivanović, M.; Alañón, M.; Arráez-Román, D.; Segura-Carretero, A. Enhanced and Green Extraction of Bioactive Compounds from Lippia citriodora by Tailor-Made Natural Deep Eutectic Solvents. Food Res. Int. 2018, 111, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Mir-Cerdà, A.; Granados, M.; Saurina, J.; Sentellas, S. Green Extraction of Antioxidant Compounds from Olive Tree Leaves Based on Natural Deep Eutectic Solvents. Antioxidants 2023, 12, 995. [Google Scholar] [CrossRef] [PubMed]
Component 1 | Component 2 | NADES | Ratio | % Water a |
---|---|---|---|---|
choline chloride | citric acid | ChCl:CA | 1:2 | 20 30 40 |
sucrose | citric acid | Su:CA | 1:2 | 20 30 40 |
choline chloride | lactic acid | ChCl:LA | 1:5 | 20 30 40 |
STF 231 | Content a | Unit |
---|---|---|
Moisture (fresh product) | 48.08 ± 0.01 | % dm |
Moisture (dried product) | 8.72 ± 0.00 | % dm |
Ash | 5.64 ± 0.54 | % dm |
Total nitrogen | 0.03 ± 0.00 | % dm |
Total proteins | 2.29 ± 0.61 | % dm |
Crude fats | 6.96 ± 0.83 | % dm |
Total cellulose | 25.88 ± 1.33 | % dm |
Glucose | 0.33 ± 0.00 | gL−1 |
Fructose | 0.68 ± 0.01 | gL−1 |
Sorbitol | 0.078 ± 0.00 | gL−1 |
Phenolic Compound | Linear Equation | R2 | tR | LOD | LOQ | Concentration | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
BT 1 | CE 1 | EtOH UAE 1 | ChCl:CA UAE 1 | ChCl:LA UAE 1 | Su:CA UAE 1 | ||||||
Gallic acid | y = 3017.8x + 67.465 | 0.999 | 3.980 | 0.020 | 0.063 | 1.568 ± 0.006 | 0.644 ± 0.003 | 0.236 ± 0.005 | n.d. | 0.137 ± 0.003 | n.d. |
Chlorogenic acid | y = 11,712x − 14.077 | 0.992 | 7.408 | 0.002 | 0.007 | 0.047 ± 0.000 | 0.061 ± 0.000 | 0.019 ± 0.001 | n.d. | n.d. | n.d. |
Caffeic acid | y = 9084.1x + 7.5368 | 0.994 | 9.153 | 0.006 | 0.020 | 0.171 ± 0.003 | 0.115 ± 0.002 | 0.045 ± 0.000 | n.d. | 0.254 ± 0.009 | n.d. |
Rutin | y = 7127x − 0.9877 | 0.999 | 11.793 | 0.002 | 0.007 | 0.432 ± 0.016 | 0.364 ± 0.000 | 0.019 ± 0.000 | 0.022 ± 0.000 | n.d. | n.d. |
Ellagic acid | y = 26,294x + 54.986 | 0.999 | 13.736 | 0.002 | 0.007 | 0.151 ± 0.001 | 0.106 ± 0.001 | 0.013 ± 0.001 | 0.018 ± 0.000 | 0.075 ± 0.000 | 0.057 ± 0.001 |
Trans-ferulic acid | y = 13,763x − 199.26 | 0.995 | 14.630 | 0.017 | 0.053 | 0.266 ± 0.005 | 0.184 ± 0.006 | 0.067 ± 0.002 | n.d. | 0.112 ± 0.000 | n.d. |
Quercetin | y = 13,837x + 11.29 | 0.999 | 17.407 | 0.009 | 0.027 | 0.082 ± 0005 | 0.148 ± 0.001 | 0.030 ± 0.000 | n.d. | 0.094 ± 0.002 | n.d. |
Iridoids | Linear Equation | R2 | tR | LOD | LOQ | Concentration | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
BT 1 | CE 1 | EtOH UAE 1 | ChCl:CA 1 UAE | ChCl:LA 1 UAE | Su:CA 1 UAE | ||||||
Swertiamarin | y = 7 × 106x + 1071.2 | 0.999 | 10.653 | 0.008 | 0.025 | 1.886 ± 0.013 | 0.0366 ± 0.002 | 0.406 ± 0.018 | 0.112 ± 0.014 | 1.626 ± 0.020 | n.d. |
Gentiopicroside | y = 3 × 106x + 20,893 | 0.999 | 11.523 | 0.012 | 0.037 | 1.076 ± 0.016 | 0.237 ± 0.000 | 0.288 ± 0.020 | 0.076 ± 0.005 | 2.506 ± 0.001 | n.d. |
Sweroside | y = 3 × 106x + 5645.2 | 0.999 | 12.006 | 0.009 | 0.029 | 1.211 ± 0.005 | 3.119 ± 0.056 | 0.968 ± 0.108 | 0.274 ± 0.028 | 1.664 ± 0.074 | n.d. |
Amarogentin | y = 1 × 107x − 16,003 | 0.999 | 19.6967 | 0.010 | 0.032 | 0.433 ± 0.005 | 0.651 ± 0.005 | 0.340 ± 0.083 | 0.182 ± 0.064 | 0.304 ± 0.001 | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchetti, F.; Gugel, I.; Costa, S.; Baldisserotto, A.; Foletto, A.; Gugel, I.; Baldini, E.; Manfredini, S.; Vertuani, S. A Sustainable Approach to Valuable Polyphenol and Iridoid Antioxidants from Medicinal Plant By-Products. Antioxidants 2024, 13, 1014. https://doi.org/10.3390/antiox13081014
Marchetti F, Gugel I, Costa S, Baldisserotto A, Foletto A, Gugel I, Baldini E, Manfredini S, Vertuani S. A Sustainable Approach to Valuable Polyphenol and Iridoid Antioxidants from Medicinal Plant By-Products. Antioxidants. 2024; 13(8):1014. https://doi.org/10.3390/antiox13081014
Chicago/Turabian StyleMarchetti, Filippo, Irene Gugel, Stefania Costa, Anna Baldisserotto, Alberto Foletto, Ilenia Gugel, Erika Baldini, Stefano Manfredini, and Silvia Vertuani. 2024. "A Sustainable Approach to Valuable Polyphenol and Iridoid Antioxidants from Medicinal Plant By-Products" Antioxidants 13, no. 8: 1014. https://doi.org/10.3390/antiox13081014
APA StyleMarchetti, F., Gugel, I., Costa, S., Baldisserotto, A., Foletto, A., Gugel, I., Baldini, E., Manfredini, S., & Vertuani, S. (2024). A Sustainable Approach to Valuable Polyphenol and Iridoid Antioxidants from Medicinal Plant By-Products. Antioxidants, 13(8), 1014. https://doi.org/10.3390/antiox13081014