Lipid Fraction from Agaricus brasiliensis as a Potential Therapeutic Agent for Lethal Sepsis in Mice
Abstract
:1. Introduction
2. Material and Methods
2.1. Ethics Statement
2.2. Preparation of Lipid Fraction from A. brasiliensis (LF)
2.3. Experimental Design
- Sham group: animals underwent surgery without CLP (n = 5);
- Saline solution 0.9% (CLP+SAL) group: mice were subjected to lethal sepsis by CLP and treated with saline solution (n = 5);
- Ertapenem (CLP+ERTA) group: mice were subjected to lethal sepsis by CLP and treated with 30 mg·kg−1 of ertapenem (n = 5);
- LF (CLP+LF) group: mice were subjected to lethal sepsis by CLP and treated with 0.2 mg·kg−1 of LF (n = 5);
- Ertapenem and LF (CLP+LF-ERTA) group: mice were subjected to lethal sepsis by CLP and received 30 mg·kg−1 of ertapenem and 0.2 mg·kg−1 of LF (n = 5).
- Sham group: animals underwent surgery without CLP (n = 10);
- CLP+SAL group: mice were subjected to lethal sepsis by CLP and treated with saline solution (n = 10);
- CLP+ERTA group: mice were subjected to lethal sepsis by CLP and treated with 30 mg·kg−1 of ertapenem (n = 10);
- CLP+LF group: mice were subjected to lethal sepsis by CLP and treated with 0.2 mg·kg of LF (n = 10);
- CLP+LF-ERTA group: mice were subjected to lethal sepsis by CLP and received 30 mg·kg−1 of ertapenem and 0.2 mg·kg−1 of LF (n = 10).
2.4. Lethal CLP Model
2.5. Survival and Evaluation of Clinical Parameters
2.6. Blood Samples and Peritoneal and Liver Collection
2.7. Bacterial Load Determination
2.8. Myeloperoxidase (MPO) Dosage
2.9. Quantification of Intracellular Reactive Oxygen Species (ROS) Release
2.10. Determination of Nitric Oxide (NO) Production
2.11. Malondialdehyde (MDA)
2.12. Glutathione (GSH) Levels
2.13. Determination of Aspartate Aminotransferase/Serum Glutamic Oxaloacetic Transaminase (AST/SGOT) and Alanine Aminotransferase/Serum Glutamic Pyruvic Transaminase (ALT/SGPT)
2.14. Cytokine Measurement
2.15. Total Evaluation of Trolox Equivalent Antioxidant Capacity (TEAC)
2.16. Statistical Analysis
3. Results
3.1. LF Treatment Increases Survival and Improves the Clinical Parameters of SEPTIC Animals
3.2. LF Alone or with Ertapenem Reduces Bacterial Load and Oxidative Stress Parameters in the Peritoneal Cavity
3.3. LF Alone or with Ertapenem Exhibits Anti-Inflammatory Action in the Peritoneal Cavity
3.4. LF Alone or with Ertapenem Have Antimicrobial and Antioxidant Activity in the Liver
3.5. LF Alone or with Ertapenem Exhibits Anti-Inflammatory Action in the Liver
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seymour, C.W.; Liu, V.X.; Iwashyna, T.J.; Brunkhorst, F.M.; Rea, T.D.; Scherag, A.; Rubenfeld, G.; Kahn, J.M.; Shankar-Hari, M.; Singer, M.; et al. Assessment of Clinical Criteria for Sepsis for the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA—J. Am. Med. Assoc. 2016, 315, 762–774. [Google Scholar] [CrossRef] [PubMed]
- Srzić, I.; Adam, V.N.; Pejak, D.T. Sepsis definition: What’s new in the treatment guidelines. Acta Clin. Croat. 2022, 61, 67–72. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Cai, S.; Su, J. The Pathogenesis of Sepsis and Potential Therapeutic Targets. Int. J. Mol. Sci. 2019, 20, 5376. [Google Scholar] [CrossRef]
- Beltrán-García, J.; Osca-Verdegal, R.; Jávega, B.; Herrera, G.; O’connor, J.E.; García-López, E.; Casabó-Vallés, G.; Rodriguez-Gimillo, M.; Ferreres, J.; Carbonell, N.; et al. Characterization of Early Peripheral Immune Responses in Patients with Sepsis and Septic Shock. Biomedicines 2022, 10, 525. [Google Scholar] [CrossRef] [PubMed]
- Dolin, H.H.; Papadimos, T.J.; Chen, X.; Pan, Z.K. Characterization of Pathogenic Sepsis Etiologies and Patient Profiles: A Novel Approach to Triage and Treatment. Microbiol. Insights 2019, 12, 117863611882508. [Google Scholar] [CrossRef]
- Trzeciak, A.; Pietropaoli, A.P.; Kim, M. Biomarkers and Associated Immune Mechanisms for Early Detection and Therapeutic Management of Sepsis. Immune Netw. 2020, 20, e23. [Google Scholar] [CrossRef]
- Ribeiro, A.J.S.; Yang, X.; Patel, V.; Madabushi, R.; Strauss, D.G. Liver Microphysiological Systems for Predicting and Evaluating Drug Effects. Clin. Pharmacol. Ther. 2019, 106, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Caraballo, C.; Jaimes, F. Organ Dysfunction in Sepsis: An Ominous Trajectory from Infection to Death. Yale J. Biol. Med. 2019, 92, 629–640. [Google Scholar]
- Patangia, D.V.; Anthony Ryan, C.; Dempsey, E.; Paul Ross, R.; Stanton, C. Impact of Antibiotics on the Human Microbiome and Consequences for Host Health. Microbiologyopen 2022, 11, e1260. [Google Scholar] [CrossRef]
- Navegantes-Lima, K.C.; Monteiro, V.V.S.; de França Gaspar, S.L.; de Brito Oliveira, A.L.; de Oliveira, J.P.; Reis, J.F.; de Souza Gomes, R.; Rodrigues, C.A.; Stutz, H.; Sovrani, V.; et al. Agaricus Brasiliensis Mushroom Protects Against Sepsis by Alleviating Oxidative and Inflammatory Response. Front. Immunol. 2020, 11, 1238. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.U.J.O.; Gris, E.F.; Karnikowski, M.G.O. Antimicrobial Properties of the Mushroom Agaricus Blazei—Integrative Review. Rev. Bras. Farmacogn. 2016, 26, 780–786. [Google Scholar] [CrossRef]
- Zou, Y.; Ling, N.; Ou, D.; Wang, Y.; Ren, Y.; Chen, H.; Zhang, D.; Shen, Y.; Zhao, H.; Ye, Y. Inhibitory Roles of Bacillus velezensis YE-1 Isolated from Lichens in Baiyin City, Gansu Province against Aspergillus flavus. Res. Sq. 2023, 1–25. [Google Scholar] [CrossRef]
- Santa, H.S.D.; Rubel, R.; Fernandes, L.C.; Bonatto, S.J.R.; Bello, S.R.; Monteiro, M.C.; Khalil, N.M.; Santa, O.R.D.; Soccol, C.R.; Gern, J.C.; et al. Agaricus Brasiliensis-Enriched Functional Product Promotes in Mice Increase in HDL Levels and Immunomodulate to Th1 CD4+T Subsets. A. Brasiliensis Functional Product and Biological Benefits. Curr. Trends Biotechnol. Pharm. 2010, 4, 957–970. [Google Scholar]
- Mokochinski, J.B.; Sovrani, V.; Santa, H.S.D.; Felsner, M.L.; Sawaya, A.C.H.F.; González-Borrero, P.P.; Bataglion, G.A.; Eberlin, M.N.; Torres, Y.R. Biomass and Sterol Production from Vegetal Substrate Fermentation Using Agaricus brasiliensis. J. Food Qual. 2015, 38, 221–229. [Google Scholar] [CrossRef]
- Ana, A.L.; Navegantes-Lima, K.C.; Monteiro, V.V.S.; Quadros, L.B.G.; De Oliveira, J.P.; Dos Santos, S.M.; Anna, A.C.A.; Dorneles, G.P.; Romão, P.R.T.; Júnior, L.C.R.; et al. β-Lapachone Increases Survival of Septic Mice by Regulating Inflammatory and Oxidative Response. Oxid. Med. Cell Longev. 2020, 2020, 8820651. [Google Scholar] [CrossRef]
- De Souza Gomes, R.; Navegantes-Lima, K.C.; Monteiro, V.V.S.; De Brito Oliveira, A.L.; Rodrigues, D.V.S.; Reis, J.F.; Gomes, A.R.Q.; Prophiro, J.S.; Da Silva, O.S.; Romão, P.R.T.; et al. Salivary Gland Extract from Aedes aegypti Improves Survival in Murine Polymicrobial Sepsis through Oxidative Mechanisms. Cells 2018, 7, 182. [Google Scholar] [CrossRef] [PubMed]
- D’Acampora, A.J.; de Figueiredo Locks, G. Median Lethal Needle Caliber in Two Models of Experimental Sepsis. Acta Cir. Bras. 2014, 29, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Shrum, B.; Anantha, R.V.; Xu, S.X.; Donnelly, M.; Haeryfar, S.M.M.; McCormick, J.K.; Mele, T. A Robust Scoring System to Evaluate Sepsis Severity in an Animal Model. BMC Res. Notes 2014, 7, 233. [Google Scholar] [CrossRef]
- Mai, S.H.C.; Sharma, N.; Kwong, A.C.; Dwivedi, D.J.; Khan, M.; Grin, P.M.; Fox-Robichaud, A.E.; Liaw, P.C. Body Temperature and Mouse Scoring Systems as Surrogate Markers of Death in Cecal Ligation and Puncture Sepsis. Intensive Care Med. Exp. 2018, 6, 20. [Google Scholar] [CrossRef]
- Wolforth, J. Methods of Blood Collection in the Mouse. Lab Anim. 2000, 29, 47–53. [Google Scholar]
- Pulli, B.; Ali, M.; Forghani, R.; Schob, S.; Hsieh, K.L.C.; Wojtkiewicz, G.; Linnoila, J.J.; Chen, J.W. Measuring Myeloperoxidase Activity in Biological Samples. PLoS ONE 2013, 8, e67976. [Google Scholar] [CrossRef] [PubMed]
- Andrews, P.C.; Krinsky, N.I. Quantitative Determination of Myeloperoxidase Using Tetramethylbenzidine as Substrate. Anal. Biochem. 1982, 127, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Stuehr, D.J.; Marletta, M. A Mammalian Nitrate Biosynthesis: Mouse Macrophages Produce Nitrite and Nitrate in Response to Escherichia Coli Lipopolysaccharide. Proc. Natl. Acad. Sci. USA 1985, 82, 7738–7742. [Google Scholar] [CrossRef] [PubMed]
- Kohn, H.; Liversedge, M. On a New Aerobic Metabolite Whose Production by Brain Is Inhibited by Apomorphine, Emetine, Ergotamine, Epinephrine, and Menadione. J. Pharmacol. Exp. Ther. 1944, 82, 292–300. [Google Scholar]
- Percario, S.; Vital, A.; Jablonka, F. Dosagem Do Malondialdeido. Newslab 1994, 2, 46–50. [Google Scholar]
- Kasirzadeh, S.; Ghahremani, M.H.; Setayesh, N.; Jeivad, F.; Shadboorestan, A.; Taheri, A.; Beh-Pajooh, A.; Azadkhah Shalmani, A.; Ebadollahi-Natanzi, A.; Khan, A.; et al. β-Sitosterol Alters the Inflammatory Response in CLP Rat Model of Sepsis by Modulation of NF κ B Signaling. Biomed. Res. Int. 2021, 2021, 5535562. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J. A New Method for Measuring Antioxidant Activity. Biochem. Soc. Trans. 1993, 21, 95S. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved abts radical cation decolorization assay roberta. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Sulzbacher, M.M.H.; Sulzbacher, L.M.H.; Passos, F.R.; Bilibio, B.L.E.; De Oliveira, K.; Althaus, W.F.; Frizzo, M.N.; Ludwig, M.S.; Da Cruz, I.B.M.; Heck, T.G. Adapted Murine Sepsis Score: Improving the Research in Experimental Sepsis Mouse Model. Biomed. Res. Int. 2022, 2022, 5700853. [Google Scholar] [CrossRef]
- Chaudhary, P.; Janmeda, P.; Docea, A.O.; Yeskaliyeva, B.; Abdull Razis, A.F.; Modu, B.; Calina, D.; Sharifi-Rad, J. Oxidative Stress, Free Radicals and Antioxidants: Potential Crosstalk in the Pathophysiology of Human Diseases. Front. Chem. 2023, 11, 1158198. [Google Scholar] [CrossRef] [PubMed]
- Ndrepepa, G. Myeloperoxidase—A Bridge Linking Inflammation and Oxidative Stress with Cardiovascular Disease. Clin. Chim. Acta 2019, 493, 36–51. [Google Scholar] [CrossRef]
- Corrêa, R.C.G.; Barros, L.; Fernandes, Â.; Sokovic, M.; Bracht, A.; Peralta, R.M.; Ferreira, I.C.F.R. A Natural Food Ingredient Based on Ergosterol: Optimization of the Extraction from: Agaricus blazei, Evaluation of Bioactive Properties and Incorporation in Yogurts. Food Funct. 2018, 9, 1465–1474. [Google Scholar] [CrossRef] [PubMed]
- Rangsinth, P.; Sharika, R.; Pattarachotanant, N.; Duangjan, C.; Wongwan, C.; Sillapachaiyaporn, C.; Nilkhet, S.; Wongsirojkul, N.; Prasansuklab, A.; Tencomnao, T.; et al. Potential Beneficial Effects and Pharmacological Properties of Ergosterol, a Common Bioactive Compound in Edible Mushrooms. Foods 2023, 12, 2529. [Google Scholar] [CrossRef] [PubMed]
- Dupont, S.; Fleurat-Lessard, P.; Cruz, R.G.; Lafarge, C.; Grangeteau, C.; Yahou, F.; Gerbeau-Pissot, P.; Abrahão Júnior, O.; Gervais, P.; Simon-Plas, F.; et al. Antioxidant Properties of Ergosterol and Its Role in Yeast Resistance to Oxidation. Antioxidants 2021, 10, 1024. [Google Scholar] [CrossRef]
- Vijayan, V.; Wagener, F.A.D.T.G.; Immenschuh, S. The Macrophage Heme-Heme Oxygenase-1 System and Its Role in Inflammation. Biochem. Pharmacol. 2018, 153, 159–167. [Google Scholar] [CrossRef]
- Saha, S.; Buttari, B.; Panieri, E.; Profumo, E.; Saso, L. An Overview of Nrf2 Signaling Pathway and Its Role in Inflammation. Molecules 2020, 25, 5474. [Google Scholar] [CrossRef]
- Stastny, J.; Marsik, P.; Tauchen, J.; Bozik, M.; Mascellani, A.; Havlik, J.; Landa, P.; Jablonsky, I.; Treml, J.; Herczogova, P.; et al. Antioxidant and Anti-Inflammatory Activity of Five Medicinal Mushrooms of the Genus Pleurotus. Antioxidants 2022, 11, 1569. [Google Scholar] [CrossRef]
- Zhou, M.; Aziz, M.; Ochani, M.; Wang, P. Correction of Immunosuppression in Aged Septic Rats by Human Ghrelin and Growth Hormone through the Vagus Nerve-Dependent Inhibition of TGF-β Production. Mol. Med. 2020, 26, 71. [Google Scholar] [CrossRef]
- Nascimento, D.C.; Melo, P.H.; Piñeros, A.R.; Ferreira, R.G.; Colón, D.F.; Donate, P.B.; Castanheira, F.V.; Gozzi, A.; Czaikoski, P.G.; Niedbala, W.; et al. IL-33 Contributes to Sepsis-Induced Long-Term Immunosuppression by Expanding the Regulatory T Cell Population. Nat. Commun. 2017, 8, 14919. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, Z.; Liu, Z. Role of IL-33-ST2 Pathway in Regulating Inflammation: Current Evidence and Future Perspectives. J. Transl. Med. 2023, 21, 902. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Lu, Y.; Saredy, J.; Wang, X.; Drummer, C., IV; Shao, Y.; Saaoud, F.; Xu, K.; Liu, M.; Yang, W.Y.; et al. ROS Systems Are a New Integrated Network for Sensing Homeostasis and Alarming Stresses in Organelle Metabolic Processes. Redox Biol. 2020, 37, 101696. [Google Scholar] [CrossRef] [PubMed]
- Gracia-Sancho, J.; Caparrós, E.; Fernández-Iglesias, A.; Francés, R. Role of Liver Sinusoidal Endothelial Cells in Liver Diseases. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 411–431. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, H.; Hashimoto, K.; Yuan, S.; Zhang, J. The Gut–Liver Axis in Sepsis: Interaction Mechanisms and Therapeutic Potential. Crit. Care 2022, 26, 213. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Tan, Y.; Chen, S.; Xiao, X.; Zhang, M.; Wu, Q.; Dong, M. Irisin Alleviates LPS-Induced Liver Injury and Inflammation through Inhibition of NLRP3 Inflammasome and NF-ΚB Signaling. J. Recept. Signal Transduct. 2021, 41, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Matouk, A.I.; El-Daly, M.; Habib, H.A.; Senousy, S.; Naguib Abdel Hafez, S.M.; Kasem, A.S.W.; Almalki, W.H.; Alzahrani, A.; Alshehri, A.; Ahmed, A.S.F. Protective Effects of Menthol against Sepsis-Induced Hepatic Injury: Role of Mediators of Hepatic Inflammation, Apoptosis, and Regeneration. Front. Pharmacol. 2022, 13, 952337. [Google Scholar] [CrossRef] [PubMed]
- Cai, D.; Yan, H.; Liu, J.; Chen, S.; Jiang, L.; Wang, X.; Qin, J. Ergosterol Limits Osteoarthritis Development and Progression through Activation of Nrf2 Signaling. Exp. Ther. Med. 2021, 21, 194. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, Q.; Zhang, X.; Xu, X.; Wang, X.; Huang, X.; Wang, T.; Jiang, Z.; Xiao, L.; Zhang, L.; et al. Protective Effects of Nrf2 against Sepsis-Induced Hepatic Injury. Life Sci. 2021, 282, 119807. [Google Scholar] [CrossRef] [PubMed]
- Tai, C.-J.; Choong, C.-Y.; Lin, Y.-C.; Shi, Y.-C.; Tai, C.-J. The Anti-Hepatic Fibrosis Activity of Ergosterol Depended on Upregulation of PPARgamma in HSC-T6 Cells. Food Funct. 2016, 7, 1915–1923. [Google Scholar] [CrossRef]
- Li, Z.; Liu, T.; Feng, Y.; Tong, Y.; Jia, Y.; Wang, C.; Cui, R.; Qu, K.; Liu, C.; Zhang, J. PPAR γ Alleviates Sepsis-Induced Liver Injury by Inhibiting Hepatocyte Pyroptosis via Inhibition of the ROS/TXNIP/NLRP3 Signaling Pathway. Oxid. Med. Cell Longev. 2022, 2022, 1269747. [Google Scholar] [CrossRef]
- Monroy-Ramirez, H.C.; Galicia-Moreno, M.; Sandoval-Rodriguez, A.; Meza-Rios, A.; Santos, A.; Armendariz-Borunda, J. PPARs as Metabolic Sensors and Therapeutic Targets in Liver Diseases. Int. J. Mol. Sci. 2021, 22, 8298. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Ma, C.; Gong, L.; Guo, Y.; Fu, K.; Zhang, Y.; Zhou, H.; Li, Y. Macrophage Polarization and Its Role in Liver Disease. Front. Immunol. 2021, 12, 803037. [Google Scholar] [CrossRef] [PubMed]
- Viola, A.; Munari, F.; Sánchez-Rodríguez, R.; Scolaro, T.; Castegna, A. The Metabolic Signature of Macrophage Responses. Front. Immunol. 2019, 10, 1462. [Google Scholar] [CrossRef]
- Üstündağ, H.; Demir, Ö.; Huyut, M.T.; Yüce, N. Investigating the Individual and Combined Effects of Coenzyme Q10 and Vitamin C on CLP-Induced Cardiac Injury in Rats. Sci. Rep. 2024, 14, 3098. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.Y.; Yang, Y.G.; Jeon, Y.; Lee, C.K.; Choi, I.H.; Lee, S.W. VSIG4(+) Peritoneal Macrophages Induce Apoptosis of Double-Positive Thymocyte via the Secretion of TNF-α in a CLP-Induced Sepsis Model Resulting in Thymic Atrophy. Cell Death Dis. 2021, 12, 526. [Google Scholar] [CrossRef]
- Lozano-Rodríguez, R.; Avendaño-Ortíz, J.; Montalbán-Hernández, K.; Ruiz-Rodríguez, J.C.; Ferrer, R.; Martín-Quirós, A.; Maroun-Eid, C.; González-López, J.J.; Fàbrega, A.; Terrón-Arcos, V.; et al. The Prognostic Impact of SIGLEC5-Induced Impairment of CD8+ T Cell Activation in Sepsis. EBioMedicine 2023, 97, 104841. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navegantes Lima, K.C.; Gaspar, S.L.d.F.; Oliveira, A.L.d.B.; Santos, S.M.d.; Quadros, L.B.G.; Oliveira, J.P.d.; Pereira, R.C.d.S.; Dias, A.G.d.S.; Gato, L.d.S.; Alencar, L.Y.N.; et al. Lipid Fraction from Agaricus brasiliensis as a Potential Therapeutic Agent for Lethal Sepsis in Mice. Antioxidants 2024, 13, 927. https://doi.org/10.3390/antiox13080927
Navegantes Lima KC, Gaspar SLdF, Oliveira ALdB, Santos SMd, Quadros LBG, Oliveira JPd, Pereira RCdS, Dias AGdS, Gato LdS, Alencar LYN, et al. Lipid Fraction from Agaricus brasiliensis as a Potential Therapeutic Agent for Lethal Sepsis in Mice. Antioxidants. 2024; 13(8):927. https://doi.org/10.3390/antiox13080927
Chicago/Turabian StyleNavegantes Lima, Kely Campos, Silvia Leticia de França Gaspar, Ana Ligia de Brito Oliveira, Sávio Monteiro dos Santos, Lucas Benedito Gonçalves Quadros, Juliana Pinheiro de Oliveira, Rayane Caroline dos Santos Pereira, Alexandre Guilherme da Silva Dias, Lucas da Silva Gato, Leonardo Yuji Nihira Alencar, and et al. 2024. "Lipid Fraction from Agaricus brasiliensis as a Potential Therapeutic Agent for Lethal Sepsis in Mice" Antioxidants 13, no. 8: 927. https://doi.org/10.3390/antiox13080927
APA StyleNavegantes Lima, K. C., Gaspar, S. L. d. F., Oliveira, A. L. d. B., Santos, S. M. d., Quadros, L. B. G., Oliveira, J. P. d., Pereira, R. C. d. S., Dias, A. G. d. S., Gato, L. d. S., Alencar, L. Y. N., dos Santos, A. L. P., Dorneles, G. P., Romão, P. R. T., Stutz, H., Sovrani, V., & Monteiro, M. C. (2024). Lipid Fraction from Agaricus brasiliensis as a Potential Therapeutic Agent for Lethal Sepsis in Mice. Antioxidants, 13(8), 927. https://doi.org/10.3390/antiox13080927