Investigation into the Reduction of Palm Oil in Foods by Blended Vegetable Oils through Response Surface Methodology and Oxidative Stability Tests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Materials
2.3. Instrumentation
2.4. Vegetable Oil Blend Optimization
2.5. In Vitro Antioxidant Activity Through Radical Inhibition
2.6. Bioactive Compounds Determination
2.6.1. Tocopherol Quantification
2.6.2. Total Carotenoid Content (TCC)
2.6.3. Fatty Acids Composition
2.7. Accelerated Oil Oxidation Process
2.8. Oxidation By-Product Measurement
2.8.1. Peroxide Value (PV) Assay
2.8.2. Conjugated Dienes and Trienes Determination
2.8.3. Thiobarbituric Acid Reactive Substances (TBARSs) Assay
2.8.4. Volatile Compounds Determination by HS-SPME/GC-MS
2.8.5. p-Anisidine Value (p-AV) Assay
2.8.6. Assessment of Total Oxidation By-Products
2.9. ATR–FTIR Qualitative Analysis
2.10. Statistical Analysis
3. Results and Discussion
3.1. Alterations in Antiradical Activity and Oxidative Stability in Oil Blends
3.2. Blended Vegetable Oil Composition Optimization
3.3. Bioactive Compounds Quantification and Antioxidant Capacity of OBO and PO Samples
3.3.1. Comparison of Total Carotenoids, Total Tocopherols, and Antioxidant Activity
3.3.2. Fatty Acids Composition and Indices
3.4. Evaluation of Primary and Secondary Oxidation By-Products
3.4.1. Spectrophotometric Determination of Oxidation By-Products
3.4.2. Chromatographic Determination of Volatile Compounds after Accelerated Oxidation
3.5. ATR–FTIR Spectra Analysis
3.6. Correlation Analyses
3.6.1. Multiple Factor Analysis (MFA)
3.6.2. Consensus Map
3.6.3. Multivariate Correlation Analysis (MCA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Absalome, M.A.; Massara, C.-C.; Alexandre, A.A.; Gervais, K.; Chantal, G.G.-A.; Ferdinand, D.; Rhedoor, A.J.; Coulibaly, I.; George, T.G.; Brigitte, T.; et al. Biochemical Properties, Nutritional Values, Health Benefits and Sustainability of Palm Oil. Biochimie 2020, 178, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Gesteiro, E.; Guijarro, L.; Sánchez-Muniz, F.J.; Vidal-Carou, M.d.C.; Troncoso, A.; Venanci, L.; Jimeno, V.; Quilez, J.; Anadón, A.; González-Gross, M. Palm Oil on the Edge. Nutrients 2019, 11, 2008. [Google Scholar] [CrossRef] [PubMed]
- Urugo, M.M.; Teka, T.A.; Teshome, P.G.; Tringo, T.T. Palm Oil Processing and Controversies over Its Health Effect: Overview of Positive and Negative Consequences. J. Oleo Sci. 2021, 70, 1693–1706. [Google Scholar] [CrossRef] [PubMed]
- Ayompe, L.M.; Schaafsma, M.; Egoh, B.N. Towards Sustainable Palm Oil Production: The Positive and Negative Impacts on Ecosystem Services and Human Wellbeing. J. Clean. Prod. 2021, 278, 123914. [Google Scholar] [CrossRef]
- Gonzalez-Diaz, A.; Pataquiva-Mateus, A.; García-Núñez, J.A. Recovery of Palm Phytonutrients as a Potential Market for the By-Products Generated by Palm Oil Mills and refineries—A Review. Food Biosci. 2021, 41, 100916. [Google Scholar] [CrossRef]
- Naidu, L.; Moorthy, R. A Review of Key Sustainability Issues in Malaysian Palm Oil Industry. Sustainability 2021, 13, 10839. [Google Scholar] [CrossRef]
- Salas, J.J.; Bootello, M.A.; Martínez-Force, E.; Calerón, M.V.; Garcés, R. High Stearic Sunflower Oil: Latest Advances and Applications. OCL 2021, 28, 35. [Google Scholar] [CrossRef]
- Delshadi, R.; Bahrami, A.; Tafti, A.G.; Barba, F.J.; Williams, L.L. Micro and Nano-Encapsulation of Vegetable and Essential Oils to Develop Functional Food Products with Improved Nutritional Profiles. Trends Food Sci. Technol. 2020, 104, 72–83. [Google Scholar] [CrossRef]
- Petraru, A.; Ursachi, F.; Amariei, S. Nutritional Characteristics Assessment of Sunflower Seeds, Oil and Cake. Perspective of Using Sunflower Oilcakes as a Functional Ingredient. Plants 2021, 10, 2487. [Google Scholar] [CrossRef]
- Mirpoor, S.F.; Giosafatto, C.V.L.; Porta, R. Biorefining of Seed Oil Cakes as Industrial Co-Streams for Production of Innovative Bioplastics. A Review. Trends Food Sci. Technol. 2021, 109, 259–270. [Google Scholar] [CrossRef]
- Chew, S.C. Cold-Pressed Rapeseed (Brassica napus) Oil: Chemistry and Functionality. Food Res. Int. 2020, 131, 108997. [Google Scholar] [CrossRef] [PubMed]
- Swarnamali, H.; Ranasinghe, P.; Jayawardena, R. Changes in Serum Lipids Following Consumption of Coconut Oil and Palm Olein Oil: A Sequential Feeding Crossover Clinical Trial. Diabetes Metab. Syndr. Clin. Res. Rev. 2024, 18, 103070. [Google Scholar] [CrossRef] [PubMed]
- Konuskan, D.B.; Arslan, M.; Oksuz, A. Physicochemical Properties of Cold Pressed Sunflower, Peanut, Rapeseed, Mustard and Olive Oils Grown in the Eastern Mediterranean Region. Saudi J. Biol. Sci. 2019, 26, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Athanasiadis, V.; Chatzimitakos, T.; Kalompatsios, D.; Palaiogiannis, D.; Makrygiannis, I.; Bozinou, E.; Lalas, S.I. Evaluation of the Efficacy and Synergistic Effect of α- and δ-Tocopherol as Natural Antioxidants in the Stabilization of Sunflower Oil and Olive Pomace Oil during Storage Conditions. Int. J. Mol. Sci. 2023, 24, 1113. [Google Scholar] [CrossRef] [PubMed]
- Szydłowska-Czerniak, A.; Rabiej, D. Effect of New Antioxidants: Phenolipids on Quality of Fried French Fries and Rapeseed Oil. J. Food Sci. Technol. 2021, 58, 2589–2598. [Google Scholar] [CrossRef] [PubMed]
- Kalantzakis, G.; Blekas, G.; Pegklidou, K.; Boskou, D. Stability and Radical-scavenging Activity of Heated Olive Oil and Other Vegetable Oils. Eur. J. Lipid Sci. Technol. 2006, 108, 329–335. [Google Scholar] [CrossRef]
- Lalas, S.; Athanasiadis, V.; Gortzi, O.; Bounitsi, M.; Giovanoudis, I.; Tsaknis, J.; Bogiatzis, F. Enrichment of Table Olives with Polyphenols Extracted from Olive Leaves. Food Chem. 2011, 127, 1521. [Google Scholar] [CrossRef]
- Minguez-Mosquera, M.I.; Rejano-Navarro, L.; Gandul-Rojas, B.; Sanchez-Gomez, A.H.; Garrido-Fernandez, J. Color-Pigment Correlation in Virgin Olive Oil. J. Am. Oil Chem. Soc. USA 1991, 68, 332–336. [Google Scholar] [CrossRef]
- Borello, E.; Domenici, V. Determination of Pigments in Virgin and Extra-Virgin Olive Oils: A Comparison between Two Near UV-Vis Spectroscopic Techniques. Foods 2019, 8, 18. [Google Scholar] [CrossRef]
- COMMISSION REGULATION (EC) No 796/2002 of 6 May 2002 Amending Regulation (EEC) No 2568/91 on the Characteristics of Olive Oil and Olive-Pomace Oil and on the Relevant Methods of Analysis and the Additional Notes in the Annex to Council Regulation (EEC) No 2658/87 on the Tariff and Statistical Nomenclature and on the Common Customs Tariff, L128 (Annex X.B); European Commission: Brussels, Belgium, 2002; pp. 14–18.
- Lalas, S.; Gortzi, O.; Athanasiadis, V.; Dourtoglou, E.; Dourtoglou, V. Full Characterisation of Crambe abyssinica Hochst. Seed Oil. J. Am. Oil Chem. Soc. 2012, 89, 2253–2258. [Google Scholar] [CrossRef]
- Jooyandeh, M.; Jaldani, S.; Farhoosh, R. Stepwise Peroxidation of Canola and Olive Oils: A Kinetic Study. J. Am. Oil Chem. Soc. 2023, 100, 975–983. [Google Scholar] [CrossRef]
- Herchi, W.; Ammar, K.B.; Bouali, I.; Abdallah, I.B.; Guetet, A.; Boukhchina, S. Heating Effects on Physicochemical Characteristics and Antioxidant Activity of Flaxseed Hull Oil (Linum usitatissimum L.). Food Sci. Technol. 2016, 36, 97–102. [Google Scholar] [CrossRef]
- Fatemi, S.H.; Hammond, E.G. Analysis of Oleate, Linoleate and Linolenate Hydroperoxides in Oxidized Ester Mixtures. Lipids 1980, 15, 379–385. [Google Scholar] [CrossRef]
- Ulbricht, T.L.; Southgate, D.A. Coronary Heart Disease: Seven Dietary Factors. Lancet Lond. Engl. 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F.J.L.P.S. Effect of Genotype, Feeding System and Slaughter Weight on the Quality of Light Lambs: II. Fatty Acid Composition of Meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Chen, S.; Bobe, G.; Zimmerman, S.; Hammond, E.G.; Luhman, C.M.; Boylston, T.D.; Freeman, A.E.; Beitz, D.C. Physical and Sensory Properties of Dairy Products from Cows with Various Milk Fatty Acid Compositions. J. Agric. Food Chem. 2004, 52, 3422–3428. [Google Scholar] [CrossRef]
- Kalompatsios, D.; Athanasiadis, V.; Chatzimitakos, T.; Palaiogiannis, D.; Lalas, S.I.; Makris, D.P. Sustainable Exploitation of Waste Orange Peels: Enrichment of Commercial Seed Oils and the Effect on Their Oxidative Stability. Waste 2023, 1, 761–774. [Google Scholar] [CrossRef]
- 74A:1991; IDF-Square Vergote 41, Brussels, Sec. International IDF Standards International Dairy Federation: Brussels, Belgium, 1991.
- Pegg, R.B. Measurement of Primary Lipid Oxidation Products. Curr. Protoc. Food Anal. Chem. 2001, D2.1.1–D2.1.15. [Google Scholar] [CrossRef]
- Qiu, C.; Zhao, M.; Decker, E.A.; McClements, D.J. Influence of Protein Type on Oxidation and Digestibility of Fish Oil-in-Water Emulsions: Gliadin, Caseinate, and Whey Protein. Food Chem. 2015, 175, 249–257. [Google Scholar] [CrossRef]
- Toulaki, A.K.; Athanasiadis, V.; Chatzimitakos, T.; Kalompatsios, D.; Bozinou, E.; Roufas, K.; Mantanis, G.I.; Dourtoglou, V.G.; Lalas, S.I. Investigation of Xinomavro Red Wine Aging with Various Wood Chips Using Pulsed Electric Field. Beverages 2024, 10, 13. [Google Scholar] [CrossRef]
- ISO 6885:2016; Animal and Vegetable Fats and Oils—Determination of Anisidine Value. International Organization for Standardization (ISO): Geneva, Switzerland, 2016.
- Sun-Waterhouse, D.; Xue, D.; Wadhwa, S. Effects of Added Phenolics on the Lipid Deterioration and Antioxidant Content of Deep-Fried Potato Fritters. Food Bioprocess Technol. 2013, 6, 3256–3265. [Google Scholar] [CrossRef]
- Mitrea, L.; Teleky, B.-E.; Leopold, L.-F.; Nemes, S.-A.; Plamada, D.; Dulf, F.V.; Pop, I.-D.; Vodnar, D.C. The Physicochemical Properties of Five Vegetable Oils Exposed at High Temperature for a Short-Time-Interval. J. Food Compos. Anal. 2022, 106, 104305. [Google Scholar] [CrossRef]
- Pokhrel, K.; Kouřimská, L.; Rudolf, O.; Tilami, S.K. Oxidative Stability of Crude Oils Relative to Tocol Content from Eight Oat Cultivars: Comparing the Schaal Oven and Rancimat Tests. J. Food Compos. Anal. 2024, 126, 105918. [Google Scholar] [CrossRef]
- Suárez, M.; Gual-Grau, A.; Ávila-Román, J.; Torres-Fuentes, C.; Mulero, M.; Aragonès, G.; Bravo, F.I.; Muguerza, B. Oils and Oilseeds in the Nutraceutical and Functional Food Industries. In Oil and Oilseed Processing; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2021; pp. 219–243. ISBN 978-1-119-57531-3. [Google Scholar]
- Ma, G.; Wang, Y.; Li, Y.; Zhang, L.; Gao, Y.; Li, Q.; Yu, X. Antioxidant Properties of Lipid Concomitants in Edible Oils: A Review. Food Chem. 2023, 422, 136219. [Google Scholar] [CrossRef]
- El-Reffaei, M.; El-Sebeay, S.; Eman, R.; El-Ghandour, H.M.A.; Badr, A. Effect of Deep-Fat Frying Performance on Canola Oil, Palm Olein and Sunflower Oil Blends: A-Chemical Parameters. Alex. J. Food Sci. Technol. 2015, 12, 63–78. [Google Scholar] [CrossRef]
- Yang, K.-M.; Chiang, P.-Y. Variation Quality and Kinetic Parameter of Commercial N-3 PUFA-Rich Oil during Oxidation via Rancimat. Mar. Drugs 2017, 15, 97. [Google Scholar] [CrossRef]
- Xu, Z.; Ye, Z.; Li, Y.; Li, J.; Liu, Y. Comparative Study of the Oxidation Stability of High Oleic Oils and Palm Oil during Thermal Treatment. J. Oleo Sci. 2020, 69, 573–584. [Google Scholar] [CrossRef]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef]
- Szewczyk, K.; Chojnacka, A.; Górnicka, M. Tocopherols and Tocotrienols—Bioactive Dietary Compounds; What Is Certain, What Is Doubt? Int. J. Mol. Sci. 2021, 22, 6222. [Google Scholar] [CrossRef]
- Pieszka, M.; Migdał, W.; Gąsior, R.; Rudzińska, M.; Bederska-Łojewska, D.; Pieszka, M.; Szczurek, P. Native Oils from Apple, Blackcurrant, Raspberry, and Strawberry Seeds as a Source of Polyenoic Fatty Acids, Tocochromanols, and Phytosterols: A Health Implication. J. Chem. 2015, 2015, 659541. [Google Scholar] [CrossRef]
- Mba, O.I.; Dumont, M.-J.; Ngadi, M. Thermostability and Degradation Kinetics of Tocochromanols and Carotenoids in Palm Oil, Canola Oil and Their Blends during Deep-Fat Frying. LWT—Food Sci. Technol. 2017, 82, 131–138. [Google Scholar] [CrossRef]
- Zielińska, A.; Wójcicki, K.; Klensporf-Pawlik, D.; Dias-Ferreira, J.; Lucarini, M.; Durazzo, A.; Lucariello, G.; Capasso, R.; Santini, A.; Souto, E.B.; et al. Chemical and Physical Properties of Meadowfoam Seed Oil and Extra Virgin Olive Oil: Focus on Vibrational Spectroscopy. J. Spectrosc. 2020, 2020, 8870170. [Google Scholar] [CrossRef]
- Xu, T.; Li, J.; Fan, Y.-W.; Zheng, T.; Deng, Z.-Y. Comparison of Oxidative Stability among Edible Oils under Continuous Frying Conditions. Int. J. Food Prop. 2015, 18, 1478–1490. [Google Scholar] [CrossRef]
- Khalili Tilami, S.; Kouřimská, L. Assessment of the Nutritional Quality of Plant Lipids Using Atherogenicity and Thrombogenicity Indices. Nutrients 2022, 14, 3795. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Cong, S.; Dong, W.; Zhao, J.; Hu, R.; Long, Y.; Chi, X. Characterization of the Lipid Oxidation Process of Robusta Green Coffee Beans and Shelf Life Prediction during Accelerated Storage. Molecules 2020, 25, 1157. [Google Scholar] [CrossRef]
- Koohikamali, S.; Alam, M.S. Improvement in Nutritional Quality and Thermal Stability of Palm Olein Blended with Macadamia Oil for Deep-Fat Frying Application. J. Food Sci. Technol. 2019, 56, 5063–5073. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Mechanisms and Factors for Edible Oil Oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169–186. [Google Scholar] [CrossRef]
- Abeyrathne, E.D.N.S.; Nam, K.; Ahn, D.U. Analytical Methods for Lipid Oxidation and Antioxidant Capacity in Food Systems. Antioxidants 2021, 10, 1587. [Google Scholar] [CrossRef]
- Kaseke, T.; Opara, U.L.; Fawole, O.A. Blending of Sunflower Oil with Pomegranate Seed Oil from Blanched Seeds: Impact on Functionality, Oxidative Stability, and Antioxidant Properties. Processes 2021, 9, 635. [Google Scholar] [CrossRef]
- Mu, H.; Gao, H.; Chen, H.; Fang, X.; Zhou, Y.; Wu, W.; Han, Q. Study on the Volatile Oxidation Compounds and Quantitative Prediction of Oxidation Parameters in Walnut (Carya cathayensis Sarg.) Oil. Eur. J. Lipid Sci. Technol. 2019, 121, 1800521. [Google Scholar] [CrossRef]
- Zhou, Y.; Fan, W.; Chu, F.; Wang, C.; Pei, D. Identification of Volatile Oxidation Compounds as Potential Markers of Walnut Oil Quality. J. Food Sci. 2018, 83, 2745–2752. [Google Scholar] [CrossRef] [PubMed]
- Masyita, A.; Mustika Sari, R.; Dwi Astuti, A.; Yasir, B.; Rahma Rumata, N.; Emran, T.B.; Nainu, F.; Simal-Gandara, J. Terpenes and Terpenoids as Main Bioactive Compounds of Essential Oils, Their Roles in Human Health and Potential Application as Natural Food Preservatives. Food Chem. X 2022, 13, 100217. [Google Scholar] [CrossRef] [PubMed]
- Rohman, A.; Man, Y.B.C. Fourier Transform Infrared (FTIR) Spectroscopy for Analysis of Extra Virgin Olive Oil Adulterated with Palm Oil. Food Res. Int. 2010, 43, 886–892. [Google Scholar] [CrossRef]
- Li, Q.; Chen, J.; Huyan, Z.; Kou, Y.; Xu, L.; Yu, X.; Gao, J.-M. Application of Fourier Transform Infrared Spectroscopy for the Quality and Safety Analysis of Fats and Oils: A Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 3597–3611. [Google Scholar] [CrossRef] [PubMed]
- Guillén, M.D.; Cabo, N. Infrared Spectroscopy in the Study of Edible Oils and Fats. J. Sci. Food Agric. 1997, 75, 1–11. [Google Scholar] [CrossRef]
- Muik, B.; Lendl, B.; Molina-Diaz, A.; Valcarcel, M.; Ayora-Cañada, M.J. Two-Dimensional Correlation Spectroscopy and Multivariate Curve Resolution for the Study of Lipid Oxidation in Edible Oils Monitored by FTIR and FT-Raman Spectroscopy. Anal. Chim. Acta 2007, 593, 54–67. [Google Scholar] [CrossRef] [PubMed]
- de la Mata, P.; Dominguez-Vidal, A.; Bosque-Sendra, J.M.; Ruiz-Medina, A.; Cuadros-Rodríguez, L.; Ayora-Cañada, M.J. Olive Oil Assessment in Edible Oil Blends by Means of ATR-FTIR and Chemometrics. Food Control 2012, 23, 449–455. [Google Scholar] [CrossRef]
- Rozali, N.L.; Azizan, K.A.; Singh, R.; Syed Jaafar, S.N.; Othman, A.; Weckwerth, W.; Ramli, U.S. Fourier Transform Infrared (FTIR) Spectroscopy Approach Combined with Discriminant Analysis and Prediction Model for Crude Palm Oil Authentication of Different Geographical and Temporal Origins. Food Control 2023, 146, 109509. [Google Scholar] [CrossRef]
- Kmiecik, D.; Fedko, M.; Siger, A.; Kowalczewski, P.Ł. Nutritional Quality and Oxidative Stability during Thermal Processing of Cold-Pressed Oil Blends with 5:1 Ratio of Ω6/Ω3 Fatty Acids. Foods 2022, 11, 1081. [Google Scholar] [CrossRef]
- Cichocki, W.; Kmiecik, D.; Baranowska, H.M.; Staroszczyk, H.; Sommer, A.; Kowalczewski, P.Ł. Chemical Characteristics and Thermal Oxidative Stability of Novel Cold-Pressed Oil Blends: GC, LF NMR, and DSC Studies. Foods 2023, 12, 2660. [Google Scholar] [CrossRef] [PubMed]
- Kmiecik, D.; Fedko, M.; Rudzińska, M.; Siger, A.; Gramza-Michałowska, A.; Kobus-Cisowska, J. Thermo-Oxidation of Phytosterol Molecules in Rapeseed Oil during Heating: The Impact of Unsaturation Level of the Oil. Foods 2021, 10, 50. [Google Scholar] [CrossRef] [PubMed]
- El Khediri, S.; Fakhet, W.; Moulahi, T.; Khan, R.; Thaljaoui, A.; Kachouri, A. Improved Node Localization Using K-Means Clustering for Wireless Sensor Networks. Comput. Sci. Rev. 2020, 37, 100284. [Google Scholar] [CrossRef]
Independent Variables | Code Units | Coded Variable Level | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
Palm oil (PO) | X1 | 0 | 1 | 2 | 3 | 4 |
Corn oil (CO) | X2 | 0 | 1 | 2 | 3 | 4 |
Rapeseed oil (RSO) | X3 | 0 | 1 | 2 | 3 | 4 |
Sunflower oil (SO) | X4 | 0 | 1 | 2 | 3 | 4 |
Design Point | X1 (PO) | X2 (CO) | X3 (RSO) | X4 (SO) | DPPH 1 | DPPH-2h | %OS 2 | CD 3 | CD-2h | %OP-CD 2 | CT 3 | CT-2h | %OP-CT 2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 (0) | 1 (33.3) | 0 (0) | 2 (66.7) | 199.66 ± 10.18 | 156.43 ± 5.48 | 78.35 | 12.10 ± 0.37 | 14.14 ± 0.40 | 16.87 | 6.71 ± 0.48 | 6.88 ± 0.37 | 2.58 |
2 | 1 (14.3) | 0 (0) | 2 (28.6) | 4 (57.1) | 181.00 ± 7.42 | 138.87 ± 7.22 | 76.73 | 16.33 ± 1.06 | 16.47 ± 0.56 | 0.86 | 7.80 ± 0.51 | 7.87 ± 0.31 | 0.98 |
3 | 2 (25) | 2 (25) | 4 (50) | 0 (0) | 168.45 ± 11.79 | 153.83 ± 8.31 | 91.32 | 9.02 ± 0.31 | 13.52 ± 0.42 | 49.79 | 4.42 ± 0.27 | 4.88 ± 0.36 | 10.38 |
4 | 3 (30) | 2 (20) | 3 (30) | 2 (20) | 191.58 ± 9.58 | 137.82 ± 9.92 | 71.94 | 12.01 ± 0.65 | 18.23 ± 1.17 | 51.76 | 5.65 ± 0.21 | 7.23 ± 0.50 | 28.11 |
5 | 3 (37.5) | 1 (12.5) | 1 (12.5) | 3 (37.5) | 182.63 ± 4.57 | 145.75 ± 8.16 | 79.81 | 13.00 ± 0.94 | 17.85 ± 1.18 | 37.28 | 6.73 ± 0.38 | 7.46 ± 0.51 | 10.85 |
6 | 4 (36.4) | 0 (0) | 4 (36.4) | 3 (27.3) | 174.02 ± 3.48 | 130.87 ± 9.68 | 75.20 | 10.97 ± 0.63 | 19.94 ± 1.50 | 81.75 | 5.14 ± 0.35 | 7.43 ± 0.22 | 44.62 |
7 | 1 (12.5) | 4 (50) | 0 (0) | 3 (37.5) | 212.16 ± 9.55 | 16.55 ± 1.03 | 7.80 | 11.20 ± 0.72 | 21.51 ± 1.55 | 92.11 | 7.22 ± 0.30 | 9.56 ± 0.64 | 32.45 |
8 | 4 (50) | 3 (37.5) | 1 (12.5) | 0 (0) | 181.50 ± 6.17 | 151.49 ± 4.85 | 83.46 | 11.27 ± 0.28 | 14.92 ± 0.90 | 32.34 | 6.78 ± 0.42 | 7.13 ± 0.23 | 5.19 |
9 | 2 (16.7) | 3 (25) | 3 (25) | 4 (33.3) | 206.18 ± 10.72 | 157.16 ± 11.16 | 76.22 | 14.56 ± 0.51 | 14.71 ± 0.37 | 1.06 | 6.02 ± 0.13 | 6.11 ± 0.44 | 1.56 |
10 | 3 (20) | 4 (26.7) | 4 (26.7) | 4 (26.7) | 220.76 ± 16.12 | 147.22 ± 6.33 | 66.69 | 10.39 ± 0.49 | 14.42 ± 0.98 | 38.80 | 5.38 ± 0.11 | 5.74 ± 0.41 | 6.58 |
11 | 1 (11.1) | 3 (33.3) | 4 (44.4) | 1 (11.1) | 228.98 ± 7.56 | 163.84 ± 4.75 | 71.55 | 7.13 ± 0.41 | 13.81 ± 0.98 | 93.50 | 4.00 ± 0.10 | 4.73 ± 0.13 | 18.34 |
12 | 2 (33.3) | 1 (16.7) | 2 (33.3) | 1 (16.7) | 173.82 ± 10.08 | 145.36 ± 7.12 | 83.62 | 9.30 ± 0.26 | 14.30 ± 0.59 | 53.73 | 4.88 ± 0.33 | 5.52 ± 0.34 | 13.15 |
13 | 4 (57.1) | 2 (28.6) | 0 (0) | 1 (14.3) | 181.18 ± 13.59 | 139.17 ± 3.48 | 76.81 | 11.79 ± 0.84 | 16.44 ± 0.94 | 39.43 | 7.38 ± 0.44 | 7.91 ± 0.16 | 7.26 |
14 | 1 (20) | 1 (20) | 3 (60) | 0 (0) | 177.21 ± 10.63 | 137.31 ± 9.20 | 77.49 | 7.31 ± 0.26 | 12.24 ± 0.61 | 67.49 | 3.19 ± 0.15 | 3.72 ± 0.21 | 16.70 |
15 | 0 (0) | 3 (37.5) | 2 (25) | 3 (37.5) | 194.19 ± 3.88 | 150.85 ± 6.49 | 77.68 | 11.06 ± 0.44 | 14.40 ± 0.56 | 30.24 | 5.54 ± 0.34 | 5.68 ± 0.16 | 2.69 |
16 | 0 (0) | 2 (28.6) | 1 (14.3) | 4 (57.1) | 192.49 ± 14.05 | 144.70 ± 10.27 | 75.17 | 12.41 ± 0.81 | 15.31 ± 0.90 | 23.35 | 6.63 ± 0.14 | 6.74 ± 0.47 | 1.72 |
17 | 2 (40) | 0 (0) | 1 (20) | 2 (40) | 174.13 ± 7.31 | 126.68 ± 3.93 | 72.75 | 11.59 ± 0.45 | 15.17 ± 0.59 | 30.84 | 6.35 ± 0.33 | 6.62 ± 0.21 | 4.26 |
18 | 0 (0) | 4 (50) | 3 (37.5) | 1 (12.5) | 203.01 ± 14.21 | 160.44 ± 3.69 | 79.03 | 9.44 ± 0.69 | 13.33 ± 0.52 | 41.22 | 4.65 ± 0.12 | 4.93 ± 0.10 | 5.92 |
19 | 4 (33.3) | 4 (33.3) | 2 (16.7) | 2 (16.7) | 198.10 ± 7.73 | 143.92 ± 8.78 | 72.65 | 10.39 ± 0.25 | 14.74 ± 0.55 | 41.84 | 6.33 ± 0.29 | 6.54 ± 0.32 | 3.28 |
20 | 3 (100) | 0 (0) | 0 (0) | 0 (0) | 162.66 ± 5.86 | 117.26 ± 3.75 | 72.09 | 13.14 ± 0.66 | 16.67 ± 1.25 | 26.88 | 8.59 ± 0.64 | 8.91 ± 0.20 | 3.76 |
21 | 0 (0) | 3 (100) | 0 (0) | 0 (0) | 243.76 ± 15.11 | 185.21 ± 5.37 | 75.98 | 10.19 ± 0.49 | 13.51 ± 0.34 | 32.56 | 6.93 ± 0.36 | 7.00 ± 0.52 | 1.04 |
22 | 0 (0) | 0 (0) | 3 (100) | 0 (0) | 171.56 ± 4.12 | 134.00 ± 4.69 | 78.11 | 14.43 ± 0.43 | 39.72 ± 2.46 | 175.20 | 1.89 ± 0.08 | 9.03 ± 0.51 | 376.73 |
23 | 0 (0) | 0 (0) | 0 (0) | 3 (100) | 187.22 ± 6.74 | 21.13 ± 1.29 | 11.29 | 12.31 ± 0.37 | 16.70 ± 0.97 | 35.60 | 6.58 ± 0.16 | 7.58 ± 0.42 | 15.30 |
Oil Samples | DPPH 1 | TCC 2 | α-T 3 | β-T 3 | γ-T 3 | δ-T 3 | ∑ Tocopherols 4 |
---|---|---|---|---|---|---|---|
Optimal blend oil (control) | 149.08 ± 5.67 c | 2.80 ± 0.11 b | 247.62 ± 6.93 b | 31.26 ± 1.03 a,b | 387.04 ± 15.48 b | 25.43 ± 1.14 d,e | 691.34 ± 24.59 b |
OBO-1 h | 139.10 ± 3.76 c | 2.66 ± 0.18 b | 187.23 ± 8.43 c | 29.79 ± 1.01 b,c | 363.65 ± 17.09 b,c | 24.00 ± 1.46 e | 604.67 ± 27.99 c |
OBO-2 h | 115.81 ± 4.98 d | 2.51 ± 0.14 b,c | 79.80 ± 1.84 d | 31.16 ± 0.69 a,b | 337.91 ± 7.43 c,d | 23.20 ± 1.42 e | 472.07 ± 11.37 d,e |
OBO-3 h | 83.72 ± 2.01 e | 2.22 ± 0.05 c,d | 31.47 ± 1.61 e | 27.71 ± 1.97 b,c | 326.16 ± 14.35 c,d,e | 22.64 ± 1.27 e | 407.99 ± 19.19 e,f |
OBO-4 h | 73.55 ± 3.68 e,f | 1.95 ± 0.13 d | nd * | 26.08 ± 1.88 c | 301.23 ± 19.88 d,e | 22.18 ± 0.67 e | 349.49 ± 22.42 f |
Palm oil (control) | 111.92 ± 3.47 d | 0.58 ± 0.02 e | 312.41 ± 23.43 a | nd | 174.2 ± 9.41 f | 40.37 ± 2.02 a | 526.98 ± 34.86 d |
PO-1 h | 75.08 ± 5.41 e,f | 0.57 ± 0.04 e | 204.73 ± 12.69 c | nd | 156.24 ± 9.69 f | 39.53 ± 1.94 a,b | 400.49 ± 24.32 f |
PO-2 h | 59.60 ± 2.03 f | 0.56 ± 0.01 e | 105.07 ± 3.15 d | nd | 135.88 ± 9.65 f,g | 36.77 ± 0.92 a,b,c | 277.72 ± 13.72 g |
PO-3 h | 40.78 ± 0.94 g | 0.43 ± 0.02 e | 43.98 ± 1.76 e | nd | 100.39 ± 3.51 g,h | 34.28 ± 2.26 c | 178.65 ± 7.54 h |
PO-4 h | 30.33 ± 1.70 g | 0.31 ± 0.01 e | 37.79 ± 2.46 e | nd | 65.40 ± 2.42 h | 28.91 ± 1.76 d | 132.10 ± 6.64 h |
Corn oil | 245.59 ± 15.96 a | 0.50 ± 0.01 e | 199.14 ± 7.37 c | 26.03 ± 1.43 c | 522.88 ± 21.96 a | 35.31 ± 2.30 b,c | 783.36 ± 33.06 a |
Rapeseed oil | 171.56 ± 11.49 b | 5.62 ± 0.34 a | 254.54 ± 7.13 b | 35.42 ± 2.23 a | 297.21 ± 11.29 e | 13.85 ± 0.35 f | 601.03 ± 21.00 c |
Oil Samples | ∑ SFA 1 | ∑ MUFA 2 | ∑ PUFA 3 | ∑ UFA 4 | PUFA: SFA Ratio | MUFA: PUFA Ratio | ω-6: ω-3 Ratio | COX 5 | IA 6 | IT 7 | HH 8 | HPI 9 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Optimal blend oil (control) | 9.22 ± 0.34 b,c | 43.62 ± 1.18 b | 47.16 ± 3.37 b | 90.78 ± 4.55 a | 5.11 ± 0.18 a | 0.93 ± 0.04 d | 39.16 ± 0.98 d | 5.43 ± 0.36 b | 0.10 ± 0 c | 0.18 ± 0 e | 10.35 ± 0.14 b | 10.36 ± 0.14 b |
OBO-1 h | 10.00 ± 0.53 b,c | 42.80 ± 2.05 b | 47.20 ± 1.77 b | 90.00 ± 3.82 a | 4.72 ± 0.07 b | 0.91 ± 0.01 d | 39.52 ± 0.67 d | 5.42 ± 0.21 b | 0.11 ± 0 c | 0.20 ± 0 d,e | 9.36 ± 0.11 c | 9.36 ± 0.11 c |
OBO-2 h | 10.35 ± 0.69 b,c | 42.65 ± 1.49 b | 47.00 ± 2.91 b | 89.65 ± 4.41 a | 4.54 ± 0.02 b,c | 0.91 ± 0.02 d | 40.75 ± 0.04 d | 5.39 ± 0.32 b | 0.11 ± 0 c | 0.21 ± 0 d,e | 9.02 ± 0.17 c,d | 9.02 ± 0.17 c,d |
OBO-3 h | 10.85 ± 0.35 b,c | 41.64 ± 3.00 b | 47.51 ± 2.03 b | 89.15 ± 5.02 a | 4.38 ± 0.05 c,d | 0.88 ± 0.03 d | 47.63 ± 1.53 c | 5.42 ± 0.25 b | 0.12 ± 0 c | 0.22 ± 0.01 d,e | 8.43 ± 0.21 e | 8.43 ± 0.21 e |
OBO-4 h | 11.23 ± 0.53 b,c | 40.69 ± 1.59 b | 48.08 ± 3.08 b | 88.77 ± 4.66 a | 4.28 ± 0.07 d | 0.85 ± 0.02 d | 53.56 ± 0.05 b | 5.46 ± 0.34 b | 0.11 ± 0 c | 0.23 ± 0 d,e | 8.76 ± 0.06 d,e | 8.76 ± 0.06 d,e |
Palm oil (control) | 49.30 ± 2.31 a | 40.21 ± 0.88 b | 10.49 ± 0.39 d | 50.70 ± 1.27 b | 0.21 ± 0 e | 3.83 ± 0.06 b | 14.23 ± 0.20 g | 1.56 ± 0.05 c | 0.94 ± 0.02 b | 1.80 ± 0.04 c | 1.13 ± 0.02 g | 1.07 ± 0.02 g |
PO-1 h | 49.63 ± 3.33 a | 40.40 ± 1.54 b | 9.97 ± 0.53 d | 50.37 ± 2.07 b | 0.20 ± 0 e | 4.05 ± 0.06 a | 18.99 ± 0.44 f | 1.49 ± 0.07 c | 0.94 ± 0.02 b | 1.86 ± 0.05 b,c | 1.12 ± 0.03 g | 1.07 ± 0.03 g |
PO-2 h | 50.53 ± 2.53 a | 39.69 ± 2.78 b | 9.79 ± 0.54 d | 49.47 ± 3.32 b | 0.19 ± 0 e | 4.05 ± 0.06 a | 19.67 ± 0.69 f | 1.46 ± 0.08 c | 0.98 ± 0.01 a,b | 1.93 ± 0.03 a,b | 1.08 ± 0.02 g | 1.02 ± 0.01 g |
PO-3 h | 51.06 ± 2.71 a | 39.23 ± 1.02 b | 9.71 ± 0.35 d | 48.94 ± 1.37 b | 0.19 ± 0 e | 4.04 ± 0.04 a | 19.90 ± 0.16 f | 1.44 ± 0.05 c | 1.01 ± 0.03 a | 1.97 ± 0.05 a | 1.04 ± 0.03 g | 0.99 ± 0.03 g |
PO-4 h | 51.14 ± 2.49 a | 39.34 ± 1.14 b | 9.51 ± 0.39 d | 48.86 ± 1.53 b | 0.19 ± 0 e | 4.14 ± 0.05 a | 22.50 ± 0.66 e | 1.42 ± 0.05 c | 1.02 ± 0.02 a | 1.99 ± 0.03 a | 1.04 ± 0.02 g | 0.99 ± 0.02 g |
Corn oil | 12.71 ± 0.72 b | 27.59 ± 2.01 c | 59.69 ± 2.71 a | 87.29 ± 4.72 a | 4.70 ± 0.05 b | 0.46 ± 0.01 e | 64.80 ± 1.69 a | 6.53 ± 0.31 a | 0.13 ± 0 c | 0.27 ± 0 d | 7.59 ± 0.03 f | 7.59 ± 0.03 f |
Rapeseed oil | 7.15 ± 0.27 c | 61.99 ± 2.85 a | 30.86 ± 1.87 c | 92.85 ± 4.72 a | 4.31 ± 0.1 d | 2.01 ± 0.03 c | 2.41 ± 0.03 h | 4.82 ± 0.29 b | 0.05 ± 0 d | 0.10 ± 0 f | 18.33 ± 0.31 a | 18.33 ± 0.31 a |
Oil Samples | PV 1 | p-AV 2 | TV 3 | CD 4 | CT 4 | TBA 5 | ∑ Aldehydes 6 | ∑ Ketones 6 |
---|---|---|---|---|---|---|---|---|
Optimal blend oil (control) | 2.12 ± 0.09 j | 4.34 ± 0.13 h | 8.58 ± 0.31 h | 11.44 ± 0.85 g,h | 4.27 ± 0.29 c | 2.04 ± 0.07 e,f | – | – |
OBO-1 h | 10.53 ± 0.35 e,f | 8.10 ± 0.47 f | 29.16 ± 1.16 e | 17.57 ± 1.04 d,e,f | 4.74 ± 0.14 c | 4.08 ± 0.21 d | 161.41 ± 11.14 d,e | 7.65 ± 0.18 f |
OBO-2 h | 21.78 ± 1.05 c | 13.24 ± 0.58 e | 56.80 ± 2.67 c | 21.90 ± 0.68 c | 4.25 ± 0.10 c | 6.14 ± 0.17 c | 356.82 ± 7.85 c | 14.17 ± 0.78 c |
OBO-3 h | 36.44 ± 2.44 b | 18.28 ± 0.49 b,c | 91.16 ± 5.38 b | 29.62 ± 1.69 a | 4.52 ± 0.20 c | 8.00 ± 0.38 b | 426.70 ± 14.08 b | 24.69 ± 1.80 b |
OBO-4 h | 39.95 ± 0.96 a | 23.23 ± 0.46 a | 103.13 ± 2.38 a | 32.39 ± 2.07 a | 4.48 ± 0.28 c | 8.88 ± 0.65 a | 574.75 ± 20.12 a | 31.40 ± 1.41 a |
Palm oil (control) | 2.88 ± 0.20 i,j | 13.67 ± 0.86 e | 19.44 ± 1.27 f | 15.78 ± 0.65 f | 8.35 ± 0.37 a | 1.49 ± 0.07 f | – | – |
PO-1 h | 5.33 ± 0.40 h,i | 16.31 ± 0.57 d | 26.96 ± 1.37 e | 16.85 ± 0.93 e,f | 8.14 ± 0.43 a | 1.87 ± 0.12 e,f | 115.58 ± 6.70 f | 3.31 ± 0.10 g |
PO-2 h | 8.32 ± 0.52 f,g | 16.78 ± 0.87 c,d | 33.42 ± 1.90 e | 19.48 ± 1.34 c,d,e | 8.31 ± 0.47 a | 2.25 ± 0.11 e,f | 132.81 ± 8.63 e,f | 8.18 ± 0.27 e,f |
PO-3 h | 12.80 ± 0.51 e | 17.91 ± 0.73 c,d | 43.52 ± 1.76 d | 25.52 ± 1.38 b | 8.63 ± 0.49 a | 2.21 ± 0.05 e,f | 133.83 ± 6.96 d,e,f | 9.60 ± 0.32 d,e |
PO-4 h | 18.56 ± 0.93 d | 19.67 ± 0.51 b | 56.78 ± 2.37 c | 20.34 ± 1.28 c,d | 8.20 ± 0.29 a | 2.57 ± 0.07 e | 165.02 ± 4.62 d | 10.46 ± 0.58 d |
Corn oil | 5.66 ± 0.29 g,h | 6.28 ± 0.42 g | 17.60 ± 1.00 f,g | 10.19 ± 0.31 h | 6.93 ± 0.35 b | 1.48 ± 0.09 f | – | – |
Rapeseed oil | 5.07 ± 0.38 h,i | 1.41 ± 0.05 i | 11.55 ± 0.81 g,h | 14.43 ± 0.40 f,g | 1.89 ± 0.14 d | 6.05 ± 0.39 c | – | – |
Oil Samples | Wavenumbers (1/cm) | |||||||
---|---|---|---|---|---|---|---|---|
3006 | 2922 | 2853 | 1745 | 988 | 966 | 912 | 721 | |
Optimal blend oil (control) | 0.249 ± 0.005 a | 1.314 ± 0.05 a,b,c,d,e | 0.933 ± 0.024 b,c | 1.545 ± 0.100 a | 0.229 ± 0.016 a | 0.239 ± 0.012 a | 0.206 ± 0.015 a | 0.709 ± 0.040 a |
OBO-1 h | 0.212 ± 0.011 b,c,d | 1.265 ± 0.081 d,e | 0.899 ± 0.032 c | 1.553 ± 0.059 a | 0.211 ± 0.006 a | 0.220 ± 0.011 a,b,c,d | 0.184 ± 0.007 a,b,c | 0.692 ± 0.017 a |
OBO-2 h | 0.226 ± 0.006 a,b | 1.276 ± 0.074 c,d,e | 0.915 ± 0.049 c | 1.500 ± 0.109 a | 0.226 ± 0.011 a | 0.232 ± 0.017 a,b,c | 0.195 ± 0.009 a,b | 0.701 ± 0.018 a |
OBO-3 h | 0.212 ± 0.007 b,c,d | 1.276 ± 0.065 c,d,e | 0.905 ± 0.056 c | 1.497 ± 0.091 a | 0.217 ± 0.008 a | 0.221 ± 0.008 a,b,c,d | 0.182 ± 0.004 b,c | 0.682 ± 0.022 a,b |
OBO-4 h | 0.220 ± 0.015 b,c | 1.271 ± 0.064 c,d,e | 0.908 ± 0.023 c | 1.509 ± 0.112 a | 0.229 ± 0.010 a | 0.232 ± 0.012 a,b,c,d | 0.192 ± 0.008 a,b | 0.694 ± 0.041 a |
Palm oil (control) | 0.146 ± 0.006 g | 1.449 ± 0.080 a,b,c,d | 1.058 ± 0.060 a,b | 1.496 ± 0.087 a | 0.200 ± 0.011 a | 0.200 ± 0.005 d | 0.140 ± 0.004 e | 0.589 ± 0.041 c |
PO-1 h | 0.147 ± 0.008 g | 1.497 ± 0.111 a,b | 1.088 ± 0.032 a | 1.524 ± 0.078 a | 0.211 ± 0.014 a | 0.208 ± 0.008 a,b,c,d | 0.145 ± 0.010 d,e | 0.594 ± 0.024 c |
PO-2 h | 0.162 ± 0.009 f,g | 1.487 ± 0.088 a,b,c | 1.096 ± 0.027 a | 1.473 ± 0.078 a | 0.210 ± 0.010 a | 0.206 ± 0.014 b,c,d | 0.145 ± 0.004 d,e | 0.586 ± 0.021 c |
PO-3 h | 0.173 ± 0.005 e,f | 1.472 ± 0.062 a,b,c,d | 1.084 ± 0.037 a | 1.494 ± 0.072 a | 0.206 ± 0.007 a | 0.201 ± 0.006 c,d | 0.142 ± 0.004 d,e | 0.579 ± 0.013 c |
PO-4 h | 0.187 ± 0.010 d,e | 1.531 ± 0.070 a | 1.131 ± 0.055 a | 1.570 ± 0.115 a | 0.224 ± 0.015 a | 0.218 ± 0.007 a,b,c,d | 0.158 ± 0.005 d,e | 0.610 ± 0.015 b,c |
Corn oil | 0.212 ± 0.006 b,c,d | 1.223 ± 0.055 e | 0.880 ± 0.058 c | 1.425 ± 0.097 a | 0.222 ± 0.012 a | 0.235 ± 0.014 a,b | 0.203 ± 0.005 a,b | 0.704 ± 0.015 a |
Rapeseed oil | 0.199 ± 0.006 c,d | 1.296 ± 0.074 b,c,d,e | 0.922 ± 0.058 c | 1.427 ± 0.104 a | 0.204 ± 0.012 a | 0.212 ± 0.011 a,b,c,d | 0.164 ± 0.007 c,d | 0.680 ± 0.018 a,b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Athanasiadis, V.; Kalompatsios, D.; Mantiniotou, M.; Lalas, S.I. Investigation into the Reduction of Palm Oil in Foods by Blended Vegetable Oils through Response Surface Methodology and Oxidative Stability Tests. Antioxidants 2024, 13, 929. https://doi.org/10.3390/antiox13080929
Athanasiadis V, Kalompatsios D, Mantiniotou M, Lalas SI. Investigation into the Reduction of Palm Oil in Foods by Blended Vegetable Oils through Response Surface Methodology and Oxidative Stability Tests. Antioxidants. 2024; 13(8):929. https://doi.org/10.3390/antiox13080929
Chicago/Turabian StyleAthanasiadis, Vassilis, Dimitrios Kalompatsios, Martha Mantiniotou, and Stavros I. Lalas. 2024. "Investigation into the Reduction of Palm Oil in Foods by Blended Vegetable Oils through Response Surface Methodology and Oxidative Stability Tests" Antioxidants 13, no. 8: 929. https://doi.org/10.3390/antiox13080929
APA StyleAthanasiadis, V., Kalompatsios, D., Mantiniotou, M., & Lalas, S. I. (2024). Investigation into the Reduction of Palm Oil in Foods by Blended Vegetable Oils through Response Surface Methodology and Oxidative Stability Tests. Antioxidants, 13(8), 929. https://doi.org/10.3390/antiox13080929