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Abstract: Cancer is a global health problem, with the incidence rate estimated to reach 40% of
the population by 2030. Although there are currently several therapeutic methods, none of them
guarantee complete healing. Plant-derived natural products show high therapeutic potential in
the management of various types of cancer, with some of them already being used in current
practice. Among different classes of phytocompounds, pentacyclic triterpenoids have been in the
spotlight of research on this topic. Ursolic acid (UA) and its structural isomer, oleanolic acid (OA),
represent compounds intensively studied and tested in vitro and in vivo for their anticancer and
chemopreventive properties. Since natural compounds can rarely be used in practice as such due to
their characteristic physico-chemical properties, to tackle this problem, their derivatization has been
attempted, obtaining compounds with improved solubility, absorption, stability, effectiveness, and
reduced toxicity. This review presents various UA and OA derivatives that have been synthesized
and evaluated in recent studies for their anticancer potential. It can be observed that the most frequent
structural transformations were carried out at the C-3, C-28, or both positions simultaneously. It has
been demonstrated that conjugation with heterocycles or cinnamic acid, derivatization as hydrazide,
or transforming OH groups into esters or amides increases anticancer efficacy.

Keywords: ursolic acid; oleanolic acid; pentacyclic triterpenoids; cancer; antiproliferative; cytotoxic;
proapoptotic; chemopreventive; in vitro; in vivo; clinical trials

1. Introduction

Despite scientific progress and the development of numerous treatment methods,
cancer is the second cause of death in the world after cardiovascular diseases [1]. According
to Global Cancer Statistics, every year, approximately 19 million people are diagnosed
with cancer worldwide [2]. In 2020, there were more than 10 million deaths caused by
cancer in the global population [2,3]. It is estimated that by 2030, the cancer incidence
rate will increase by up to 40% [4]. This disease manifests physical, emotional, and fi-
nancial pressure on the patients and also on the national health systems. Patients from
underdeveloped or developing countries have low survival rates due to late detection
and inaccessibility to treatment [1]. Current cancer treatment includes surgical treatment,
radiotherapy, chemotherapy, immunotherapy, hormonal therapy, and adjuvant therapy.
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However, none of the therapy options is ideal. They cause numerous side effects, such
as immunosuppression, central nervous system (CNS) disorders, and vomiting, and do
not guarantee complete healing. The difficulty of treating and eradicating this disease
comes from the ability of cancer cells to develop resistance to treatment through different
mechanisms, some still unexplained, but also from the limitation of drug doses due to the
toxic reactions. Therefore, research into cancer treatment remains a highly interesting topic
in the field.

Phytotherapy is a branch of medicine based on the use of plant products and extracts
obtained from medicinal herbs in order to prevent or treat acute or chronic diseases.
Worldwide, more than 8000 plants are used for therapeutic purposes [5]. In the last
40 years, natural bioactive compounds have gained an important place in the prevention
and treatment of cancer. The data show that over 70% of all FDA-approved drugs are based
on natural products or their derivatives, and also over 70% of the anticancer drugs on the
market were developed starting from natural compounds [1,6]. Between 1981 and 2019,
about a quarter of newly approved anticancer drugs were related to natural products [7].
Various secondary plant metabolites, including terpenes, terpenoids, polyphenols, and
alkaloids, possess cytotoxic and chemopreventive properties [8,9]. Moreover, certain
triterpenoids, flavonoids, alkaloids, and curcumins have been studied to defeat multi-drug
resistance [6].

Natural products play an extremely important role in the discovery and development
of new anticancer compounds with superior pharmacokinetic, pharmacodynamic, and
pharmaco-toxicological properties. Some anticancer compounds of plant origin, such as
Catharanthus alkaloids (vincristine, vinblastine), colchicine, etoposide, podophyllotoxin,
topotecan, irinotecan, docetaxel, and paclitaxel, are already widely used in the treatment
of various types of cancer [8,10,11]. However, the use of anticancer compounds of plant
origin also presents certain limitations, including low bioavailability, rapid elimination,
lack of selectivity, and restriction in metastasis [10].

Pentacyclic triterpenoids (PTs) represent a class of widespread natural compounds
(over 20,000 isolated compounds) with significant therapeutic value [12]. PTs are chem-
ical compounds with 30 carbon atoms, which can be isolated from plants, fungi, or an-
imals [5,13,14]. They are secondary metabolites present in the plant kingdom and, as
such, can be extracted mainly from roots, stem bark, leaves, or fruits [15]. They possess
anti-inflammatory, antioxidant, analgesic, antidiabetic, immunomodulatory, hypolipidemic,
neuroprotective, antibacterial, antiviral, and antifungal activities, becoming a topic of in-
terest for researchers [14–19]. It is already known that PTs can be used in the treatment
of various types of cancer without showing evident toxicity on healthy cells [20]. Their
important therapeutic potential, increased selectivity, and efficacy make them attractive to
the scientific community for the development of new cancer treatments.

Triterpenoids are oxygen derivatives of triterpenes. Pentacyclic triterpenes can be
divided into the following three main classes: ursane, oleanane, and lupane type [18,21]
(Figure 1). Betulinic acid (lupane scaffold), ursolic acid (ursane scaffold), and oleanolic acid
(oleanane scaffold), which are valuable compounds in therapeutics, belong to the class of
pentacyclic triterpenoids.

UA and its structural isomer, OA (Figure 2), can be extracted from various fruits,
vegetables, and medicinal plants (e.g., apples, cranberries, blueberries, basil, olive, oregano,
lavender) [1,4,13,22]. They are often found in nature together, in the form of free acid
or as an aglycone of triterpenoid saponins [23]. When comparing UA and OA, the only
difference between the chemical structures of the two compounds is the methyl group
placement on the ring E.

UA and OA have been described in the literature for their multiple health benefits,
having both prophylactic and curative roles [12,23,24]. The overproduction of reactive
oxygen species (ROS) is strongly associated with an increased risk of cancer and chronic
disease development. In this regard, antioxidants play a significant role in protecting,
repairing, and mitigating the damage produced by oxidative stress. UA and OA antioxidant
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action is mainly related to their capacity to scavenge ROS and counterbalance the pro-
oxidants/antioxidants ratio.
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These two triterpenic acids have been successfully tested on various human or murine
cancerous cell lines (leukemia, prostate, colon, breast, pancreatic, urinary bladder, lung,
endometrial, ovarian, melanoma, hepatocellular cancer) [14,17,25–27]. In vitro evaluations
corroborated with in vivo studies have demonstrated that the anticancer effect of these com-
pounds can be assigned to several mechanisms. The main mechanisms included inhibition
of cell proliferation, induction of apoptosis, inhibition of tumor invasion, and sensitization
of cancer cells to chemotherapeutic agents [15,17,22,24,28]. UA and its derivatives are
under study or have already undergone clinical studies aimed at establishing the toxicity
and pharmacokinetic profile [13,29]. It was also pointed out that UA could be useful both
in the prevention and treatment of cancer, including the prevention of metastases [13,30].

Although natural compounds have recognizable therapeutic potential, they can rarely
be used directly in clinical practice, requiring certain structural modifications to improve
bioavailability and facilitate administration [31]. Derivatization is the chemical modifica-
tion of the parent structure, leading to semi-synthetic derivatives that can improve the
pharmacological profile of various natural compounds. Structural modifications are used to
obtain compounds with improved polarity, solubility, stability, and even pharmacodynamic
action and reduced toxicity [32,33].

The limitations of UA and OA include their availability at the target site, poor sol-
ubility and bioavailability, fast metabolism, and the toxic potential of the solvents used
(dimethylsulfoxide (DMSO) or dimethylformamide (DMF)) for the solubilization of these
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compounds [1,4,34,35]. The bioavailability of UA in plasma is limited to 500 nM [1]. These
disadvantages assigned to UA caused it to be classified in the IVth class of the Biopharma-
ceutical Classification System [4]. To overcome these barriers, research is directed toward
synthesizing UA and OA analogs with superior pharmacokinetic properties. The inclusion
of these compounds in targeted-release pharmaceutical forms may also be sought. Using
chemical or microbial methods, numerous researches have been directed toward obtaining
ursolic and oleanolic acid derivatives with superior bioavailability [36]. One of the current
methods is pharmacophore hybridization, which involves joining two compounds known
to be effective through covalent bonds and obtaining a hybrid compound with superior
pharmacological and toxicological properties [16].

This review aims to present the results of recent studies on the structural modification
and biological evaluation of both UA and OA.

2. Ursolic Acid

Ursolic acid has the basic ursane skeleton. UA (3β-hydroxy-12-urs-12-en-28-oic acid)
contains the following functional groups for potential chemical modifications: C17-COOH,
C3-OH, and an alkene at C12-C13.

UA is one of the most abundant and studied pentacyclic triterpenoids, being present
in most edible plant products (e.g., fruit cuticular wax, edible leaves, bark, flowers of
medicinal plants), especially in plants from the Lamiaceae family [1,17]. For the first time,
it was extracted from apple waxes [4]. Among the main sources for UA extraction can be
listed as follows: Mimusops caffra E. Mey, Ilex paraguariensis A.St.-Hil., Glechoma hederacea L.,
Ligustrum lucidum L., Centella asiatica L., Lysimachia clethroides Duby., Rosmarinus officinalis
L. (3.0%), Salvia officinalis L. (1.8%), Arctostaphylos uva-ursi L., Vaccinium macrocarpon Ait.,
Ocimum sanctum L., and Eugenia jambolana L. [12,13,17,20,37,38]. UA extraction is based
both on traditional methods (Soxhlet and reflux extraction) and also on modern methods
such as supercritical fluid extraction, ultrasonic, and microwave extraction [36].

Products containing UA have been widely used as an anticancer agent in traditional
Chinese medicine. In the last 20 years, it has been intensively studied as a preventive
and curative agent for various types of cancer due to its proven properties in in vitro and
in vivo studies and even in clinical trials [13,29]. UA presents a significantly high potential
due to its property of being relatively non-toxic against healthy cells, demonstrating an-
tiproliferative activity against malignant cells [1,34]. Its anticancer action is due to several
mechanisms, including antitumorigenic, antiangiogenic, and tumor growth prevention,
especially in the case of breast, cervical, and colorectal cancer [16,37,38]. In vitro studies
have shown that UA interferes with other molecules involved in cell signaling pathways [1].
More specifically, UA can modulate various molecular targets, including growth factors
(EGF, HGF), enzymes (ATPase, COX-2, telomerase), receptors (HER-2, EAR, EGFR), pro-
inflammatory cytokines (interleukins 1, 6 and 8), as well as transcription factors (STAT3,
NF-κB) [39]. Furthermore, UA showed the ability to suppress NF-κB activation caused by
various carcinogens (cigarette smoke, tumour necrosis factor alpha (TNFα), or H2O2) [40].
On multiple myeloma cell lines, UA has been reported to be involved in inhibiting both
constitutive and IL-6 inducible STAT3 activation [41]. It was also observed that UA can
cause colorectal cancer cell apoptosis by inhibiting constitutive NF-κB activation and down-
regulating cell survival proteins (such as Bcl-xL, Bcl-2), as well as metastatic proteins (such
as MMP-9 and VEGF) [42]. Along with glycyrrhetinic acid, UA is a potential moderator of
multiple resistance and a chemosensitizer [43]. Moreover, it was demonstrated that UA can
radiosensitize various cancer cell lines (DU145, CT26, and B16F10) [13].

In addition to the anticancer effect, UA and its derivatives possess a wide range
of pharmacological effects, including antidiabetic, antiosteoporotic, hypocholesterolemic,
hepatoprotective, neuroprotective, antiviral, anti-inflammatory, and antifungal, with very
low toxicity [1,17,20,22,43,44].

Antioxidant compounds intervene in the prevention of the harmful effects of ROS and
the maintenance of an equilibrium between pro-oxidants and antioxidants in the cells [45].
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The overproduction of ROS during oxidative stress is responsible for a series of proteins
and DNA degradations, as well as structural and functional changes in cells, which could
lead to genetic mutations, metabolic pathway disruptions, pro-oncogenic signaling, and,
ultimately, tumor initiation [46]. Therefore, the improvement of the biological antioxidant
defense system could represent a strategy to prevent carcinogenesis [47]. In this regard, the
antioxidant potential of UA and OA was further evaluated.

Srinivasan and colleagues employed five different assays in order to evaluate the
radical scavenging potential of various UA concentrations (20, 40, 60, 80, and 100 µg/mL).
The best antiradical activity was obtained in the ferric reducing antioxidant power (FRAP)
method, followed by hydroxyl radical, superoxide radical, nitric oxide radical, and 2,2-
diphenyl-1-picrylhydrazyl (DPPH) radical. Noteworthily, IC50 value of UA in superoxide
radical scavenging assay (IC50 = 43.35 µg/mL) was lower than those of ascorbic acid
and butylated hydroxyanisole used as antioxidant controls (IC50 = 67.03 µg/mL and
IC50 = 90.84 µg/mL, respectively) [25]. In the same line, Yin and Chan evaluated the antiox-
idant effect of 5 µM and 10 µM UA and OA. The tested compounds exerted a scavenging
effect of superoxide anion (OA—50.5% and UA—33.5% at 10 µM), chelating effect on
ferrous ions (OA—21.3% and UA—34.2% at 10 µM), and an inhibitory effect of xanthine
oxidase activity (OA—48.6% and UA—37.4% at 10 µM). Further, the researchers observed
a better antioxidant effect of UA and OA against 2,2′-azobis-(2-amidinopropane) dihy-
drochloride than that against 2,2′-azobis-(2,4-dimethylvaleronitrile). Moreover, OA showed
a greater antioxidant effect than UA and α-tocopherol at 75 ◦C and 100 ◦C, while the
effect of UA and OA was stronger than that of α-tocopherol at pH 2 and 4 [48]. High
scavenging activity of hydroxyl radical was observed by Samsonowicz et al. for UA. In
the tested concentration range of 0.003 to 0.016 M, UA decreased around 60% of the initial
concentration of hydroxyl radicals in a concentration-dependent manner [49]. Do Nasci-
mento et al. investigated the antioxidant effect of UA (isolated from the ethanolic extract of
Sambucus australis Cham. and Schltdl. aerial parts) and two other derivatives employing
DPPH assay. As expected, UA showed significant antioxidant activity, as well as 3β-acetoxy
urs-12-en-28-oic acid, the acetylated compound. On the contrary, the formylated compound
(3β-formiloxy-urs-12-en-28-oic acid) was inactive in terms of antioxidant properties [50].

Several research studies show that UA plays an important role in maintaining the
intracellular redox balance by modulating oxidative stress-related indicators. A neuro-
protective effect through oxidative stress modulation of UA and OA on PC12 rat adrenal
gland pheochromocytoma cells was revealed by Tsai and Yin. Treatment with H2O2 or
1-methyl-4-phenylpyridinium (MPP+) substantially increased malonyldialdehyde (MDA)
levels and decreased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxi-
dase (GPx) activities, respectively glutathione (GSH) levels. Pretreatment with UA or OA,
in doses of 20 µM and 40 µM, reversed the imbalance produced H2O2 or MPP+ in terms
of oxidative stress-related indicators. MDA formation decreased, while GSH content and
antioxidant enzyme activities were preserved [51]. UA showed antioxidant properties by
modulating the oxidative stress-related indicators in an experimental ICR mice liver fibrosis
model induced by carbon tetrachloride. A dose-dependent inhibition of ROS and thiobar-
bituric acid reactive substances (TBARSs) was observed after treatment with 25 mg/kg and
50 mg/kg UA. At the same time, the activity of the antioxidant enzymes CAT, SOD, and
GPx increased following treatment with UA [52]. Ramachandran and Prasad demonstrated
the protective effect of 10 µg/mL UA pretreatment against UVB-induced damage in human
lymphocytes. Firstly, the researchers evaluated the scavenging ability of UA on hydroxyl
radicals, superoxide anion, nitric oxide, ABTS, and DPPH, the most effective scavenging
effect being observed against DPPH radical (IC50 = 5.93 µg/mL). Further, treatment with
UA 30 min before UVB exposure protected against lipid peroxidation, oxidative stress, and
DNA damage by decreasing TBARS, lipid hydroperoxides, % tail DNA, and tail moment.
In addition, cell viability also increased following pretreatment with UA [53]. The same
group study proved that pretreatment with UA in UVB-irradiated lymphocytes increased
the activity of antioxidant enzymes (SOD, CAT, and GPx) [54]. Briefly, UA exhibits potent
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and effective antioxidant activity by reducing oxidative stress and DNA damage, with
possible additional implications in both preventive and curative cancer management.

Therefore, UA can represent a starting point for obtaining new potent compounds with
antioxidant and antiproliferative effects [25]. Being a hydrophobic compound, UA requires
structural chemical changes before being administered to increase its bioavailability [4,55].

2.1. Structural Modifications

Many research efforts have been directed towards semi-synthetic derivatives of UA
with the aim of increasing the bioavailability and enhancing the anticancer effect [4]. Table 1
presents UA derivatives with proven antiproliferative effects in various in vitro and in vivo
studies. The structures were designed with ChemDraw 23.0.1.

Table 1. Chemical structures of UA derivatives.

Number Chemical Structure Reference

I
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It was demonstrated that C3-OH and C17-COOH groups are extremely important for
the cytotoxic activity of UA and its derivatives. Starting from this observation, maintenance
or modification of one or both of these chemical groups was tried, with modifications in
other positions being called miscellaneous modifications [4]. However, some studies have
shown that converting the C3-OH to an acetyl group can be beneficial [1].

Plentiful attempts to improve the cytotoxic activity of UA through changes at the C3
and C28 positions are described in the literature. Numerous compounds from the class
of esters, amides, and oxadiazole quinolines were obtained [20]. Among the structural
changes that increase the antitumor activity and cytoselectivity are the introduction of a
piperazine, homopiperazine, triazole, or guanidine moiety [1,22]. It was observed that the
length of the chain of carbon atoms influences the anticancer activity, with the compounds
with unbranched chains with two or three carbon atoms showing optimal activity against
the MCF-7 and THP-1 cancer lines tested. Moreover, it was shown that 4-fluorobenzyl and
piperazine moieties are necessary to manifest the anticancer effect [22]. It was also pointed
out that 3-oxo-UA-triazolyl derivatives with o-bromo, o-chloro, or o-methoxy substitution
on the aromatic ring inhibit the proliferation of MCF-7 and THP-1 cancer cell lines [22,65].

Several other studies have considered the implementation of other structural changes.
It has been shown that modification of the UA structure by the introduction of thiazole
on A ring and triazole or tetrazole moiety on C-28 causes a slight increase in antitumor
activity [22]. Also, the introduction of various substituted benzene rings at the C-2 position
and retention of the carboxyl group at C-28 proved to be beneficial against the HCT-116
cell line [66].

2.2. In Vitro, In Vivo, and Clinical Trials

Several research teams have attempted to identify and elucidate the antiproliferative
and cytotoxic mechanisms of UA and its derivatives. Numerous in vitro studies performed
using various cancer cell lines showed promising results (Table 2).
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Table 2. In vitro studies regarding the anticancer effect of UA and its derivatives.

Compound Type of Cancer Cell Line Cell Line In Vitro Conclusions Reference

UA

human leukemic
monocyte lymphoma U-937 MTT

IC50 = 36.59 µM HL-60 cell line was more sensitive to
the antiproliferative action of UA

compared to the U-937 line.

[25]

human acute promyelocytic
leukemia HT-60 MTT

IC50 = 26.83 µM [25]

human breast cancer MDA-MB-231
Methylene blue assay (72 h)
(antiproliferative activity)

EC50 = 18.12 µM

UA significantly inhibited the
proliferation of MCF-7 cells in a

dose-dependent manner without
being cytotoxic.

[27]

human ovarian cancer SKOV-3 OC CCK8 (48 h) (Cell viability assay)
IC50 = 35 µM

UA caused a significant decrease in
the viability of SKOV-3 cells. [28]

non-small cell lung cancer A549 MTT (24 h)
IC50 ≥ 20 µM UA inhibited cell proliferation in a

dose-dependent manner.

[67]

non-small cell lung cancer H460 MTT (24 h)
IC50 ≥ 20 µM [67]

human breast cancer

MDA-MB-231 CCK8 (48 h)
IC50 = 24 µM UA inhibited cell proliferation in a

dose- and time-dependent manner.

[29]

MCF-7

CCK8 (48 h)
IC50 = 29.2 µM [29]

CCK8 (48 h)
IC50 = 7.96 µM UA significantly suppressed the

proliferation of cancer cells in a
doze-time-dependent manner.

[68]

MDA-MB-231 CCK8 (48 h)
IC50 = 9.02 µM [68]

MCF-7 MTT (24 h)
IC50 = 20 µM

UA determined the decrease in the cell
viability in a dose-dependent manner. [69]

human gingival squamous
carcinoma Ca922 MTT (48 h)

IC50 = 11.5 µM
UA exhibited good antiproliferative

effects.

[70]

human oral squamous
carcinoma SCC2095 MTT (48 h)

IC50 = 13.8 µM [70]

human breast cancer
SUM149PT SRB (48 h)

IC50 = 8–10 µM UA significantly inhibited
proliferation of cancer cells. [61]

HCC1937 SRB (48 h)
IC50 = 8–10 µM
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Table 2. Cont.

Compound Type of Cancer Cell Line Cell Line In Vitro Conclusions Reference
UA

human skin metastatic
melanoma WM-266-4

MTT (4, 24, 48 h)
The lowest efficient concentration

= 10 µM

Both UA and UA+OA decreased cell
proliferation.

[8]
UA+OA

(both 1:1 and 3.5:1) [8]

Ia

human gastric cancer MKN45

MTT (72 h)
IC50 = 6.4 µM

The inhibition rate was above 75%,
which means that the introduction of a
piperazine or homopiperazine radical

increases the antitumor activity.

[22]

Ib MTT (72 h)
IC50 = 6.2 µM [22]

II MTT (72 h)
IC50 = 2.1 µM [22]

III MTT (72 h)
IC50 = 4.5 µM [22]

IV human liver cancer HL-7702 MTT (72 h)
IC50 = 42.1 µM

UA thymine hybrids had a slightly
lower antiproliferative activity than

glycyrrhetinic acid hybrids.
[43]

V

non-small cell lung cancer A549, MTT (48 h)
IC50 = 17.35 µM

This compound presented
antiproliferative activity against all

cancer cell lines.

[16]

human breast cancer MCF-7 MTT (48 h)
IC50 = 18.86 µM [16]

human hepatocellular
carcinoma Bel-7402 MTT (48 h)

IC50 = 32.50 µM [16]

human myelogenous
leukemia K562 MTT (48 h)

IC50 = 14.89 µM [16]

VI non-small cell lung cancer

A549

CCK9 (24 h)
IC50 = 6.1 µM

The new derivative exhibited
significantly better antiproliferative

effect than UA.

[56]
CCK9 (48 h)

IC50 = 5.5 µM
CCK9 (72 h)

IC50 = 5.4 µM

H460

CCK9 (24 h)
IC50 = 5.7 µM [56]
CCK9 (48 h)

IC50 = 4.5 µM
CCK9 (72 h)

IC50 = 3.9 µM
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Table 2. Cont.

Compound Type of Cancer Cell Line Cell Line In Vitro Conclusions Reference

VII

human breast cancer MDA-MB-231 MTT (72 h)
IC50 = 0.12 µM This acylhydrazine derivative showed

the strongest antiproliferative effect
against all three cancer cell lines tested,

being superior to etoposide.

[57]

cervical carcinoma HeLa MTT (72 h)
IC50 = 0.08 µM [57]

hepatocarcinoma SMMC-7721 MTT (72 h)
IC50 = 0.34 µM [57]

VIII (a+b)

human laryngeal carcinoma Hep-2 MTT (48 h)
IC50 = 6.8 µM These derivatives presented a

significant antiproliferative effect
against cancer cells.

[58]

human hypolaryngeal
carcinoma FaDu MTT (48 h)

IC50 = 6.78 µM [58]

IX human chronic
myelogenous leukemia K562 MTT (48 h)

IC50 = 5.2 µM

This compound was the most effective
antiproliferative agent among all
tested derivatives, showing low
cytotoxicity against normal cells.

[59]

X a
human hepatoma BEL-7402 MTT (48 h)

IC50 = 7.08 µM

These compounds showed
antiproliferative activity that was
comparable to stronger than its

positive control drugs (VP-16 and
adriamycin).

[60]

human gastric cancer SGC-7901 MTT (48 h)
IC50 = 15.62 µM

X b
human hepatoma BEL-7402 MTT (48 h)

IC50 = 8.57 µM [60]

human gastric cancer SGC-7901 MTT (48 h)
IC50 = 6.30 µM

X c
human hepatoma BEL-7402 MTT (48 h)

IC50 = 5.63 µM [60]

human gastric cancer SGC-7901 MTT (48 h)
IC50 = 8.73 µM

X d
human hepatoma BEL-7402 MTT (48 h)

IC50 = 4.49 µM [60]

human gastric cancer SGC-7901 MTT (48 h)
IC50 = 7.01 µM
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Table 2. Cont.

Compound Type of Cancer Cell Line Cell Line In Vitro Conclusions Reference

XI human breast cancer

SUM149PT

SRB (48 h)
IC50 = 4–6 µM (for both cell lines)

This compound significantly inhibited the
proliferation of cancer cells, exhibiting very
low toxicity on normal cells. Moreover, this
compound showed better antiproliferative

activity than UA.

[61]
HCC1937

XII a

human hepatocellular
carcinoma

Hep3B

MTT (72 h)
IC50 = 38.0 µM

These compounds showed a superior
antiproliferative effect compared to UA

against only one cell line among the three
tested (HA22T/VGH, HepG2, and Hep3B)

[62]

XII b MTT (72 h)
IC50 = 40.0 µM [62]

XIII
HRE (24 h)

(luciferase reporter assay)
IC50 = 4.0 µM

This compound inhibited the HIF-1α
transcriptional activity, which is a very

important factor in tumor growth.
[63]

XIV

human breast cancer MCF-7 MTT (72 h)
IC50 = 1.66 µM This compound displayed a better

antiproliferative effect than UA against all
tested cell lines and better activity than
Etoposide against MCF-7 and HeLa cell

lines, with low toxicity against normal cells.

[64]human cervical carcinoma HeLa MTT (72 h)
IC50 = 3.16 µM

human hepatocarcinoma HepG2 MTT (72 h)
IC50 = 10.35 µM
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Some of the most representative studies on the anticancer properties and mechanism
of UA are described below.

Young Kang et al. showed that UA has a dose-dependent antiproliferative effect on
two non-small cell lung cancer cell lines A549 and H460. Also, its antiangiogenic effect was
highlighted on human umbilical vein endothelial cells (HUVECs) [67]. Using four breast
cancer cell lines (MCF-7, MDA-MB-231, 4T1, and HBL-100), Wang et al. demonstrated that
UA inhibits malignant cell proliferation due to S-phase cell cycle arrest and induction of cell
apoptosis mediated by attenuation of Bcl-2 protein, increase in Bcl-2 associated X-protein
(BAX), and cleaved poly (ADP-ribose) polymerase (PARP) [68]. Furthermore, using the
MCF-7 breast cancer cell line, Guo and his colleagues observed that the antiproliferative
effect of UA is based on the modulation of IKK/NF-κB and RAF/ERK pathways and
also on the downregulation of the phosphorylation level of PLK1 [69]. Furthermore,
Lin et al. revealed that the antiproliferative effect of UA against human ovarian cancer
cell line SKOV-3 is due to the intervention in the process of apoptosis, regulation of
ROS, and matrix metalloproteinase (MMP), as well as downregulation of the PI3K/AKT
pathway [28]. Following the administration of UA on Ca922 and SCC2095 oral cancer cells,
Lin and his collaborators observed that caspase-dependent cell apoptosis was induced,
and Akt/mTOR/NF-κB signaling pathways were downregulated. Also, UA determined
the inhibition of the angiogenesis process in Ca922 cells and induced autophagy in OSCC
cells [70].

Regarding UA derivatives, several in vitro studies proved their significant antiprolif-
erative effect, emphasizing that certain structural modulations led to improved therapeutic
efficiency. The conclusions of some of them are stated below.

Jin et al. synthesized and tested several new quinoline derivatives of UA with hy-
drazide, oxadiazole, or thiadiazole moieties against MDA-MB-231, HeLa, and SMMC-7721
cancer cell lines. They observed that among all the quinoline substituents, the Cl atom
caused the greatest increase in cytotoxic activity. Regarding the substituents at C-28, the
order of cytotoxic potency was as follows: hydrazide > carboxyl group > oxadiazole >
thiadiazole [57]. Furthermore, compound VII (N-[5′-chloro-ursa-12-en- (2,3)-quinolin-28-
oyl]-acetohydrazide) (Figure 3) demonstrated the strongest antiproliferative effect on all
tested cell lines, being involved in the induction of apoptosis, increased oxidative stress,
and decreased mitochondrial membrane potential [57]. UA derivatives containing an acyl
piperazine moiety at C-28 prevent the proliferation of MGC-803 and Bcap-37 cancer cell
lines, promoting cell apoptosis [22,71]. Several UA analogs containing a quinoline moiety
show increased efficacy against MDA-MB-231, Hela, and SMMC-7721 cell lines [22,72].
It was also observed that the introduction of an isopropyl group at C-28 potentiates the
antiproliferative effect of UA derivatives [66].
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Figure 3. The chemical structure of compound VII. The structure was designed with ChemDraw
23.0.1.

Da Silva et al. demonstrated that the transformation of the C3-OH into an amino group,
together with the simultaneous administration of imatinib, led to a significant increase
in the anticancer effect against leukemia cells [1,59]. Among all the tested compounds, a
derivative containing C3-NH2 as a participant in the hydrogen bond network proved to
be the most effective on the tested cell line, being, at the same time, harmless on healthy
cells [59]. A study performed on four cancer lines (HL-60, HeLa, BGC, and Bel-7402)



Antioxidants 2024, 13, 952 14 of 36

demonstrated that 3β-amino derivatives of ursolic acid showed an anticancer effect 20 times
stronger than 3α-amino derivatives. It emphasized the importance of the configuration
at C-3 for the potency of the antiproliferative effect [17,73]. Another one showed that the
introduction of a 3,4,5-methoxy benzoic acid moiety at the C-3 position led to a significant
cytotoxic effect against A549, MCF7, H1975, and BGC823 cancer cell lines [1,74].

Meng et al. synthesized and tested 18 UA derivatives (with structural changes at C-3
and C-28) against BEL740 and SGC7901 cancer cell lines. The results showed that the most
promising compounds were Xa and Xc, respectively Xb and Xd (Figure 4). Compounds
Xa and Xc presented a 4′-nitro-phenylhydrazone radical at C-3, while compounds Xb and
Xd presented a 4′-chloridephenylhydrazone radical in the same position. Regarding the
ester group in the C-28 position, the most beneficial alkyl side chains have been shown to
be isobutyl (Xa and Xc) and hexyl (Xb and Xd), respectively [60]. This study underlined
that the C-3 oxidation and the alkyl side chain length strongly influence these compounds’
anticancer activity [60]. Moreover, Li et al. compared the anticancer efficacy of UA and
its derivative XI against breast cancer cell lines SUM149PT and HCC1937. The results
indicated that the new derivative presented a superior antiproliferative and proapoptotic
effect compared to UA, which suggests that the introduction of a piperazine residue in C-28
and a fused pyrazole at C-3 are beneficial for increasing efficacy [61].
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Wu and his collaborators obtained three novel series of UA derivatives by replacing
the -OH group in C-3 with an aminoguanidine moiety. Testing the compounds obtained
(including compound XIII) (Figure 5) on the cancerous cell line Hep3B, they observed
that the presence of a methyl group at C-28 increases the anticancer potential, while the
extension of the hydrocarbon chain causes opposite effects [63].
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Furthermore, Tian et al. aimed to obtain new compounds derived from OA and UA by
introducing various substituents at the C-28 level and testing them against three malignant
cell lines (MCF-7, Hela, and A549 cell lines) [75]. The results showed that UA derivatives
that had primary amines in their structure presented a more pronounced antiproliferative
activity than compounds with secondary or tertiary amines [4,75]. In the study conducted
by Wang et al., a series of new indolequinone derivatives of ursolic acid was obtained and
tested against malignant cell lines MCF-7, HeLa, and HepG2. Following the experiments,
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it was observed that the introduction of indoquinoline moiety increased the anticancer
potential of UA derivatives. Moreover, some derivatives having an N-(dimethylamino)
alkyl moiety at the C-28 amide side chain (XIV) (Figure 6) demonstrated higher cytotoxic
potential than other derivatives [64].

Antioxidants 2024, 13, x FOR PEER REVIEW 14 of 34 
 

rivatives that had primary amines in their structure presented a more pronounced anti-
proliferative activity than compounds with secondary or tertiary amines [4,75]. In the 
study conducted by Wang et al., a series of new indolequinone derivatives of ursolic acid 
was obtained and tested against malignant cell lines MCF-7, HeLa, and HepG2. Follow-
ing the experiments, it was observed that the introduction of indoquinoline moiety in-
creased the anticancer potential of UA derivatives. Moreover, some derivatives having an 
N-(dimethylamino) alkyl moiety at the C-28 amide side chain (XIV) (Figure 6) demon-
strated higher cytotoxic potential than other derivatives [64]. 

 
Figure 6. The chemical structure of compound XIV. The structure was designed with ChemDraw 
23.0.1. 

Following IC50 value evaluation, some remarks regarding the antiproliferative 
activity of the discussed UA derivatives against the most tested cell lines can be made. It 
can be observed that compound VII exhibited the strongest antiproliferative effect on the 
MDA-MB-231 cell line (IC50 = 0.12 μM after 72 h following stimulation). Further, the 
proliferation of A549 cells was strongly inhibited by compound VI (IC50 = 5.4 μM after 72 
h following stimulation), and the proliferation of MCF-7 cells was influenced by 
compound XIV (IC50 = 1.66 μM after 72 h following stimulation). Bel-7402 cell line 
proliferation was intensively affected by Xd analog (IC50 = 4.49 μM after 48 h following 
stimulation), while Xb analog induced the strongest antiproliferative effect on the 
SGC-7901 cell line (IC50 = 6.30 μM after 48 h following stimulation). The mentioned 
derivatives are presented in Figure 7. 

 
Figure 7. Chemical structures of the most potent antiproliferative derivatives on the selected cell 
lines. The structures were designed with ChemDraw 23.0.1. 

Figure 6. The chemical structure of compound XIV. The structure was designed with ChemDraw
23.0.1.

Following IC50 value evaluation, some remarks regarding the antiproliferative activity
of the discussed UA derivatives against the most tested cell lines can be made. It can
be observed that compound VII exhibited the strongest antiproliferative effect on the
MDA-MB-231 cell line (IC50 = 0.12 µM after 72 h following stimulation). Further, the
proliferation of A549 cells was strongly inhibited by compound VI (IC50 = 5.4 µM after 72 h
following stimulation), and the proliferation of MCF-7 cells was influenced by compound
XIV (IC50 = 1.66 µM after 72 h following stimulation). Bel-7402 cell line proliferation
was intensively affected by Xd analog (IC50 = 4.49 µM after 48 h following stimulation),
while Xb analog induced the strongest antiproliferative effect on the SGC-7901 cell line
(IC50 = 6.30 µM after 48 h following stimulation). The mentioned derivatives are presented
in Figure 7.
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Other researchers aimed to develop new UA hybrids in order to obtain improved anti-
cancer properties of UA. Thus, Sun et al. synthesized and tested 16 ursolic acid/glycyrrhetinic
acid–uracil/thymine hybrids on A549 and HeLa cancer cell lines. The results of this study
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suggest that glycyrrhetinic acid hybrids show antiproliferative effects slightly superior to
those of UA [43]. Looking from another perspective, Isakovic and collaborators conducted an
in vitro study evaluating the antiproliferative effect of betulinic acid (BA), OA, UA, and the
OA+UA combination on the human metastatic melanoma cell line WM-266-4 [8]. After 48 h
of incubation, the OA+UA combination (3.5:1 and 1:1) presented the highest inhibition rate,
suggesting that the association between these two related compounds can lead to a superior
effect [8].

It has been shown that UA inhibits tumor growth in several in vivo studies, for
example, in an orthotopic colorectal nude mouse model, leukemic nude mouse model,
postmenopausal breast cancer mouse model, and others (Table 3) [13,27]. Some of the most
representative studies are listed below.

Table 3. In vivo studies regarding the anticancer effect of UA and its derivatives.

Compound Experimental
Animal Model

Injected Tumor
Cells Concentration Conclusions Reference

UA Male BALB/c
athymic nude mice

human colon
carcinoma (HT-29)

12.5 mg/kg, i.p,
6 days/week, 16 days

UA inhibited tumor
growth without

apparent toxicity.
[76]

UA
Chick

chorioallantoic
membrane (CAM)

-
10 µL of UA

(25 µg/µL), 72 h of
incubation

UA inhibited
angiogenesis. [76]

UA Female Balb/c
mice

breast cancer
(4T1-Luc)

25 and 50 mg/kg/day
i.p., measuring tumor
volume every 3 days

UA suppressed the
proliferation of cancer

cells and prevented
the occurrence of lung

metastasis without
significant body

weight loss.

[68]

UA
Nude mouse
subcutaneous

xenograft model

human
retinoblastoma

(SO-RB50)

200 mg/kg, i.p., twice
a week, 7 weeks

UA suppressed the
tumor growth. [30]

VIII (a+b)
Female BALB/c

nude mice, 4
weeks old

human laryngeal
carcinoma (Hep-2)

45 and 90 mg/kg/day,
28 days

Administration of VIII
(a+b) resulted in

inhibition of tumor
growth without

significant weight loss.

[58]

The study conducted by Zhang et al. has proven that UA prevents mouse S180 tumor
proliferation [77]. Moreover, Wang et al. showed that UA significantly suppressed tumor
growth and the occurrence of metastases in both the zebrafish and mouse xenotransplanta-
tion models of breast cancer. This result is of high importance since UA was not observed to
cause nephro-, hepato-, or hematotoxicity [68]. It has also been shown that UA reduces the
density of blood microvessels in murine models of colorectal cancer due to the inhibition of
some key factors in the angiogenesis process (VEGF-A and bFGF) [76]. Several preclinical
tests using human xenograft models have shown that UA and its derivatives have good
therapeutic and chemopreventive properties [13].

An extensive study conducted by Lin et al. followed the activity of UA in vitro (human
colon carcinoma cell line HT-29), in vivo (CRC mouse xenograft model), and in ovo (chicken
chorioallantoic membrane) [76]. The obtained data showed that UA inhibits tumor growth,
apparently without signs of toxicity, due to the inhibition of tumor angiogenesis [76]. In
addition, using human umbilical vein endothelial cells (HUVECs), this study showed that
the angiogenic effect of UA is dependent on dose and/or time, implying the interaction
with several factors of angiogenesis [76].
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In the specialized literature, there are few data comparing the anticancer effect of
UA with the standard anticancer treatment. A study by Sołtys et al. involved the use of
doxorubicin as a reference compound in the evaluation of the antiproliferative activity of
UA and some UA derivatives on several cancer cell lines [78]. On the other hand, there are
more studies in which the synergistic effect of UA and standard anticancer substances (e.g.,
gemcitabine, oxaliplatin) is evaluated [79,80].

There are few clinical data in the literature regarding the safety of repeated admin-
istration and the recommended doses of UA. Only a few studies have analyzed UA li-
posome’s pharmacokinetic profile and tolerability [13,37,38]. Therefore, further clinical
studies are needed.

3. Oleanolic Acid

OA (3β)-3-hydroxy-olean-12-en-28-oic acid) has the basic oleanane skeleton. OA is
found in more than 1600 plant species such as Panax ginseng C.A.Mey., Panax pseudoginseng
Wall., Syzygium aromaticum L., Glycyrrhiza glabra L., Lantana camara L., Lisgustrum lucidum
W.T.Aiton, Gentiana lutea L., and Vitex doniana Sweet, but it is particularly found in the Oleaceae
family [10,81–85]. It can be easily procured from food products included in the normal
diet, such as various fruits, virgin olive oil, or red wine [86,87]. Among the plant products
that contain significant amounts of OA, apple skin (0.96 mg/dry weight (DW)), peach skin
(1.49 mg/dry skin), pear skin (1.25 mg/dry skin), bilberries whole fruit (1679–2030 µg/g DW),
grapes peel (176.2 µg/g dry weight), and olives skin (3094–4356 µg/g fresh weight (FW))
can be listed [81]. OA can be extracted from various plant products using organic solvents
such as methanol, ethanol, ethyl acetate, acetone, or 1-butanol [88]. Furthermore, DMSO
and DMF are used to solubilize OA in various aqueous buffers [88]. The classic extraction
methods include maceration, heat reflux, or Soxhlet, while among the modern methods
are ultrasonification-assisted extraction, microwave-assisted extraction, pressurized liquid
extraction, and supercritical fluid extraction [23,88].

OA has been used clinically for the treatment of hepatitis [89]. It is included in one
of the most widely used Chinese herbal formulas used worldwide (Rehmannia Six For-
mula) [90]. Furthermore, it has been marketed and used for decades as an over-the-counter
hepatoprotective drug [91]. It has gained special attention due to its multiple beneficial
properties, such as anti-inflammatory, hepatoprotective, neuroprotective, cardioprotective,
renoprotective, antioxidant, anti-aging, immunomodulatory, anti-osteoporosis, and diuretic
activities, showing great therapeutic potential [81,85,86,89,91–94]. Moreover, OA has a vast
antiviral and antimicrobial effect, being active against the Human immunodeficiency virus,
Hepatitis C virus, Influenza virus, Herpes simplex virus, some species of Plasmodium, Mycobac-
terium tuberculosis, and many pathogenic bacteria (Staphylococcus aureus, Bacillus subtilis,
Enterococcus faecium, Pseudomonas aeruginosa) [83,92,95]. OA has a useful prophylactic and
curative role in various pathologies, such as dyslipidemia, diabetes, metabolic syndrome,
multiple sclerosis, hepatitis, and ulcerative colitis [81,87,88]. OA and its derivatives have
already been successfully tested in various types of malignancies (gastric, breast, colorectal,
liver, prostate, pancreatic, gallbladder, ovarian, endometrial, lung, melanoma, retinoblas-
toma) [8,10,82,86,89,92,96–98]. Recently, it was found that OA and its derivatives can also
prevent cancer occurrence [89].

OA is well-known for its antioxidant potential. It is believed that the only phenolic
hydroxyl group of OA is involved in the free radical scavenging activity [99]. In addition
to the direct free radical scavenging mechanism, OA also presents an indirect, biological
mechanism that improves the body’s antioxidant defenses, which is much more important
than the direct one [99]. In their study, Sasikumar et al. analyzed the antioxidant and
antiproliferative capacity of OA extracted from Vitis vinifera L. fruits (black raisins). It was
stated that OA possessed a DPPH scavenging activity (88.3%) similar to standard antioxi-
dant compounds such as ascorbic acid, gallic acid, pyrogallol, or butylated hydroxytoluene.
Moreover, within the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) MTT
test, OA demonstrated that it is effective against HCT-116 cells, presenting an IC50 value of
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40 µg/mL after 48 h of incubation [86]. It was also demonstrated that OA extracted from
Vitis labrusca B. peel exhibited good antioxidant properties. The value obtained in the FRAP
assay (0.77 ± 0.08 FRAP value) was slightly higher than that of gallic acid. Additionally,
OA showed a lipid peroxidation inhibition rate of 24.66%, as well as a DPPH radical scav-
enging effect of 85.3% [100]. Gao and colleagues have tested the antioxidant activity of OA
extracted from Ligustrum lucidum W.T.Aiton on alloxan-induced diabetic rats. They noticed
a decrease in MDA activity and an increase in SOD and GPx activity, respectively [23].

As in the case of UA, the therapeutic use, including the oral administration of OA, is
reduced due to its very poor water solubility (1.748 µg/L), absorption, biomembrane perme-
ability, and low bioavailability [84,88]. Therefore, in an attempt to improve these properties,
new dosage forms of OA were prepared (nanoparticles, liposomes, solid dispersions, and
phospholipid complexes), and new derivatives of OA were synthesized [101].

3.1. Structural Modifications

OA is also a compound with limited hydrophilicity. To obtain semi-synthetic com-
pounds with superior pharmacokinetic, dynamic, and toxicological properties, various
structural modifications of OA were made. Table 4 includes the main compounds with an-
tiproliferative effects proven in various in vitro, in vivo, and clinical studies. The structures
were designed with ChemDraw 23.0.1.

Table 4. Chemical structures of OA derivatives.
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potential [33]. Other OA derivatives such as XXV 
(2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid or bardoxolone) and XXVI (bardoxo-
lone methyl) (Figure 8) also possess antioxidant activity. Even in nanomolar concentra-
tion, they cause an increase in the transcriptional activity of nuclear factor 
(erythroid-derived 2)-like 2 (Nrf2), which is a regulator of the cellular antioxidant re-
sponse [112]. Even if their antioxidant mechanism is not fully known, it is believed to be 
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It was stated that in order for OA derivatives to have antitumor properties, the
functional groups at C-3 and C-28 are essential [109]. Among the most common are the
transformation of the A, C, and E rings, modification of C3-OH, and transformation of
C17-COOH to esters or amides [33]. The stereochemistry of the C3-OH group has special
implications for the therapeutic activity of the compound [33]. Among various changes
made at C3, some have been proven to improve the anticancer effect of OA. It is known that
3-oxooleanolic acid exerts a significant anticancer effect in vivo against many cancer types,
especially melanoma [110]. It has been shown that the cytotoxic activity of OA against PC-3,
A549, and MCF-7 cell lines can be increased by substituting the hydrogen-bond acceptor
from C-3 [111]. Another point of interest for studies aimed at obtaining OA derivatives is
the C-28 position. It has been proven that the amidation of C17-COOH is pharmaceutically
superior to esterification, and among the amides, the morpholides and imidazolides have
proven to be the most effective [26].

It is mentioned that a series of C-17 heteroaryl derivatives of OA have antioxidant
potential [33]. Other OA derivatives such as XXV (2-cyano-3,12-dioxooleana-1,9(11)-dien-
28-oic acid or bardoxolone) and XXVI (bardoxolone methyl) (Figure 8) also possess antioxi-
dant activity. Even in nanomolar concentration, they cause an increase in the transcriptional
activity of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), which is a regulator of the
cellular antioxidant response [112]. Even if their antioxidant mechanism is not fully known,
it is believed to be related to the suppression of inductible nitric oxide synthase (iNOS) in
the cells responsible for innate immunity and the reduction of the expression of TNF-α,
certain interleukins (IL-1β, IL-6), and γ-interferon in various cells [112].
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Figure 8. The chemical structures of compounds XXV and XXVI. The structures were designed with
ChemDraw 23.0.1.

Yu et al. synthesized two new prodrugs of OA (cis-3-O-[4-(R)-(3-chlorophenyl)-2-
oxo-1,3,2-dioxaphosphorinan-2-yl]-oleanolic acid and cis-3-O-[4-(S)-(3-chlorophenyl)-2-
oxo-1,3,2-dioxaphosphorinan-2-yl]-oleanolic acid) (Figure 9), then analyzed their hepato-
protective capacity against carbon tetrachloride (CCl4)-induced liver injury in mice. The
obtained data showed that OA derivatives caused a decrease in serum transaminases and
MDA and an increase in the level of enzymes with an antioxidant role (GPx and SOD),
respectively. These observations indicate that these two compounds have antioxidant and
hepatoprotective potential [113].
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3.2. In Vitro, In Vivo, and Clinical Trials

Many studies showed that OA and its derivatives are effective against various cancer cell
lines (thyroid, ovarian, pancreatic, breast, colorectal, lung, gallbladder, gastric cancer, glioma,
and leukemia) and tried to explain the anticancer mechanism (Table 5) [10,14,26,82].
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Table 5. In vitro studies regarding the anticancer effect of OA and its derivatives.

Compound Type of Cancer Cell Line Cell Line In Vitro Conclusions Reference

OA human skin metastatic melanoma WM-244-6

MTT (24 h, 48 h)
The lowest concentration that

caused a significant
antiproliferative effect was

20 µM.

OA inhibited cancer cell proliferation,
showing a maximal effect after 48 h. [8]

OA human gastric cancer

SGC-7901
MTT (48 h)

IC50 = 25.9 µM
MTT (72 h)

IC50 = 21.2 µM

OA decreased the viability of cancer cells in a
dose-dependent manner, showing slight

inhibition against normal cells.
[89]MGC-803

MTT (48 h)
IC50 = 24.0 µM

MTT (72 h)
IC50 = 20.4 µM

BGC-823
MTT (48 h)

IC50 = 30.1 µM
MTT (72 h)

IC50 = 22.4 µM

OA human breast carcinoma
MCF-7 MTT (48 h)

IC50 = 13.09 µg/mL OA exhibited dose-dependent
antiproliferative activity against cancer cells
with negligible toxicity against normal cells.

[10]
MDA-MB-231 MTT (48 h)

IC50 = 160.22 µg/mL

OA human colon adenocarcinoma HCT-116 MTT (48 h)
IC50 = 40.00 µg/mL

OA significantly decreased the cancer cells’
viability. [86]

OA human thyroid carcinoma SW579 MTT (24 h)
IC50 = 42.20 µmol/L

OA exhibited a dose-dependent
antiproliferative effect against cancer cells. [82]

OA liver carcinoma HepG2 CCK (24 h)
IC50 = 30 µM

OA determined a dose-dependent decrease in
cancer cells’ viability without significant

toxicity against normal cells.
[114]

OA human melanoma

A375SM
MTT (24 h)

The 100 µM dose reduced the cell
viability to 41.5%. OA decreased the cell viability in a

dose-dependent manner.

[115]

A375P
MTT (24 h)

The 100 µM dose reduced the cell
viability to 46.4%.

[115]

OA

human prostate cancer DU145 MTT (24 h)
IC50 = 112.57 µg/mL

OA inhibited the proliferation of cancer cells. [96]human breast cancer MCF-7 MTT (24 h)
IC50 = 132.29 µg/mL

human glioblastoma U87 MTT (24 h)
IC50 = 163.6 µg/mL
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Table 5. Cont.

Compound Type of Cancer Cell Line Cell Line In Vitro Conclusions Reference

OA

human melanoma

MeWo

MTT (48 h)
OA did not have a significant
antiproliferative effect against

MeWo cells.

Derivatives XVa and XVb exhibited dose-dependent
antiproliferative effects against both cancer cell lines,

being superior to OA.

[26]

A375
MTT (48 h)

The 100 µM dose reduced the cell
viability to 61%.

XV a

MeWo
MTT (48 h)

The 100 µM dose reduced the cell
viability to 37.2%.

[26]

A375
MTT (48 h)

The 100 µM dose reduced the cell
viability to 16.4%.

XV b

MeWo
MTT (48 h)

The 100 µM dose reduced the cell
viability to 10.9%.

[26]

A375
MTT (48 h)

The 100 µM dose reduced the cell
viability to 16%.

XVI a

hepatocellular carcinoma

HA22T/VGH MTT (72 h)
IC50 = 42.5 µM

These compounds showed a superior
antiproliferative effect compared to OA against all

tested cell lines.

[62]HepG2 MTT (72 h)
IC50 = 40.0 µM

Hep3B MTT (72 h)
IC50 = 41.5 µM

XVI b

HA22T/VGH MTT (72 h)
IC50 = 31.0 µM

[62]HepG2 MTT (72 h)
IC50 = 28.0 µM

Hep3B MTT (72 h)
IC50 = 32.5 µM

XVI c

HA22T/VGH MTT (72 h)
IC50 = 35.8 µM

[62]HepG2 MTT (72 h)
IC50 = 44.0 µM

Hep3B MTT (72 h)
IC50 = 33.7 µM
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Table 5. Cont.

Compound Type of Cancer Cell Line Cell Line In Vitro Conclusions Reference

XVII
human ovarian cancer SKOV3 MTT (24 h)

IC50 = 8.3 µM This compound exhibited strong antiproliferative
activity against cancer cells without significant

toxicity against normal cells.

[97]

human endometrial cancer HEC-1A MTT (24 h)
IC50 = 0.8 µM [97]

XVIII
human cervical cancer HeLa MTT (48 h)

IC50 = 1.55 µM

Compounds XVIII and XX exhibited strong
antiproliferative activity against HeLa cells.

Compound XIX was the most efficient against
MCF-7 cells.

[102]
human breast cancer MCF-7 MTT (48 h)

IC50 = 32.49 µM

XIX
human cervical cancer HeLa MTT (48 h)

IC50 > 100 µM
[102]

human breast cancer MCF-7 MTT (48 h)
IC50 = 1.79 µM

XX
human cervical cancer HeLa MTT (48 h)

IC50 = 1.35 µM
[102]

human breast cancer MCF-7 MTT (48 h)
IC50 > 100 µM

XXI a
human hepatoma HepG2

MTT (24 h)
IC50 = 37.0 µM These compounds presented better antiproliferative

activity than diclofenac.

[103]

XXI b MTT (24 h)
IC50 = 33.5 µM [103]

XXII a

human non-small lung cancer A549

MTT (24 h)
IC50 = 0.08 µM

Compound XXII a had the greatest cytotoxic activity
(equivalent to doxorubicin) against cancer cells

while being less toxic to normal cells.

[104]

XXII b MTT (24 h)
IC50 = 0.35 µM [104]

XXII c MTT (24 h)
IC50 = 0.31 µM [104]

XXII d MTT (24 h)
IC50 = 1.72 µM [104]

XXII e MTT (24 h)
IC50 = 0.22 µM [104]

XXIII a

human prostate cancer PC3

MTT (24 h)
IC50 = 7.79 µM

All of these compounds presented good
antiproliferative effects against cancer cells, being

superior to OA.

[105]

XXIII b MTT (24 h)
IC50 = 8.87 µM [105]

XXIII c MTT (24 h)
IC50 = 8.77 µM [105]
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Table 5. Cont.

Compound Type of Cancer Cell Line Cell Line In Vitro Conclusions Reference

XXVII human ovarian cancer A2780 MTT (72 h)
IC50 = 10.24 µM

This gold alkyne complex was more active
than OA against cancer cells. [19]

XXVIII a

non-small cell lung cancer A549 MTT (48 h)
IC50 = 23.44 µM

The obtained hybrids possess antiproliferative
properties. The hybrid XXVIII b presented

potential selectivity against cancer cells and
moderate antiproliferative potential against

both ordinary and multidrug-resistant (MDR)
A549/T and Bel-7402/FU cell lines.

[16]

human breast cancer MCF-7 MTT (48 h)
IC50 = 24.33 µM [16]

human hepatocellular carcinoma Bel-7402 MTT (48 h)
IC50 = 25.22 µM [16]

human myelogenous leukemia K562 MTT (48 h)
IC50 = 14.92 µM [16]

XXVIII b

non-small cell lung cancer
A549, MTT (48 h)

IC50 = 50.54 µM [16]

A549/T MTT (48 h)
IC50 = 43.07 µM [16]

human breast cancer
MCF-7, MTT (48 h)

IC50 = 53.63 µM [16]

MCF-7/ADR MTT (48 h)
IC50 = 166.2 µM [16]

human hepatocellular carcinoma
Bel-7402 MTT (48 h)

IC50 = 43.82 µM [16]

Bel-7402/FU MTT (48 h)
IC50 = 31.42 µM [16]

human myelogenous leukemia
K562 MTT (48 h)

IC50 = 22.99 µM [16]

K562/ADR MTT (48 h)
IC50 > 200 µM [16]
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Numerous in vitro studies have been attempted to demonstrate the antiproliferative
effect of OA. Some of the representative ones that tried to explain the anticancer mechanism
of this compound are briefly described below.

Nie et al. observed that OA is effective against multiple human gastric cancer cell
lines (SGC-7901, MGC-803, and BGC-823) since it induces autophagic death [89]. Using
the SW579 thyroid cancer cell line, Duan et al. showed that OA inhibits the proliferation
and induces apoptosis of cancer cells by targeting forkhead transcription factor A [82].
Woo et al. showed that OA is effective against A375SM and A375P melanoma cells, with
the proapoptotic effect being mediated by the NF-κB pathway [115]. Another study on
SMMC-7721 human hepatocellular carcinoma showed that cell apoptosis induced by OA is
closely related to the alteration of mitochondrial function [116].

Also, some OA derivatives have been proven to be effective in vitro. Some of these
studies are listed below, emphasizing the structural changes that led to improving the anti-
cancer effect. The role of pyrimidine as an antitumor pharmacophore has been extensively
used in several experiments that aimed to obtain compounds with superior anticancer
properties [90]. Meng and his collaborators demonstrated that the antitumor activity of
OA derivatives against SGC-7901 and A-549 cell lines increases with the increase in ester
chains. Additionally, they suggested that the introduction of a quinoxaline ring to ring A
of OA determines the improvement of the anticancer properties of the derivatives [109].
Bednarczyk et al. synthesized four new OA derivatives and tested them against human
melanoma cell lines MeWo and A375. Among these compounds, XV b (Figure 10), which
was a bromoacetoxyimine derivative, showed the best activity on the tested cell lines [26].
This study demonstrated that alkyl derivatives are preferred over aryl ones [26].
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Various attempts considered the simultaneous modification of C-3 and C-28, obtaining
satisfactory results. Fontana et al. synthesized and tested several derivatives of OA and
UA against hepatocellular carcinoma cell lines HepG2, Hep3B, and HA22T/VGH. They
observed that the various modifications at the C-3 and C-28 positions determined changes
in the anticancer potential. More specifically, acetylation of the C3-OH group is unfavorable
in both cases, whereas methylation of the C17-COOH does not significantly influence the
activity of UA derivatives, but it may be favorable, unfavorable, or irrelevant for some OA
derivatives [62].

On a different line, Sun and his collaborators applied pharmacophore hybridization to
obtain new compounds with improved anticancer effects. They prepared several oleanolic
acid–uracil/thymine conjugates and demonstrated, within the MTT test, that these hybrids
possess superior pharmacological activity to oleanolic acid, respectively 5-fluorouracil [43].
Thus, obtaining conjugated compounds can contribute to increasing the therapeutic effect
and widening the spectrum of anticancer compounds [43]. Mo et al. considered synthesiz-
ing and evaluating the antiproliferative effect of acyl oleanolic acid–uracil conjugates. They
have proven that the compound with a propionyloxy group at C-3 was the most effective
against Hep-G2, while the compound with a dodecanoyloxy group at C-3 was the most
effective against A549. Furthermore, the most effective compound against MCF-7 had an
acetoxy group at C-3. Regarding the PC-3 cell line, the best results were obtained with the
butyryloxy compound. This study concludes that, in general, the acylation of the C3-OH
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group potentiates the antiproliferative activity of OA [90]. It is already known that, besides
OA, cinnamic acid (CA) is a compound that exhibits anticancer properties. This was the
starting point of the study led by Wang, which aimed to synthesize new OA-CA derivatives
by using a molecular hybridization approach and test them against HeLa (cervical cancer)
and MCF-7 (breast cancer) [102]. Among these new derivatives, none proved to be effective
on both cell lines, but three of them (XVIII, XIX, and XX) (Figure 11) exerted a strong
antiproliferative effect on a malignant cell line, suggesting that further research in this area
is needed.
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Several oleanolic acid hydrazide–hydrazone hybrids were synthesized and tested on
the A549 human lung cancer cell line by Halil et al. The structure of OA was modified as
follows: the C3-OH was methylated to methyl ether, and the C17-COOH group was trans-
formed into a hydrazide. Then, the hybrids were synthesized starting from the obtained
hydrazide and another 13 different aromatic aldehydes [104]. Among the tested hybrids,
4-methylbenzaldehyde hydrazone (XXII a) (Figure 12) showed the best results, having
cytotoxic properties equivalent to doxorubicin against cancer cells and being 32 times less
toxic to healthy cells [104]. Narozna et al. analyzed the antiproliferative effect of diclofenac
(DCL)-OAO conjugates against the HepG2 liver cancer cell line. The obtained results
showed that the conjugation of diclofenac with OA derivatives with a morpholide group
or benzyl ester in the C-28 position (XXI a and XXI b) (Figure 13) leads to an increase in the
anticancer action [103].
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In terms of ring A modifications, Şenol et al. analyzed new derivatives of α,β-
unsaturated ketones based on oleanolic acid against a human prostate cancer cell line
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(PC3). The obtained data concluded that compounds with the nitro group at the meta- and
para-positions of the phenyl ring (XXIII a and XXIII b) (Figure 14) were the most potent
against cancer cells [105].
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In the same manner as the UA derivatives, IC50 values of OA derivatives were evaluated
for the most tested cancer cell lines. The XIX derivative exhibited the strongest antiproliferative
effect on the MCF-7 cell line (IC50 = 1.79 µM after 48 h following stimulation). A549 cells were
strongly inhibited by XXII a compound, with an IC50 value of only 0.08µM after 24 h following
stimulation. XVI b compound showed potent antiproliferative effect against hepatocellular
carcinoma HepG2, Hep3B, and HA22T/VGH cell lines (IC50 values being 28.0 µM, 32.5 µM,
and 31.0 µM respectively, after 72 h following stimulation). An intense antiproliferative effect
against HeLa cells was observed for XX compound (IC50 = 1.35 µM after 48 h following
stimulation). The mentioned derivatives are presented in Figure 15.
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Various attempts were made to obtain OA derivatives with superior properties. Thus,
several series of compounds were discovered, including XXV (bardoxolone), which can be
considered 200,000 times more potent than OA [33]. Compound XXVI (bardoxolone methyl)
also demonstrated antiangiogenic and antitumor effects in rodent cancer models [90]. Of
this series, compound XXVI is considered to be the most promising in cancer treatment [33].
Gao et al. synthesized another compound of interest, XXIV (N-formylmorpholine sub-
stituent of XXV) (Figure 16), which was tested in vitro and in vivo. They found that this
compound inhibited osteosarcoma cell growth due to decreased c-MYC-dependent glycol-
ysis [106]. This study suggests that compound XXIV may become a valuable antitumor
compound [106].
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Regarding in vivo studies, the anticancer efficacy of OA and its derivatives have been
demonstrated using various experimental animal models (Table 6).

Table 6. In vivo studies regarding the anticancer effect of OA and its derivatives.

Compound Experimental
Animal Model

Injected Tumor
Cells Concentration Conclusions Reference

OA
Female nude
BALB/c mice,
6 weeks old

human gastric
cancer (MGC-803)

100 mg/kg/day,
orally, measuring the
tumor volume every

3 days

OA inhibited tumor
growth and delayed
the onset of tumor

formation.

[89]

OA
Female BALB/c

nude mice,
4 weeks old

human melanoma
(A375SM)

75 mg/kg and
150 mg/kg, i.p.,
5 times/week,

13 days

OA (150 mg/kg dose)
caused a significant

reduction in the tumor
volume.

[115]

OA
Male BALB/c

nude
mice, 5 weeks old

human cervical
cancer (Hela)

40 and
80 mg/kg/day, i.p.,

15 days

OA decreased the size
of cervical cancer

tumors.
[117]

OA
Male

Sprague-Dawley
rats, 8 weeks old

human benign
prostate

hyperplasia
(BHP-1)

1 and 10 mg/kg/day,
i.p., 4 weeks

OA treatment
determined the

reduction of prostate
tissue weight (by

30.91%, and 31.23%)
without affecting the

body weight.

[118]

OA Male BALB/c
mice, 7 weeks old

human prostate
cancer (DU145)

50 µg/mouse, i.m.,
every 2 days, 4 times

OA significantly
decreased the net
weight of tumors
(about 29.38%).

[96]

XVII

Female athymic
mice, BALB/c

nu/nu, 6–8 weeks
old

human ovarian
cancer (SKOV3)

10, 20, and
40 mg/kg/day, i.p.,

3 weeks

XVII (OA-3 acetate)
exhibited significant

tumor growth
inhibition rates (32.5,

38.47, and 46.02%)
without causing

weight loss.

[97]

XXIV
Female BALB/c

nude mice, 5
weeks old

human
osteosarcoma

(143B)

40 mg/kg, i.p., every
2 days, 3 weeks

This compound
reduced the tumor

volume without
affecting the body
weight and other

organs.

[106]

XXVII Male BALB/c
nude mice

human ovarian
cancer (A2780)

20 mg/kg/day, i.p.,
15 days

This complex
determined a

significant tumor
inhibition rate (40.2%)
without clear weight

loss.

[19]

A study in tumor-bearing mice demonstrated that OA significantly reduced the mass
of cervical tumors. The suggested mechanism is that of increasing oxidative stress, Fe2+

concentration, and the expression of ferroptosis-related proteins [117]. OA 3-acetate (XVII)
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was shown to be highly effective in reducing tumor growth on tumor xenografts with
SKOV3 cells in immunocompromised mice [97].

Cheon et al. used an animal model of testosterone-induced benign prostatic hyper-
plasia (BPH) to test the efficacy of OA. The obtained data showed that OA determined
the reduction of BHP symptoms, having a superior effect compared to finasteride [118].
Another study designed on prostate cancer xenografts in mice suggested that OA causes
p53-dependent apoptosis via the ERK/JNK/AKT pathway [96].

Using a colorectal cancer mouse xenograft model, it was also demonstrated that OA
causes cancer cell apoptosis by increasing the expression of BAX, P21, and p53 and by
inhibiting the expression of Bcl-2, CKD-4, and Cyclin D1 [119]. Moreover, in murine models,
it was observed that OA shows chemopreventive activity against 1, 2-dimethylhydrazine-
induced colon carcinoma [89,120].

It was also demonstrated on nude mice transplanted with pancreatic cancer L3.6PL
cells that intragastric administration of the bardoxolone methyl caused significant tumor
inhibition (74.2%) [77].

The literature is poor on clinical data regarding the anticancer activity of OA and its
derivatives (Table 7). In clinical trials, the results of compound XXVI are inconclusive. It
was observed that the pharmacokinetic characteristics of compound XXVI include non-
linearity, slow oral absorption, long half-life, and pronounced inter-individual variability.
The maximum tolerated dose was 900 mg/d. Moreover, in a patient with mantle cell
lymphoma, a complete tumor response was observed, while a partial response was recorded
in a patient with anaplastic thyroid cancer [108]. Even if this compound appears to be well
tolerated, it has been noted that it may increase the risk of cardiovascular events [121].

Table 7. Clinical trials.

Compound Clinical Trial
Phase/Type Subjects Type of Cancer Dose Results Conclusions Reference

XXV
open-label,
single-arm

phase I study

two males, five
females, aged

47–62

colorectal (4),
bladder (1),
ovarian (1),

and uterine (1)
cancer

Seven different
dose levels

(0.6 to
38.4 mg/m2/h)
in continuous

infusion on
days

1–5 of a 28-day
cycle

Bardoxolone
pharmacoki-

netics showed
no evidence of
non-linearity.
The desired
dose level of

1 µM was
reached only

after the
administration
of the highest

dose.

The study was
discontinued

due to the
occurrence of
thromboem-
bolic events.

[107]

XXVI phase I

47 patients
(34 males and
13 females),
aged 24–81

solid tumors or
refractory
lymphoid

malignancies

5 mg/d
(starting dose)
administrated

orally for
21 days of a
28-day cycle

The dose-
dependent

toxicity
consists of a

reversible
increase in ALT

serum level.

Compound
XXVI was a

well-tolerated
drug. Thus, the

dose of
900 mg/d
could be

recommended
for phase II

clinical trials.

[108]

4. Conclusions

The data presented in this review highlight the anticancer potential of pentacyclic
triterpenes UA and OA, mostly in preclinical studies. It also underlines the main structural
changes that can improve the efficacy of these compounds (such as transformation into
esters or amides, replacing the OH group with a hydroxyimine group, the introduction
of a pyrimidine or quinoline moiety, hybridization with uracil, thymine, hydrazide, or
cinnamic acid, etc.). Currently, there are a plethora of in vitro studies conducted on various
cancer cell lines that have demonstrated the antiproliferative and cytotoxic effects of UA,
OA, and their derivatives. Most of the semi-synthetic derivatives presented in this review
showed a better antiproliferative effect than the natural compound against specified cancer
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cell lines. Moreover, some compounds displayed an antiproliferative effect comparable
or superior to certain anticancer drugs on the pharmaceutical market (e.g., compounds
VII and XIV to etoposide, compounds X a-d to adriamycin). However, in vivo studies and
especially clinical trials are scarce; hence, bringing together the whole picture regarding
pentacyclic triterpenes ursolic and oleanolic acids and related derivatives as anticancer
candidates can help open new research avenues on this topic. Further research in this area
is needed by including new semi-synthetic terpenoid derivatives in animal studies and
further clinical trials.
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