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Abstract: Brain alpha-tocopherol (αT) concentration was previously reported to be inversely associ-
ated with neurofibrillary tangle (NFT) counts in specific brain structures from centenarians. However,
the contribution of natural or synthetic αT stereoisomers to this relationship is unknown. In this
study, αT stereoisomers were quantified in the temporal cortex (TC) of 47 centenarians in the Georgia
Centenarian Study (age: 102.2 ± 2.5 years, BMI: 22.1 ± 3.9 kg/m2) and then correlated with amyloid
plaques (diffuse and neuritic plaques; DPs, NPs) and NFTs in seven brain regions. The natural
stereoisomer, RRR-αT, was the primary stereoisomer in all subjects, accounting for >50% of total αT
in all but five subjects. %RRR was inversely correlated with DPs in the frontal cortex (FC) (ρ = −0.35,
p = 0.032) and TC (ρ = −0.34, p = 0.038). %RSS (a synthetic αT stereoisomer) was positively correlated
with DPs in the TC (ρ = 0.39, p = 0.017) and with NFTs in the FC (ρ = 0.37, p = 0.024), TC (ρ = 0.42,
p = 0.009), and amygdala (ρ = 0.43, p = 0.008) after controlling for covariates. Neither RRR- nor RSS-αT
were associated with premortem global cognition. Even with the narrow and normal range of BMIs,
BMI was correlated with %RRR-αT (ρ = 0.34, p = 0.021) and %RSS-αT (ρ = −0.45, p = 0.002). These
results providing the first characterization of TC αT stereoisomer profiles in centenarians suggest that
DP and NFT counts, but not premortem global cognition, are influenced by the brain accumulation
of specific αT stereoisomers. Further study is needed to confirm these findings and to determine the
potential role of BMI in mediating this relationship.

Keywords: vitamin E; tocopherol; brain; cognition; aging; neurofibrillary tangle; amyloid plaque;
older adult; centenarian

1. Introduction

Supplementation studies in vitamin E-deficient humans have revealed that α-tocopherol
(αT) is critical to nervous system function [1–5]. αT has the highest vitamin E activity of
the eight vitamin E structural isomers (α-, β-, γ-, and δ-tocopherols and α-, β-, γ-, and
δ-tocotrienols) and is the only one that can fulfill human vitamin E requirements [6]. The
αT molecule contains three chiral carbons that give rise to eight possible stereoisomers
(RRR-, RRS-, RSR-, RSS-, SSS-, SSR-, SRS-, and SRR-αT), but there is only one naturally
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occurring αT stereoisomer (RRR-αT; 2,5,7,8-tetramethyl-2 R-4′ R, 8′ R 12′ trimethyltridecyl)-
6-chromanol). On the contrary, the αT commonly used in dietary supplements and fortified
foods is synthetic αT (all-rac-αT), comprising eight stereoisomers in equimolar concentra-
tions. Of these eight stereoisomers, only those in the 2R configuration contribute to meeting
human dietary vitamin E (αT) requirements.

Evidence shows that RRR-αT has 1.36–2 times the biological value of synthetic αT
due to a stereoisomer selective hepatic transport protein, αT transfer protein (αTTP) [7–10].
While the human infant brain is known to accumulate RRR-αT preferentially, most infant
decedents had measurable concentrations of synthetic αT stereoisomers in their brain, and
some had as much as 48% of total αT [11]. While the distribution of αT stereoisomers in
the adult brain has not been characterized, it is reasonable to expect that lifelong dietary
exposure to natural and synthetic αT could result in the differential accumulation of brain
αT stereoisomers.

Aging presents a tremendous global challenge, with demographic shifts toward an
aging population imposing diverse health burdens. Central to these concerns is the imper-
ative to maintain healthy brain aging, as the aging brain undergoes significant changes,
often marked by neurofibrillary tangles (NFTs) and amyloid plaques, including diffuse
plaques (DPs) and neuritic plaques (NPs) [12–14]. While traditionally associated with
Alzheimer’s disease (AD), recent evidence indicates their presence in cognitively healthy
older individuals [12,15–17]. Research suggests that reducing or clearing these lesions
does not consistently lead to clinical improvement [13]. Clinico-neuropathological studies
in the oldest old populations across different geographical regions reinforce this com-
plexity by showing that NFTs and amyloid plaques alone cannot fully explain cognitive
impairment [18–21]. For example, similar distributions of AD-type neuropathology among
centenarians with varying cognitive statuses were observed in the Georgia Centenarian
Study (GCS) [22]. Accumulating evidence challenges the conventional belief that NFTs and
amyloid plaques are exclusive to AD and contribute directly to cognitive dysfunction. It
also suggests the need to reevaluate the role of NFTs and amyloid plaques as markers in
normal aging processes.

Nutritional intervention is an effective way to maintain healthy brain aging [23–28].
In particular, diets high in nuts and seeds, plant oils (such as olive oil), and green leafy
vegetables are associated with a reduced risk of cognitive decline [29–34]. These foods are
excellent sources of different nutrients, including naturally occurring RRR-αT. Other promi-
nent sources of αT include fortified foods and dietary supplements. Research indicates that
among US adults regularly taking nutritional supplements, αT intake from supplements
is roughly 11 and 16 times greater than from dietary sources in men and women, respec-
tively [35]. Specific to αT, its increased intake and higher serum αT concentrations have
also been associated with a lower risk of developing AD later in life [36–42]. However, as
most studies do not distinguish among the bioaccumulation of specific αT stereoisomers
or between natural and synthetic sources of αT, a knowledge gap exists in understanding
their differential effects on health [8]. Since αT stereoisomers in the adult brain have not
been characterized, the impact of different stereoisomers on markers of the aging brain and
cognitive health remains unexplored in humans.

The GCS provided an opportunity to address these research questions preliminarily
since subjects donated their brain tissues upon death. These tissues were previously utilized
to assess NFTs and amyloid plaques and for αT analysis. Without differentiating among
the stereoisomers, an earlier study reported that brain αT concentrations were positively
associated with specific premortem cognitive tests, but not global cognition, in the GCS
cohort [43]. In addition, a recent study reported that brain αT concentration was associated
with reduced amyloid plaques and NFTs [44]. In this present study, we aimed to expand
the scope of the investigation to establish the relationship of specific αT stereoisomers in
the brains of older adults with global cognitive status, NFTs, and amyloid plaques. We
hypothesized that differential accumulation of specific αT stereoisomers in the human
brain, particularly the naturally occurring RRR-αT, may be more effective in maintaining
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cognitive function and associated with fewer NFTs and amyloid plaques. This study was
therefore designed to provide a basis for further exploration of the potential for αT to
achieve healthy aging and better maintain cognitive function.

2. Materials and Methods
2.1. GCS Decedents, Demographic Data, and Brain Collection

The University of Georgia Institutional Review Board on Human Subjects approved
the GCS study. Separate approval to use de-identified samples and data for the analyses
was obtained from the Tufts University/Tufts Medical Center Institutional Review Board
(#8900). The GCS study was a population-based study conducted in a 44-county area in
northeast Georgia, USA. The design, recruitment, and brain sample collection procedure
have been described elsewhere [45,46].

In addition to collecting demographic data and blood samples, the Global Deteriora-
tion Scale (GDS, an assessment of global cognition) [47] was assessed at enrollment and
approximately every six months after that at the subject’s residence until mortality, as
previously described [46]. Only the blood samples and GDS from the final assessment,
which was within one year of mortality for all subjects, were used in the analysis in this
report. Serum samples were stored at −80 ◦C until analysis. Premortem habitual intake
of αT could not be calculated since the intake assessment performed in the GCS did not
provide sufficiently detailed information [48].

2.2. Brain and Serum Tocopherol Analysis

Brain αT and γ-tocopherol (γT) extraction and αT stereoisomer analyses were per-
formed in a blinded manner at the Ohio State University (Columbus, OH, USA) as previ-
ously described [49,50]. Briefly, brain tissue (temporal cortex, TC) was saponified (30 min,
70 ◦C) in alcoholic potassium hydroxide and extracted with hexane. A portion of the
hexane extract was dried under nitrogen gas, reconstituted in methanol/ethanol (1:1, v/v),
and injected on an HPLC with electrochemical detection (HPLC-ECD) to determine total
αT and γT as described [50]. To determine the percent distribution of αT stereoisomers, a
separate portion of the hexane extract was dried under nitrogen gas, reconstituted, and
subjected to methylation under basic conditions. The methylated sample was injected into
an HPLC-fluorescence system with a chiral separation column. Under these conditions,
a single peak encompassing total 2S-αT stereoisomers and individual peaks for each 2R
stereoisomer of αT (RRR-, RRS-, RSR-, and RSS-αT) could be determined. The molar
concentration of each αT stereoisomer was determined based on their percent distribution
relative to the total αT established by HPLC-ECD.

The methods for measuring serum total αT and γT concentrations have been previ-
ously described, and the results were reported in a previous study [51]. αT stereoisomers
were not measured in the serum.

2.3. Diffuse Plaque, Neuritic Plaque, and Neurofibrillary Tangle Assessment

After the autopsy, markers for aging brain assessment in the GCS included DPs, NPs,
and NFTs. The assessment was previously described by Neltner et al. [21]. Briefly, DP,
NP, and NFT counts were averaged from five microscopic fields that were most severely
affected in each section from the following brain regions: the frontal cortex (FC, Brodmann
Area 9), TC (Brodmann Areas 21–22), parietal cortex (Brodmann Areas 39–40), amygdala,
entorhinal cortex, hippocampus section CA1, and subiculum.

2.4. Statistical Analysis

All analyses were performed in 47 subjects, except for any analyses that considered
BMI (data not available in one double amputee) or markers of brain aging (data not
available in three subjects, none of whom were the double amputee). Continuous data are
expressed as mean ± standard deviation when the distribution is normal or as median
[interquartile range] when the distribution is not normal. Categorical data are expressed as
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count (%). Spearman’s correlation and partial correlation analyses were used to examine
the correlations between brain tocopherol concentrations and markers of brain aging, as
well as between brain tocopherol concentrations and continuous demographic data (such
as BMI). The Wilcoxon rank-sum test was used to examine the correlations between brain
tocopherol concentrations and categorical demographic data. Statistical significance was
set at α = 0.05 (p < 0.05). Given the nature of an exploratory study, correlations with p < 0.10
were also mentioned but not considered statistically significant. No adjustment of p values
for type I errors due to multiple comparisons was performed. All tests were performed
using R software (version 4.1.0 accessed on May 18, 2021, https://www.R-project.org).

3. Results
3.1. Cohort Description

Brain tissues from the TC of 47 subjects in the GCS were available for the analysis of
tocopherol concentrations. Their characteristics are described in Table 1. Overall, subjects
were 102.2 ± 2.5 years old, and the majority were female (89%), Caucasian (89%), and had
a normal body mass index (BMI, 22.1 ± 3.9 kg/m2). The subjects were almost equally
distributed for the absence (49%) or presence (51%) of dementia based on the GDS.

Table 1. Subject characteristics (n = 47).

Characteristic Mean ± SD or Count (%)

Age, in years 102.2 ± 2.5

Sex
Male 5 (11%)

Female 42 (89%)

Race
Caucasian 42 (89%)

Black 5 (11%)

Body mass index, in kg/m2 22.1 ± 3.9

Education
Lower than high school 23 (51%)

High school 12 (27%)
Higher than high school 10 (22%)

No data 2

Residence
Community dwelling 33 (70%)

Institutionalized 14 (30%)

Diabetes 3 (6%)

Hypertension 25 (53%)

Alcohol status
Never 21 (60%)
Past 6 (17%)

Present 8 (23%)
No data 12

Smoking status
Never 30 (86%)
Past 4 (11%)

Present 1 (3%)
No data 12

Apo E genotype
ε3/ε3 32 (68%)
ε2/ε3 7 (15%)
ε3/ε4 7 (15%)
ε2/ε4 1 (2%)

Global Deterioration Scale
1–3 (no dementia) 23 (49%)

4–7 (dementia) 24 (51%)
Body mass index could not be calculated in one double amputee.

https://www.R-project.org
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3.2. Temporal Cortex αT and γT and αT Stereoisomer Distribution

The TC distributions of αT and γT in 47 subjects are displayed as pmol/mg tissue
(Supplemental Figure S1A) and as relative concentrations (% of total tocopherol, Supplemental
Figure S1B). The concentrations were not normally distributed among the subjects. TC αT
was 16.84 pmol/mg [9.87–22.70], and γT concentration was 0.16 pmol/mg [0.08–0.32]. αT
was the predominant form of tocopherol in the TC of all subjects (99.06 [97.72–99.61]%). γT
was not detected in the TC of six subjects.

The TC αT stereoisomer concentrations are shown as pmol/mg tissue (Figure 1A)
and relative abundance (% of total αT, Figure 1B). TC concentrations (pmol/mg) of αT
stereoisomers were as follows: RRR-αT, 9.75 [5.71–14.81]; RRS-αT, 2.21 [1.17–3.14]; RSS-
αT, 1.80 [1.02–2.80]; RSR-αT, 1.56 [0.93–2.47]; and 2S-αT (includes SSS-, SSR-, SRS-, and
SRR-αT), 0.25 [0.13–0.43]. RRR-αT was the predominant stereoisomer in the TC of all
subjects, accounting for >50% of total αT concentration in all but five subjects. The RRR-αT
stereoisomers accounted for 37.78–48.52% of total αT in these five subjects.

TC γT concentration (pmol/mg) was not significantly correlated with the concen-
tration of any of the αT stereoisomers in the TC (Supplemental Figure S2). In contrast,
each αT stereoisomer (pmol/mg) was positively correlated with all other αT stereoisomers
(p < 0.001 for all). Spearman’s ρ and p values are listed in Supplemental Table S1.
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Figure 1. (A) α-tocopherol (αT) stereoisomer concentrations (pmol/mg tissue) in the brains of
47 subjects. Each bar represents a subject and subjects are ordered from the lowest to the highest total
α-TP concentration. (B) αT stereoisomer relative concentrations in the brains of 47 subjects. Each bar
represents a subject and subjects are ordered from the lowest to the highest %RRR, and 2S includes
SSS, SSR, SRS, and SRR.

3.3. Temporal Cortex Tocopherol and Global Deterioration Scale (GDS)

Neither the TC concentrations of αT nor γT nor the percent distribution of αT stereoiso-
mers significantly differed between subjects with and without dementia (GDS1–3 and
GDS4–7, Supplemental Table S2). Likewise, there were no significant correlations between
concentrations or percentages of αT stereoisomers in the TC with the GDS examined as a
continuous scale.

3.4. Temporal Cortex Tocopherol and Diffuse Plaques, Neuritic Plaques, and Neurofibrillary Tangles

We examined correlations between TC αT stereoisomers and DP, NP, and NFT counts
in each brain region. After adjusting for sex, race, education, ApoE genotype, diabetes, and
hypertension, TC %RRR-αT was inversely correlated with DP counts in the FC (ρ = −0.35,
p = 0.032) and TC (ρ = −0.34, p = 0.038, Figure 2). Correlations between TC %RRR-αT
and NFT counts did not reach significance in the FC (ρ = −0.30, p = 0.073), TC (ρ = −0.30,
p = 0.070), amygdala (ρ = −0.31, p = 0.066), or hippocampus (ρ = −0.29, p = 0.087).
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Figure 2. Correlation between %RRR or %RSS and diffuse plaque (DP), neuritic plaque (NP), or
neurofibrillary tangle (NFT) counts in different brain regions (n = 43, excluding one double amputee
and three without pathology assessment data). Partial correlation adjusting for sex, race, education,
ApoE genotype, diabetes, and hypertension (upper row). Partial correlation adjusting for body mass
index in addition to the variables in the first model (lower row). * p < 0.10 and ** p < 0.05.

In contrast, TC %RSS-αT was positively correlated with DP counts in the TC (ρ = 0.39,
p = 0.017) but not in the parietal cortex (ρ = 0.30, p = 0.075) or entorhinal cortex (ρ = 0.29,
p = 0.079). TC %RSS-αT correlations with NP counts did not reach significance in the
amygdala (ρ = 0.29, p = 0.085) or entorhinal cortex (ρ = 0.32, p = 0.057). TC %RSS-αT was
positively associated with NFT counts in the FC (ρ = 0.37, p = 0.024), TC (ρ = 0.42, p = 0.009),
and amygdala (ρ = 0.43, p = 0.008), but did not reach significance in the parietal cortex
(ρ = 0.31, p = 0.065) or subiculum (ρ = 0.33, p = 0.056). Supplemental Figure S3 presents the
other stereoisomers, which were observed to be minimally correlated with markers of AD
pathologies in the various brain regions.
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3.5. Temporal Cortex Tocopherols and BMI

BMI was negatively correlated with TC total αT concentration (ρ = −0.32, p = 0.030)
but not with brain γT concentration (Supplemental Table S3). This correlation remained sta-
tistically significant after adjusting for total αT serum concentrations (ρ = −0.32, p = 0.032).
After adjusting for sex, race, and serum concentrations, the correlation became borderline
significant (ρ = −0.29, p = 0.059).

We next considered whether BMI was related to specific TC αT stereoisomers. A
negative correlation was observed between BMI and the TC concentrations of RRS-αT
(ρ = −0.36, p = 0.013), RSS-αT (ρ = −0.49, p < 0.001), and RSR-αT (ρ = −0.35, p = 0.017). In
contrast, no significant relationship was observed with RRR-αT or 2S-αT concentrations
(Supplemental Table S3). The same pattern was observed after adjusting for sex and race
(p < 0.05 for all).

A similar relationship was observed between BMI and the TC percent distribution of
each αT stereoisomer (Supplemental Table S3). As shown in Figure 3, we observed that BMI
was positively correlated with %RRR-αT (ρ = 0.34, p = 0.021) but was negatively associated
with %RSS-αT (ρ = −0.45, p = 0.002). After adjusting for sex and race, these correlations
remained statistically significant. The relative concentrations of other αT stereoisomers
were not correlated with BMI either before or after adjusting for race and sex (p > 0.05).
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body mass index (n = 46, excluding one double amputee). RRR (left) and RSS (right).

Given that BMI was negatively associated with NFT and amyloid plaque counts in
multiple brain regions (Supplemental Figure S4), a partial correlation analysis adjusted for
BMI in addition to sex, race, education, ApoE genotype, diabetes, and hypertension was
also performed (Figure 2). Consequently, neither %RRR-αT nor %RSS-αT continued to be
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significantly correlated with AD pathology in any brain region after the inclusion of BMI in
the partial correlation analysis (p > 0.10 for all).

4. Discussion

This study is the first to examine αT stereoisomer concentrations in human adult brain
tissue and test their relation to premortem global cognitive status (GDS) and NFT and
amyloid plaque counts. We report that RRR-αT, the naturally occurring stereoisomer, was
the primary stereoisomer in the TC of all 47 GCS subjects and accounted for >50% of total
αT in all but five subjects. While we found no relationship between TC αT stereoisomers
and premortem GDS, RRR-αT and RSS-αT were differentially related to the measures of
brain aging, with %RRR-αT inversely related to DPs in both the TC (ρ = −0.34, p = 0.038)
and FC (ρ = −0.35, p = 0.032), but %RSS was positively correlated with both DPs in the TC
(ρ = 0.39, p = 0.017) and with NFTs in the FC (ρ = 0.37, p = 0.024), TC (ρ = 0.42, p = 0.009),
and amygdala (ρ = 0.43, p = 0.008). Stereoisomers share identical molecular formulas but
differ only in three-dimensional shape. Therefore, our observation of opposing correlations
with markers of brain aging in the human brain is surprising. However, the inclusion of
BMI in the partial correlation analysis eliminated these associations.

We have previously reported that higher total αT was correlated with lower NFT
counts in these GCS centenarians [44], but αT stereoisomer profiles were not characterized
in that study. This current analysis clarified that opposing stereoisomer correlations exist
beneath the inverse relation previously observed with total αT. The Memory and Aging
Project also examined αT status and markers of brain aging in older adults. It revealed
that αT was positively associated with amyloid load when γT levels were low, but was
negatively associated with amyloid levels when γT levels were high [52]. The authors also
suggested that αT created an anti-inflammatory environment in the brain and reduced total
microglia density independent of amyloid load and NFT severity [53]. While associations
with markers of brain aging were found, both previous and current studies showed no
relationship between total αT or αT stereoisomer profiles and cognitive performance
based on Global Deterioration Scores (GDSs) [47]. This contrasts the findings of others
who observed a significant relationship between dietary αT intake and cognition [36–39].
However, none of these prior studies considered the stereoisomer form of αT in the diet or
in brain tissue. Therefore, the specific impact of each αT stereoisomer on cognitive health
remains unknown. Additionally, since the reference ranges for brain αT or αT stereoisomer
concentration among centenarians have not been established, our findings may reflect a
ceiling effect such that the older adults may have already plateaued in their αT needs and
cognitive health despite the presence of markers of brain aging.

Recent research has examined the biochemical and clinical disparities among αT
stereoisomers, revealing the body’s discrimination between RRR-αT and synthetic or all-
rac-αT [11,54–57]. Administration of a mixed dose of RRR-αT and SRR-αT orally resulted
in a preferential enrichment of RRR-αT in very-low-density-lipoprotein particles com-
pared to SRR-αT [58]. Several mechanisms may elucidate these distinctions. Firstly, αT
stereoisomers likely exhibit varying binding affinities to proteins, notably αTTP, pivotal in
αT trafficking in the brain. Disruptions in this pathway can lead to ataxia [59,60]. Another
protein, αT-associated protein (TAP), sharing the same binding site sequence with αTTP,
serves as a transcriptional activator [61] and influences gene expression in the brain [49,62].
Additionally, αT stereoisomers might possess distinct antioxidant effects, impacting ox-
idative stress levels [63]. Similar steric structure–antioxidant activity relationships have
been noted in tea catechins, where specific stereoisomers excel in scavenging large free
radicals. In contrast, others are more efficient against smaller free radicals due to increased
steric hindrance [64]. These antioxidant disparities could contribute to their roles in pre-
venting lipid peroxidation, which is crucial in the brain due to its high polyunsaturated
lipid content, which is susceptible to peroxidation with aging [65–68]. Thus, understanding
the differential free radical-scavenging abilities of αT stereoisomers is crucial, given αT’s
prominence as a lipid antioxidant in the brain. The lack of specificity in αT stereoisomers
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used in human clinical trials might explain the failure of interventions to improve cognitive
measures in older adults at risk of cognitive impairment [30,69,70]. However, there are no
available data that investigate and support these mechanisms of action in extreme aging.
Therefore, future research should differentiate between RRR-αT and all-rac-αT and explore
their associations with cognitive health in aging [8].

In the present study, we performed a correlation analysis to consider the influence of
several covariates (e.g., sex, race, education, ApoE genotype, diabetes, and hypertension)
that may affect the relationship between α-T stereoisomer profile and cognitive health.
BMI was additionally included as a covariate in a secondary statistical model, given that
BMI was positively associated with cognitive function in a cohort of healthy male veterans
(aged 85 years and older, BMI 25.7 ± 3.2 kg/m2) [71], and that BMI was associated with
both TC %RRR-αT and %RSS-αT in the GCS centenarians. Interestingly, the inclusion of
BMI in the model resulted in the loss of statistical significance for the relationship between
TC αT stereoisomers and brain aging biomarkers. Although this finding implies that
BMI is confounding for this relationship, its appropriateness for inclusion in the statistical
model is potentially lacking clinical relevance for our study population of centenarians.
Indeed, BMI typically decreases with age in the oldest old, and it has also been utilized as
a crude indicator of overall health and nutrition status [72,73]. In the ASPREE study [74],
a strong U-shaped relationship was observed between BMI and all-cause mortality; for
example, those classified as overweight (BMI 25–30 kg/m2) had a lower mortality risk
compared to those with lower or higher BMI. Further, our cohort of centenarians had
BMI values indicative of a range conventionally considered as healthy (22.1 ± 3.9 kg/m2)
and showed limited inter-individual variability (CV = 17.6%) that would be expected to
limit its usefulness as a covariate. Consistent with BMI indicative of being overweight
(25–30 kg/m2, HR = 0.90, 95% CI = 0.85–0.95) or of obesity I (30–35 kg/m2, HR = 0.98,
95 CI = 0.92–1.06) being not or limitedly associated with mortality risk in older adults
(70–79 y) [75], we speculate that its inclusion as a covariate in the present study is lacking
relevance for our centenarian population, most of whom are normal weight and generally
healthy. In addition, the variance in BMI in this study population was markedly narrower
than that in the αT stereoisomers. It is possible that higher BMI and %RRR-αT both reflect
a healthier lifestyle. For example, a diet rich in RRR-αT, found in natural foods like nuts,
dark-green leafy vegetables, and egg yolk [6], would likely influence dietary and serum αT
stereoisomer profiles in humans. In addition, lower BMI could predispose individuals to
frailty, leading to increased consumption of health supplements containing synthetic αT,
thus explaining the observed negative correlation between BMI and synthetic %RSS-αT.
Additional study is warranted to evaluate the direct impact of overweightness and body
composition on the accumulation of brain αT stereoisomers and their relationship with
markers of brain aging to establish causal evidence to support healthy aging.

The limitations of our findings should be mentioned. While the NFT, DP, and NP
assessments were performed in different brain regions, only the TC was available to mea-
sure the αT stereoisomer profile. However, Kuchan et al. revealed that the concentrations
of total αT and the proportions of RRR-αT and synthetic αT were similar among the
infant brain regions examined, including the FC, hippocampus, and visual cortex, with
RRR-αT being the most predominant form [11]. RRR-αT and synthetic αT proportions
in six areas of infant rhesus macaque brains (occipital, temporal, motor, and prefrontal
cortices together with the striatum and cerebellum) were also very similar within each
treatment group [50]. As far as we know, there are no other studies that investigated αT
and αT stereoisomer profiles in different brain regions in adult humans. Based on these
findings, we believe extending the stereoisomer profile determined from the TC to other
brain regions is reasonable. Moreover, high correlations among FC, TC, and circulating
total αT and γT concentrations were previously reported in the GCS subjects [51]. That said,
a study that investigates αT stereoisomer profiles in different brain regions in adult humans
would be valuable to further confirm this assumption. Another limitation is extrapolation
to other aged populations due to the small sample size and the unusual health status of
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the subjects. Lastly, while we did not perform any adjustment for type I error inflation, the
correlations with BMI, NFTs, and DPs were consistent and specific to RRR-αT and RSS-αT.

5. Conclusions

This exploratory study provides a foundation for future research examining the im-
pact of αT stereoisomers on cognitive function in aging. RRR-αT was the predominant αT
stereoisomer in the TC of the oldest old. No significant difference in the αT stereoisomer
profiles between subjects with and without dementia was observed. However, the pro-
portion of RRR-αT was negatively and RSS-αT (a synthetic stereoisomer) was positively
correlated with markers of brain aging (NFTs and DPs) in multiple brain regions. Although
BMI confounded these associations, its clinical importance in a relatively healthy centenar-
ian population may be confounding in itself. Further study through prospective trials are
therefore needed to advance an understanding of our novel findings of αT stereoisomer
accumulation in the centenarian brain relative to markers of brain aging with potential
mediation by BMI status.

Supplementary Materials: The following supporting information can be downloaded at:
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trations (pmol/mg tissue) in the brain of 47 subjects. Each bar represents a subject and subjects
are ordered from the lowest to the highest total tocopherol concentration. αT: α-tocopherol; γT:
γ-tocopherol. (B) Tocopherol relative concentrations (%) in the brain of 47 subjects. Each bar rep-
resents a subject and subjects are ordered from the lowest to the highest % αT. αT: α-tocopherol;
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among themselves (all p < 0.05), but not with γ-tocopherol (γT). Figure S3: Correlation between
%2S, %RSR, or %RRS and diffuse plaque (DP), neuritic plaque (NP), or neurofibrillary tangle (NFT)
counts in different brain regions (n = 43, excluding one double amputee and three without pathology
assessment data). Partial correlation adjusting for sex, race, education, ApoE genotype, diabetes and
hypertension. * p < 0.10 and ** p < 0.05. FC: frontal cortex, TC: temporal cortex, PC: parietal cortex,
Amy: amygdala, Ent: Entorhinal cortex, Hip: hippocampus, Sub: subiculum. Figure S4: Correlation
between body mass index and diffuse plaque (DP), neuritic plaque (NP), or neurofibrillary tangle
(NFT) counts in different brain regions (n = 43, excluding one double amputee and three without
pathology assessment data). Partial correlation adjusting for sex, race, education, ApoE genotype,
diabetes and hypertension. * p < 0.10 and ** p < 0.05. FC: frontal cortex, TC: temporal cortex, PC:
parietal cortex, Amy: amygdala, Ent: Entorhinal cortex, Hip: hippocampus, Sub: subiculum. Table
S1: Correlations (Spearman’s ρ and p values) of absolute concentrations (n = 47). Table S2: Tocopherol
concentrations (median [interquartile range]) in subjects with or without dementia. Wilcoxon rank
sum test was used to compare between the two cognition groups. Table S3: Correlations (Spearman’s
ρ and p values) of tocopherol concentrations with BMI (n = 46, BMI not available for one double
amputee). Relative concentrations of αT stereoisomers were calculated as % of total αT.
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