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Abstract: Transthyretin-mediated amyloidosis (ATTR) is a systemic disease with protein precipitation
in many tissues, mainly the peripheral nerve and heart. Both genetic (ATTRv, “v” for variant) and
wild-type (ATTRwt) forms are known. Beyond the steric encumbrance, precipitated transthyretin
seems to have a toxic effect. In this study carried out in men, we recruited 15 ATTRv patients, 7 ATTRv
asymptomatic carriers, 14 ATTRwt patients and 10 young and 13 old healthy controls to evaluate the
oxidative stress using FORD (Free Oxygen Radicals Defense) and FORT (Free Oxygen Radicals Test)
analyses. ATTRv patients showed reduced FORD compared to ATTRwt and ATTRv asymptomatic
carriers. FORD independently predicted the disease stage, with the early stages characterized by the
highest consumption. These findings suggest a role for oxidative stress in the early stages of ATTRv.
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1. Introduction

Transthyretin-mediated amyloidosis (ATTR) is a disease characterized by the extracel-
lular deposition of amyloid fibrils in different tissues, generating a functional impairment.
The fibrillogenic process can involve either a wild-type transthyretin in the elderly (AT-
TRwt) or a genetically mutated protein (ATTRv, “v” for variant). The highest protein
synthesis occurs in the liver, with other organs involved in the protein synthesis, such as
the brain choroid plexus and retinal pigment epithelium [1,2].

Although ATTRwt is probably more frequent to be still considered a rare disease,
at least in the elderly population [3], ATTRv is still a rare disease [4], even if a higher
prevalence is described in some areas [5]. The fibrillogenic process includes a dissociation
into transthyretin monomers and deposition in the extracellular spaces of systemic organs.
The dissociation results in the misfolding of TTR monomers and subsequent aggregation [6].

ATTR, both as a “variant” and “wild-type”, can be considered a gender-related disor-
der, with males being more frequently affected than females [3,7,8], probably due to the
protective role of female hormones [9].

Antioxidants 2024, 13, 998. https://doi.org/10.3390/antiox13080998 https://www.mdpi.com/journal/antioxidants

https://doi.org/10.3390/antiox13080998
https://doi.org/10.3390/antiox13080998
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0001-6806-9715
https://orcid.org/0000-0001-9424-7730
https://orcid.org/0000-0002-4323-3598
https://orcid.org/0000-0003-1864-2274
https://orcid.org/0000-0002-9288-5736
https://orcid.org/0000-0002-4505-1632
https://orcid.org/0000-0003-1830-2886
https://orcid.org/0000-0001-6129-4071
https://orcid.org/0009-0009-7672-6696
https://orcid.org/0000-0001-5365-3417
https://orcid.org/0000-0001-8897-3736
https://doi.org/10.3390/antiox13080998
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox13080998?type=check_update&version=1


Antioxidants 2024, 13, 998 2 of 9

Many strategies have been proposed for ATTRv treatment [10,11]. Hepatic transplan-
tation was the first proposed treatment intended to substitute the genetic profile of the
main TTR synthesizer organ. Subsequently, TTR stabilizer drugs were approved both for
polyneuropathy and cardiomyopathy [12,13], and new drugs with this action mechanism
are going to be approved soon [14]. In the new millennium, TTR synthesis inhibitors have
dramatically changed the disease prognosis, stabilizing the disease progression using the
small-interference and antisense oligonucleotide mechanisms [15,16].

The pathogenic mechanism of amyloidosis is not just related to the mere steric en-
cumbrance. Many papers have demonstrated a direct toxic effect of amyloid deposits [17],
with the activation of pro-inflammatory genes [18], modulation of mitochondrial func-
tion, and activation of oxidative stress in the cardiomyocytes [19]. Oxidant mechanisms
can also be involved in amyloid aggregation. Though the exact mechanism for TTR de-
position is still unknown, for specific mutations, i.e., the most frequent Val30Met, the
punctual substitution of an aminoacidic residual was demonstrated to favor the oxidation
of 30-Methionine, thus disrupting the β-structure [20]. Myeloperoxidase was demonstrated
in amyloid deposits [21]. An in vitro study showed that human Schwannoma cells treated
with aggregated TTR increased their release of H2O2, decreased catalase activity and re-
duced glutathione levels, thus reducing and consuming the overall cellular antioxidant
capacity [22]. In the same way, iPSC-derived neuronal and cardiac cells display oxidative
stress and an increased level of cell death when exposed to mutant TTR [23].

Indeed, rising indications suggest a crucial connection between ATTR and oxidative
stress. The misfolded TTR may elicit oxidative stress by producing reactive oxygen species
(ROS) [17,24], which potentiate protein misfolding, impair cellular constituents [25], and
stimulate further amyloid accumulation [24,26]. Furthermore, the oxidative stress activated
by ATTR might damage antioxidant defenses, generating a vicious cycle that potentiates
ATTR development and tissue injury. Further knowledge of this relationship could be
crucial for developing early therapeutic approaches affecting oxidative stress and amyloid
deposition in ATTR. Consequently, using biomolecular methods to quantify the levels of
free oxygen radicals and the antioxidant capacity in biological samples may offer a direct
degree of oxidative stress.

Given the demographic characteristics in the ATTR population [8], we recruited
male patients with ATTRv, asymptomatic carriers of TTR mutation (ATTRv asymptomatic
carriers), patients with ATTRwt, and healthy controls to check differences in the serum
oxidative stress biomarkers by analyzing, for the first time to the best of our knowledge,
(i) the serum Free Oxygen Radicals Defense (FORD) and (ii) Free Oxygen Radicals Test
(FORT) to disclose a comprehensive assessment of oxidative balance by measuring both
the presence of free OH− and the physiological capability in individuals with ATTR to
counteract them.

We predict that oxidative stress could be enhanced in ATTR, with a possible consump-
tion of antioxidant systems.

2. Materials and Methods
2.1. Patients’ Recruitment

In total 15 patients with ATTRv (all with a neurologic and cardiologic mixed phenotype;
5 with V50M mutation, 4 I88L, 4 V142I, 2 F84L), 7 ATTRv asymptomatic carriers (4 with
the V50M mutation, 2 V142I, 1 P84L), 14 patients with ATTRwt, 10 young and 13 aged
healthy controls were recruited in this observational study. It should be noted that the
healthy individuals (controls) are regular blood donors who see donation as a mission and
their blood analyses are always checked for eventual alterations that could alter oxidative
stress. ATTRwt cardiomyopathy was defined by a Perugini grade 2 or more at the bone
scintigraphy, once excluding monoclonal gammopathy [27].

To exclude gender variability, only male subjects were included in all the groups.
Patients with ATTRv were classified according to the familiar amyloid polyneuropathy scale
in three stages from FAP1 to 3, with asymptomatic carriers considered FAP 0; regarding the
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cardiologic impairment, an NYHA class was assigned to patients with ATTRv or ATTRwt,
with ATTRv asymptomatic carriers and controls considered as NYHA class 1. Every patient
with ATTRv underwent a Neuropathy Impairment Score (NIS) evaluation to characterize
the neuropathic impairment and a Norfolk questionnaire for the quality of life. The FAP
stage and NIS are independent scores, both related to neurological status. In particular,
FAP is a functional stage which classifies patients according to their gait impairment. The
NIS is a clinical score resulting from the summation of parameters associated with strength,
sensibility and reflexes.

The interventricular septum (IVS) thickness was assessed in patients with ATTRv or
wt and ATTRv asymptomatic carriers. No patients took anti-inflammatory/antioxidant
drugs in the two weeks before the blood sample collection. All of the patients with FAP1
ATTRv or ATTRwt were naïve for RNA-interference therapy [28] or TTR stabilizers [13,29]
at the blood collection; patients with ATTRv with FAP stage 3 (N = 3) had experienced
disease progression on RNA-interference therapy and discontinued its use at least a year
prior to sample collection (RNA-interference therapy is indicated only for FAP 1 and FAP
2 patients).

2.2. FORD (Free Oxygen Radicals Defense) and FORT (Free Oxygen Radicals Test) Analyses

We measured the serum oxidative stress status using kits (Callegari, Parma, Italy) to
analyze ROS (FORT) and the endogenous defense against free O2 radicals (FORD) [30,31]. It
should be noted that according to the manufacturer, these tests do not interact also because
different serum amounts from the original serum sample were used for the determination.
Briefly, the FORT is a colorimetric assay based on the ability of transition metals such as iron
to catalyze, in the presence of hydroperoxides (ROOH), the formation of free radicals by
the Fenton reaction (reaction 1–2), which are then trapped by an amine derivative, CrNH2.
The amine reacts with free radicals, forming a colored, long-lived radical cation detectable
at 505 nm (reaction 3). The intensity of the color correlates directly to the number of radical
compounds and the hydroperoxides concentration and consequently to the oxidative status
of the sample according to the Lambert–Beer law [30].

1. R-OOH + Fe2+ → RO• + OH− + Fe3+

2. R-OOH + Fe3+ → ROO• + H+ + Fe2+

3. RO• + ROO• + 2CrNH2 → ROO− + RO− + [CrNH2+•]
purple

According to the manufacturer’s instructions, FORT values below 300 units (U) in-
dicate an optimal condition of oxidative stress, values between 300 and 330 U indicate
latent oxidative stress and values superior to 330 U indicate oxidative stress in progress
(310 FORT units correspond to 2.36 mmol/L H2O2–0.26 mg/L H2O2 eq).

As for FORD, this test uses preformed stable and colored radicals and determines the
absorbance decrease proportional to the blood antioxidant concentration of the sample
according to Lambert–Beer’s law [31]. In the presence of an acidic buffer (pH = 5.2) and
a suitable oxidant (FeCl3), the chromogen (which contains 4-Amino-N, N-diethylaniline
sulfate) forms a stable and colored radical cation photometrically detectable at 505 nm. An-
tioxidant compounds in the sample reduce the chromogen’s radical cation, quenching the
color and producing a decoloration of the solution proportional to their concentration. The
absorbance values obtained for the samples are compared with a standard curve obtained
using Trolox (6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), a permeable cell
derivative of vitamin E commonly employed as an antioxidant.

1. Chromogen (no color) + Fe3+ + H+ → Chromogen•+
(purple)

2. Chromogen•+
(purple) + AOH → Chromogen+

(no colour) + AO

2.3. Statistical Analysis

Demographic statistics were expressed as mean ± standard error mean (SEM). Scalar
variants were compared with the T-Student or Mann–Whitney U-Test/Kruskal–Wallis
according to the distribution, as appropriate; Bonferroni correction for multiple compar-
isons was applied when multiple hypotheses were tested to reduce type I errors. General
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linear model (GLM) univariate analysis was used to test regression analysis and analysis of
variance for one dependent variable by one or more factors and/or variables. IBM SPSS
version 27.0 was used for the data analysis; statistical significance was set as p < 0.05.

3. Results

The demographic data of the five groups are shown in Table 1. Age at the sample
collection was not different between patients with ATTRv vs old controls, ATTRwt vs old
controls and ATTRv asymptomatic carriers vs young controls. Patients with ATTRv were
younger than those with ATTRwt (p < 0.01), as expected.

Table 1. Demographic data and oxidative stress-related parameters. M: median. Q1–Q3: first and
third quartile. NIS: Neuropathy Impairment Score. QoL: quality of life. BMI: body mass index.

Patients with
ATTRv

ATTRv
Asymptomatic

Carriers
ATTRwt Young Controls Old

Controls

Age, m (Q1–Q3) 69 (62−76) 45 (38−59) 84 (80.7−86) 55.5 (41.5−59.7) 75 (70−81.5)
NIS, m (Q1–Q3) 26 (13.2−33.2)
Norfolk QoL, m (Q1–Q3) 48 (23.7−74.7)
BMI, m (Q1–Q3) 24.2 (22.2−24.6) 25 (23.9−26.6) 24.2 (23.2−25)
FORT Units, m (Q1–Q3) 1.47 (1.2−2) 1.9 (1.2−2.7) 1.8 (1.2−2.3) 1.7 (1.2−2.2) 1.2 (1.2−2)
FORD (mmo/L), m (Q1–Q3) 0.7 (0.47−0.88) 1.07 (0.95−1.25) 1.01 (0.84−1.16) 0.96 (0.72−1.25) 0.9 (0.63−1.11)
FORD/FORT, m (Q1–Q3) 0.38 (0.29−0.66) 0.56 (0.37−0.95) 0.53 (0.39−0.8) 0.52 (0.43−0.76) 0.56 (0.37−0.68)

Patients with ATTRv showed reduced FORD compared to those with ATTRwt (p = 0.027)
and ATTRv asymptomatic carriers (p = 0.023), with a trend to significance compared to
old controls (p = 0.075). No differences were found for the other oxidative stress markers
(FORT units and FORD/FORT) between patients with ATTRv and those with ATTRwt,
ATTRv asymptomatic carriers, and old controls, neither between ATTRv asymptomatic
carriers and young controls nor between ATTRwt and old controls (Figure 1).
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Figure 1. FORD levels in the different groups. * p < 0.05. Boxes indicate upper and lower quartiles,
and whiskers indicate the minimum to the maximum value.

All of the patients with ATTRv were characterized according to the neurological
impairment in the FAP scale. The ATTRv asymptomatic carriers were considered as FAP 0
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(N = 7). In the ATTRv patients group, 12 were classified as FAP 1 and 3 as FAP 3. No
patient had an FAP 2 stage. FORD was reduced in FAP 1 patients compared to ATTRv
asymptomatic carriers (p = 0.019). A trend to reduction was found for the FORD/FORT
ratio of FAP 1 patients compared to ATTRv asymptomatic carriers (p = 0.079—Figure 2).
No relationships were found between oxidative stress markers and Norfolk, IVS thickness,
and NIS in the patients with ATTRv. No significant differences were found for FORT
and FORT levels in different FAP stages when the ATTRv group was divided for single
TTR mutations.
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One-way ANCOVA was conducted to determine the effect of FORD levels on the FAP
stadium, controlling for the NIS scale, FORT, and BMI. The overall model was significant
(p = 0.003, eta2 = 0.943); FORD was associated with the FAP stage as a significant variable
(beta coefficient: −0.541, 95%CI −1.069 to −0.14; adjusted p = 0.045) regardless of the NIS,
BMI and FORT. Even the NIS was proved to be an independent variable for the FAP stage
(beta coefficient: 0.023, 95%CI 0.018 to 0.028; adjusted p < 0.01), as expected.

4. Discussion

ATTRv is a rare systemic disease, with many organs implicated in the disease pro-
gression. The first and most involved organs are the peripheral nervous system, both with
the small- and high-diameter fibers [32,33], and the heart. Nevertheless, other organs may
be involved, such as the kidneys, eyes, brain and many others [34]. The newly available
drugs effectively stabilize the progression of the heart and peripheral nervous system; some
concerns remain about the effectiveness of the drugs on other organs [35,36].

In the era of effective drugs, the pre-symptomatic stage of the disease and the physio-
pathological mechanisms have seen a surge in terms of interest. Some serum markers,
notably light chain neurofilaments (NfLs), have been proposed and are currently used to
follow up ATTRv asymptomatic carriers [37–39]. Despite their utility in the clinical setting,
NfLs represent the final stage of peripheral nervous system damage and are not directly
related to the physio-pathological mechanisms of disease onset.

Beyond the steric encumbrance after extra-cellular deposition, the amyloid also in-
duces oxidative stress through gene modulation [19–21]; aggregated TTR itself seems to
increase the release of H2O2, thus consuming the antioxidant cell capacity [22]. This could
be a very early pathogenic moment, even in vivo. The results of our study demonstrate a
FORD reduction in patients with ATTRv compared to ATTRv asymptomatic carriers and
those with ATTRwt, with a trend to significance compared to old healthy controls. Inter-
estingly, FORD has reduced in the early FAP 1 stage of patients with ATTRv compared to
ATTRv asymptomatic carriers, with a trend to significance even for a FORD/FORT ratio re-
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duction in the same comparison. No significant differences were found for FORD and FORT
levels in different FAP stages when the ATTRv group was divided for single TTR mutations,
probably because the small sample of the single groups impaired statistical power.

FORD reduction was demonstrated to determine the FAP stage, even independently
from other strong variables such as the NIS and BMI, thus confirming its strong role in the
early stages of the disease.

Oxidative modifications of lipids and proteins have been reported in colon tissues
and protein nitration in the nerves of patients with ATTRv [40,41]. Our data confirm
anti-oxidant consumption in patients with ATTR, previously demonstrated in in vitro
experiments [22,23]. In these experiments, catalase activity and glutathione were reduced
in cells cultured with aggregated TTR, with an increase in H2O2 production. The au-
thors [41] conclude that pro-oxidative factors can lead to the depletion of catalase activity
and glutathione in cells, and such depletion can further result in increased oxidative dam-
age in nearby cells. Other authors demonstrated the cytotoxicity induced by TTR fibrils
binding to the receptor for advanced glycation end products (RAGE) in the peripheral sural
nerve, with the local activation of pro-inflammatory cytokines such as TNFα and IL-1β
and the induction of the transcripts for iNOS. The same TTR fibrils–RAGE binding could
induce Caspase-3-dependent apoptosis. This model could effectively explain some of the
systemic effects of ATTR and fits well with our data.

There was no relationship between FORD and parameters associated with disease
progression (NIS and IVS thickness), confirming a role for antioxidant system consumption
only in the early pathogenic stages. Moreover, even if in a very limited sample, FAP 3
patients’ FORD levels were not significantly reduced compared to ATTRv asymptomatic
carriers. Finally, patients with ATTRv also showed reduced FORD compared to those with
ATTRwt. These last patients typically have a longer disease history than patients with
ATTRv, with a slower disease progression.

This exploratory study has some limits: the small sample size and the FAP stage
distribution can impair definitive conclusions. Nevertheless, ATTRv is a rare disease, and
the multiple comparative groups and gender homogeneity can represent a strength. Indeed,
ATTR, both in the wild-type and variant forms, can be considered a gender-associated
disease, with males accounting for almost 80% of patients [7,8,42]. Additional studies are
needed to validate these data further and determine the possible role of different TTR
mutations in oxidative stress and antioxidant consumption.

Another potential limit of the present investigation is the fact that many factors may
bias oxidative stress in both patients and healthy controls such as the consumption of
drugs, alcohol, anti-inflammatory compounds, and/or a diet rich/poor in vegetables
containing polyphenols with antioxidant abilities. However, it should be noted that
(i) anti-inflammatory/antioxidant drugs are not usually indicated for ATTR treatment
and were not taken by our patients and (ii) healthy individuals (controls) are regular blood
donors who see donation as a mission and their blood analyses are always checked for
eventual alterations. Furthermore, patients are aware of the problems induced by the
disorder, including the associated outcomes due to an unbalanced/unhealthy diet.

As for inflammation and oxidative stress in ATTR, Diflunisal, a non-steroidal anti-
inflammatory drug (NSAID), has shown effects in the treatment of ATTR amyloidosis [43–45].
Diflunisal exerts its useful effects primarily through its capability to stabilize the TTR
tetramer, thus inhibiting the separation of TTR into monomers. Inflammation is a common
reaction to amyloid deposition and can potentiate tissue damage by increasing oxida-
tive stress. By decreasing inflammation, Diflunisal may help to counteract some of the
secondary injuries caused by the inflammatory response to amyloid deposits. This anti-
inflammatory/oxidative stress action could play a role in the beneficial effects observed in
patients with ATTR amyloidosis.
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5. Conclusions

In conclusion, our findings disclosed a noticeable reduction in FORD levels in pa-
tients with ATTRv compared to patients with ATTRwt and ATTRv asymptomatic carriers,
representing a compromised antioxidant defense mechanism in the variant form of the
disorder. Interestingly, FORD levels were discovered to be an independent determinant of
the neurological functional stage in patients with ATTRv, with the early phases showing
the main consumption of antioxidant defenses. This indicates that oxidative stress plays
a serious role in the initial stage of ATTRv pathogenesis, potentially contributing to the
development of the disorder.

The detected oxidative stress in patients with ATTRv underscores the need for fur-
ther examination into therapeutic strategies aimed at bolstering antioxidant immunities.
Directed antioxidant therapies could hypothetically delay the disease onset by mitigating
the oxidative injury that seems to be prevalent in the early phases of ATTRv. Moreover,
the noteworthy difference in oxidative stress biomarkers between patients with ATTRv
and those with ATTRwt suggests different pathogenic mechanisms underlying these disor-
ders. The disease onset in ATTRwt is more subtle and oxidative injury is probably less of
a determinant.

Moreover, the presence of ATTRv asymptomatic carriers in our study provides im-
portant information about the pre-symptomatic stage of ATTRv. Further, oxidative stress
may begin to gather even before clinical symptoms, underscoring the potential for early
intervention strategies in people identified as carriers through a genetic assessment.

Overall, our study supports the hypothesis that oxidative stress is a crucial player in
the pathophysiology of ATTRv, particularly in its early phases. The significant reduction in
FORD levels among patients with ATTRv suggests a sensitive susceptibility to oxidative
damage, which could aggravate the toxic actions of precipitated transthyretin. A future
investigation should aim to clarify the oxidative stress molecular mechanisms and study
hypothetical antioxidant treatments that could delay, counteract, or prevent the evolution of
ATTRv. By understanding the function of oxidative stress in ATTR, we may disclose more
effective and directed therapeutic interventions, finally improving outcomes for individuals
suffering from this debilitating disorder.
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