Phytochemical Profile and Antidiabetic, Antioxidant, and Anti-Inflammatory Activities of Gypsophila paniculata Ethanol Extract in Rat Streptozotocin-Induced Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Extract Preparation
2.3. Total Phenolic Content Determination
2.4. Total Flavonoid Content Determination
2.5. HPLC-DAD-ESI MS Analysis
2.6. Evaluation of In Vitro Antioxidant Activity
2.7. Pharmacological Studies
2.7.1. Experimental Design
2.7.2. Evaluation of Serum Oxidative Stress Markers
2.7.3. Evaluation of Serum Inflammatory Markers
2.7.4. Evaluation of Glucose, Lipid Profile, Triglyceride–Glucose Index, and Anthropometric Markers
2.7.5. Evaluation of Liver Injury Markers
2.8. Statistical Analysis
3. Results
3.1. Phytochemical Analysis
3.2. In Vitro Oxidative Stress Markers
3.3. In Vivo Oxidative Stress Markers
3.4. In Vivo Inflammatory Markers
3.5. In Vivo Hypoglycemic, Lipid-Lowering, and Hepatoprotective Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banday, M.Z.; Sameer, A.S.; Nissar, S. Pathophysiology of diabetes: An overview. Avicenna J. Med. 2020, 10, 174–188. [Google Scholar] [CrossRef] [PubMed]
- Szabo, C. Role of nitrosative stress in the pathogenesis of diabetic vascular dysfunction. Br. J. Pharmacol. 2009, 156, 713–727. [Google Scholar] [CrossRef]
- Liu, Z.; Yao, X.; Jiang, W.; Li, W.; Zhu, S.; Liao, C.; Zou, L.; Ding, R.; Chen, J. Advanced oxidation protein products induce microglia-mediated neuroinflammation via MAPKs-NF-kappaB signaling pathway and pyroptosis after secondary spinal cord injury. J. Neuroinflamm. 2020, 17, 90. [Google Scholar] [CrossRef] [PubMed]
- Kayama, Y.; Raaz, U.; Jagger, A.; Adam, M.; Schellinger, I.N.; Sakamoto, M.; Suzuki, H.; Toyama, K.; Spin, J.M.; Tsao, P.S. Diabetic Cardiovascular Disease Induced by Oxidative Stress. Int. J. Mol. Sci. 2015, 16, 25234–25263. [Google Scholar] [CrossRef]
- Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K.; et al. Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Front. Endocrinol. 2017, 8, 6. [Google Scholar] [CrossRef]
- Michalek, D.A.; Onengut-Gumuscu, S.; Repaske, D.R.; Rich, S.S. Precision Medicine in Type 1 Diabetes. J. Indian. Inst. Sci. 2023, 103, 335–351. [Google Scholar] [CrossRef] [PubMed]
- Marton, L.T.; Pescinini, E.S.L.M.; Camargo, M.E.C.; Barbalho, S.M.; Haber, J.; Sinatora, R.V.; Detregiachi, C.R.P.; Girio, R.J.S.; Buchaim, D.V.; Cincotto Dos Santos Bueno, P. The Effects of Curcumin on Diabetes Mellitus: A Systematic Review. Front. Endocrinol. 2021, 12, 669448. [Google Scholar] [CrossRef]
- Antony, P.; Vijayan, R. Bioactive Peptides as Potential Nutraceuticals for Diabetes Therapy: A Comprehensive Review. Int. J. Mol. Sci. 2021, 22, 9059. [Google Scholar] [CrossRef]
- Jin, C.; Sun, D.; Wei, C.; Guo, Z.; Yang, C.; Li, F. Gas Chromatography-Mass Spectrometry Analysis of Natural Products in Gypsophila paniculata. HortScience 2021, 56, 1195–1198. [Google Scholar] [CrossRef]
- Flavell, D.J.; Holmes, S.; Gibbs, E.; Fuchs, H.; Bachran, C.; Melzig, M.F.; Bachran, D.; Flavell, S.U. Abstract 5624: Saponins from Gypsophila paniculata L significantly potentiate the immunospecific cytotoxic activity of anti-CD19 and CD38 saporin-based immunotoxins for a human lymphoma cell line. Cancer Res. 2010, 70 (Suppl. S8), 5624. [Google Scholar] [CrossRef]
- Simeonova, R.; Vitcheva, V.; Krasteva, I.; Zdraveva, P.; Konstantinov, S.; Ionkova, I. Antidiabetic and antioxidant effects of saponarin from Gypsophila trichotoma on streptozotocin-induced diabetic normotensive and hypertensive rats. Phytomedicine 2016, 23, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Zheleva-Dimitrova, D.; Zengin, G.; Balabanova, V.; Voynikov, Y.; Lozanov, V.; Lazarova, I.; Gevrenova, R. Chemical characterization with in vitro biological activities of Gypsophila species. J. Pharm. Biomed. Anal. 2018, 155, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Lyu, H.; Chen, J.; Li, W.L. Natural Triterpenoids for the Treatment of Diabetes Mellitus: A Review. Nat. Product. Commun. 2016, 11, 1579–1586. [Google Scholar] [CrossRef]
- Mocan, A.; Vlase, L.; Vodnar, D.C.; Bischin, C.; Hanganu, D.; Gheldiu, A.M.; Oprean, R.; Silaghi-Dumitrescu, R.; Crisan, G. Polyphenolic content, antioxidant and antimicrobial activities of Lycium barbarum L. and Lycium chinense Mill. leaves. Molecules 2014, 19, 10056–10073. [Google Scholar] [CrossRef]
- Savran, A.; Zengin, G.; Aktumsek, A.; Mocan, A.; Glamoclija, J.; Ciric, A.; Sokovic, M. Phenolic compounds and biological effects of edible Rumex scutatus and Pseudosempervivum sempervivum: Potential sources of natural agents with health benefits. Food Funct. 2016, 7, 3252–3262. [Google Scholar] [CrossRef]
- Babota, M.; Mocan, A.; Vlase, L.; Crisan, O.; Ielciu, I.; Gheldiu, A.M.; Vodnar, D.C.; Crisan, G.; Paltinean, R. Phytochemical Analysis, Antioxidant and Antimicrobial Activities of Helichrysum arenarium (L.) Moench. and Antennaria dioica (L.) Gaertn. Flowers. Molecules 2018, 23, 409. [Google Scholar] [CrossRef] [PubMed]
- Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 2005, 38, 1103–1111. [Google Scholar] [CrossRef]
- Erel, O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin. Biochem. 2004, 37, 112–119. [Google Scholar] [CrossRef]
- Harma, M.; Harma, M.; Erel, O. Increased oxidative stress in patients with hydatidiform mole. Swiss Med. Wkly. 2003, 133, 563–566. [Google Scholar] [CrossRef]
- Essel, L.B.; Obiri, D.D.; Osafo, N.; Antwi, A.O.; Duduyemi, B.M. The Ethanolic Stem-Bark Extract of Antrocaryon micraster Inhibits Carrageenan-Induced Pleurisy and Pedal Oedema in Murine Models of Inflammation. Int. Sch. Res. Notices 2017, 2017, 6859230. [Google Scholar] [CrossRef]
- Miranda, K.M.; Espey, M.G.; Wink, D.A. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 2001, 5, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Witko-Sarsat, V.; Friedlander, M.; Capeillere-Blandin, C.; Nguyen-Khoa, T.; Nguyen, A.T.; Zingraff, J.; Jungers, P.; Descamps-Latscha, B. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996, 49, 1304–1313. [Google Scholar] [CrossRef] [PubMed]
- Mitev, D.; Gradeva, H.; Stoyanova, Z. Evaluation of thiol compounds and lipid peroxidative products in plasma ofpatients with COPD. Trakia J. Sci. 2010, 8, 306–314. [Google Scholar]
- Simental-Mendia, L.E.; Rodriguez-Moran, M.; Guerrero-Romero, F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab. Syndr. Relat. Disord. 2008, 6, 299–304. [Google Scholar] [CrossRef]
- Jugran, A.K.; Rawat, S.; Devkota, H.P.; Bhatt, I.D.; Rawal, R.S. Diabetes and plant-derived natural products: From ethnopharmacological approaches to their potential for modern drug discovery and development. Phytother. Res. 2021, 35, 223–245. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Zhao, C.; Guven, E.C.; Paoli, P.; Simal-Gandara, J.; Ramkumar, K.M.; Wang, S.; Buleu, F.; Pah, A.; Turi, V.; et al. Dietary polyphenols as antidiabetic agents: Advances and opportunities. Food Front. 2020, 1, 18–44. [Google Scholar] [CrossRef]
- Patel, D.K.; Kumar, R.; Laloo, D.; Hemalatha, S. Diabetes mellitus: An overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity. Asian Pac. J. Trop. Biomed. 2012, 2, 411–420. [Google Scholar] [CrossRef]
- MacLean, C.D.; Littenberg, B.; Kennedy, A.G. Limitations of diabetes pharmacotherapy: Results from the Vermont Diabetes Information System study. BMC Fam. Pract. 2006, 7, 50. [Google Scholar] [CrossRef]
- Chandra, S.; Rawat, D.S. Medicinal plants of the family Caryophyllaceae: A review of ethno-medicinal uses and pharmacological properties. Integr. Med. Res. 2015, 4, 123–131. [Google Scholar] [CrossRef]
- Zengin, G.; Mahomoodally, M.F.; Aktumsek, A.; Ceylan, R.; Uysal, S.; Mocan, A.; Yilmaz, M.A.; Picot-Allain, C.M.N.; Ćirić, A.; Glamočlija, J.; et al. Functional constituents of six wild edible Silene species: A focus on their phytochemical profiles and bioactive properties. Food Biosci. 2018, 23, 75–82. [Google Scholar] [CrossRef]
- Hebi, M.; Eddouks, M. Hypolipidemic and Antioxidant Activities of Corrigiola telephiifolia in Diabetic Rats. Cardiovasc. Hematol. Agents Med. Chem. 2019, 17, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Yazici, S.Ö.; Özmen, İ. Effect of the Crude Saponin Extract from Gypsophila pilulifera Boiss. & Heldr. on Protease from Bacillus subtilis ATCC 6633 and Antioxidant Properties of the Extract. Iran. J. Sci. Technol. Trans. A Sci. 2017, 42, 1707–1713. [Google Scholar] [CrossRef]
- Arslan, I.; Celik, A.; Melzig, M.F. Nebulosides A-B, novel triterpene saponins from under-ground parts of Gypsophila arrostii Guss. var. nebulosa. Bioorg Med. Chem. 2013, 21, 1279–1283. [Google Scholar] [CrossRef] [PubMed]
- Vitcheva, V.; Simeonova, R.; Krasteva, I.; Yotova, M.; Nikolov, S.; Mitcheva, M. Hepatoprotective effects of saponarin, isolated from Gypsophila trichotoma Wend. on cocaine-induced oxidative stress in rats. Redox Rep. 2011, 16, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Saastamoinen, M.; Pihlava, J.-M.; Eurola, M.; Klemola, A.; Jauhiainen, L.; Hietaniemi, V. Yield, SDG lignan, cadmium, lead, oil and protein contents of linseed (Linum usitatissimum L.) cultivated in trials and at different farm conditions in the south-western part of Finland. Agric. Food Sci. 2013, 22, 296–306. [Google Scholar] [CrossRef]
- Poornima, S.; Munikrishnappa, P.M.; Seetharamu, G.K.; Kumar, R.; Taj, A.; Kumar, A.; Kumar, M. Effect of spacing and growing conditions on growth and quality of Gypsophila (Gypsophila paniculata L.) cut flower. Pharma Innov. J. 2021, 10, 1255–1258. Available online: https://www.thepharmajournal.com/special-issue?year=2021&vol=10&issue=8S (accessed on 11 July 2024). [CrossRef]
- Elateeq, A.A.; Gabr, A.M.; Abdelkawy, A.M.; Toaima, N.M.; Bosila, H.A.; Zarad, M.M.; Ebrahim, H.S.; Jiao, J.; Pan, H.; Ullah, S.; et al. Establishment of Gypsophila paniculata root culture for biomass, saponin, and flavonoid production. Not. Bot. Horti Agrobot. Cluj-Napoca 2022, 50, 12886. [Google Scholar] [CrossRef]
- Kahksha; Alam, O.; Al-Keridis, L.A.; Khan, J.; Naaz, S.; Alam, A.; Ashraf, S.A.; Alshammari, N.; Adnan, M.; Beg, M.A. Evaluation of Antidiabetic Effect of Luteolin in STZ Induced Diabetic Rats: Molecular Docking, Molecular Dynamics, In Vitro and In Vivo Studies. J. Funct. Biomater. 2023, 14, 126. [Google Scholar] [CrossRef]
- Barky, A.R.E.; Ezz, A.A.; Mohammed, T.M. The Potential Role of apigenin in Diabetes Mellitus. Int. J. Clin. Case Rep. Rev. 2020, 3, 32. [Google Scholar] [CrossRef]
- Eleazu, C.O.; Eleazu, K.C.; Chukwuma, S.; Essien, U.N. Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. J. Diabetes Metab. Disord. 2013, 12, 60. [Google Scholar] [CrossRef]
- Herr, R.R.; Jahnke, J.K.; Argoudelis, A.D. The structure of streptozotocin. J. Am. Chem. Soc. 1967, 89, 4808–4809. [Google Scholar] [CrossRef]
- Al-Awar, A.; Kupai, K.; Veszelka, M.; Szucs, G.; Attieh, Z.; Murlasits, Z.; Torok, S.; Posa, A.; Varga, C. Experimental Diabetes Mellitus in Different Animal Models. J. Diabetes Res. 2016, 2016, 9051426. [Google Scholar] [CrossRef] [PubMed]
- Kume, E.; Fujimura, H.; Matsuki, N.; Ito, M.; Aruga, C.; Toriumi, W.; Kitamura, K.; Doi, K. Hepatic changes in the acute phase of streptozotocin (SZ)-induced diabetes in mice. Exp. Toxicol. Pathol. 2004, 55, 467–480. [Google Scholar] [CrossRef] [PubMed]
- Goyal, S.N.; Reddy, N.M.; Patil, K.R.; Nakhate, K.T.; Ojha, S.; Patil, C.R.; Agrawal, Y.O. Challenges and issues with streptozotocin-induced diabetes—A clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chem. Biol. Interact. 2016, 244, 49–63. [Google Scholar] [CrossRef]
- Wu, R.; Feng, J.; Yang, Y.; Dai, C.; Lu, A.; Li, J.; Liao, Y.; Xiang, M.; Huang, Q.; Wang, D.; et al. Significance of Serum Total Oxidant/Antioxidant Status in Patients with Colorectal Cancer. PLoS ONE 2017, 12, e0170003. [Google Scholar] [CrossRef] [PubMed]
- Aslan, M.; Sabuncu, T.; Kocyigit, A.; Celik, H.; Selek, S. Relationship between total oxidant status and severity of diabetic nephropathy in type 2 diabetic patients. Nutr. Metab. Cardiovasc. Dis. 2007, 17, 734–740. [Google Scholar] [CrossRef] [PubMed]
- Ayala, A.; Munoz, M.F.; Arguelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef]
- Mas-Bargues, C.; Escriva, C.; Dromant, M.; Borras, C.; Vina, J. Lipid peroxidation as measured by chromatographic determination of malondialdehyde. Human plasma reference values in health and disease. Arch. Biochem. Biophys. 2021, 709, 108941. [Google Scholar] [CrossRef]
- Knapp, M.; Tu, X.; Wu, R. Vascular endothelial dysfunction, a major mediator in diabetic cardiomyopathy. Acta Pharmacol. Sin. 2019, 40, 1–8. [Google Scholar] [CrossRef]
- Bahadoran, Z.; Mirmiran, P.; Kashfi, K.; Ghasemi, A. Vascular nitric oxide resistance in type 2 diabetes. Cell Death Dis. 2023, 14, 410. [Google Scholar] [CrossRef]
- Nahdi, A.; John, A.; Raza, H. Elucidation of Molecular Mechanisms of Streptozotocin-Induced Oxidative Stress, Apoptosis, and Mitochondrial Dysfunction in Rin-5F Pancreatic beta-Cells. Oxid. Med. Cell Longev. 2017, 2017, 7054272. [Google Scholar] [CrossRef]
- Lopez-Soldado, I.; Torres, A.G.; Ventura, R.; Martinez-Ruiz, I.; Diaz-Ramos, A.; Planet, E.; Cooper, D.; Pazderska, A.; Wanic, K.; O’Hanlon, D.; et al. Decreased expression of mitochondrial aminoacyl-tRNA synthetases causes downregulation of OXPHOS subunits in type 2 diabetic muscle. Redox Biol. 2023, 61, 102630. [Google Scholar] [CrossRef]
- Bandookwala, M.; Sengupta, P. 3-Nitrotyrosine: A versatile oxidative stress biomarker for major neurodegenerative diseases. Int. J. Neurosci. 2020, 130, 1047–1062. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, H.M.; Ali, A.F.; Al-Timimi, D.J. Relationship Between Zinc Status and DNA Oxidative Damage in Patients with Type 2 Diabetes Mellitus. Biol. Trace Elem. Res. 2021, 199, 1276–1279. [Google Scholar] [CrossRef] [PubMed]
- Jelic, M.D.; Mandic, A.D.; Maricic, S.M.; Srdjenovic, B.U. Oxidative stress and its role in cancer. J. Cancer Res. Ther. 2021, 17, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Gryszczynska, B.; Formanowicz, D.; Budzyn, M.; Wanic-Kossowska, M.; Pawliczak, E.; Formanowicz, P.; Majewski, W.; Strzyzewski, K.W.; Kasprzak, M.P.; Iskra, M. Advanced Oxidation Protein Products and Carbonylated Proteins as Biomarkers of Oxidative Stress in Selected Atherosclerosis-Mediated Diseases. Biomed. Res. Int. 2017, 2017, 4975264. [Google Scholar] [CrossRef]
- Garibaldi, S.; Barisione, C.; Marengo, B.; Ameri, P.; Brunelli, C.; Balbi, M.; Ghigliotti, G. Advanced Oxidation Protein Products-Modified Albumin Induces Differentiation of RAW264.7 Macrophages into Dendritic-Like Cells Which Is Modulated by Cell Surface Thiols. Toxins 2017, 9, 27. [Google Scholar] [CrossRef]
- Cakatay, U. Protein oxidation parameters in type 2 diabetic patients with good and poor glycaemic control. Diabetes Metab. 2005, 31, 551–557. [Google Scholar] [CrossRef]
- Daneshzad, E.; Tehrani, H.; Bellissimo, N.; Azadbakht, L. Dietary Total Antioxidant Capacity and Gestational Diabetes Mellitus: A Case-Control Study. Oxid. Med. Cell Longev. 2020, 2020, 5471316. [Google Scholar] [CrossRef]
- Noguchi, N.; Saito, Y.; Niki, E. Actions of Thiols, Persulfides, and Polysulfides as Free Radical Scavenging Antioxidants. Antioxid. Redox Signal 2023, 39, 728–743. [Google Scholar] [CrossRef]
- van Dijk, P.R.; Pasch, A.; van Ockenburg-Brunet, S.L.; Waanders, F.; Eman Abdulle, A.; Muis, M.J.; Hillebrands, J.L.; Bilo, H.J.G.; van Goor, H. Thiols as markers of redox status in type 1 diabetes mellitus. Ther. Adv. Endocrinol. Metab. 2020, 11, 2042018820903641. [Google Scholar] [CrossRef]
- Lin, H.; Ao, H.; Guo, G.; Liu, M. The Role and Mechanism of Metformin in Inflammatory Diseases. J. Inflamm. Res. 2023, 16, 5545–5564. [Google Scholar] [CrossRef] [PubMed]
- Tsalamandris, S.; Antonopoulos, A.S.; Oikonomou, E.; Papamikroulis, G.A.; Vogiatzi, G.; Papaioannou, S.; Deftereos, S.; Tousoulis, D. The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. Eur. Cardiol. 2019, 14, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Giridharan, S.; Srinivasan, M. Mechanisms of NF-kappaB p65 and strategies for therapeutic manipulation. J. Inflamm. Res. 2018, 11, 407–419. [Google Scholar] [CrossRef] [PubMed]
- Menini, S.; Iacobini, C.; Vitale, M.; Pugliese, G. The Inflammasome in Chronic Complications of Diabetes and Related Metabolic Disorders. Cells 2020, 9, 1812. [Google Scholar] [CrossRef]
- Zaharie, R.; Valean, D.; Popa, C.; Fetti, A.; Zdrehus, C.; Puia, A.; Usatiuc, L.; Schlanger, D.; Zaharie, F. The Multifaceted Role and Regulation of Nlrp3 Inflammasome in Colitis-Associated Colo-Rectal Cancer: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 3472. [Google Scholar] [CrossRef]
- Nitulescu, I.M.; Ciulei, G.; Cozma, A.; Procopciuc, L.M.; Orasan, O.H. From Innate Immunity to Metabolic Disorder: A Review of the NLRP3 Inflammasome in Diabetes Mellitus. J. Clin. Med. 2023, 12, 6022. [Google Scholar] [CrossRef]
- Bai, Y.; Mu, Q.; Bao, X.; Zuo, J.; Fang, X.; Hua, J.; Zhang, D.; Jiang, G.; Li, P.; Gao, S.; et al. Targeting NLRP3 Inflammasome in the Treatment Of Diabetes and Diabetic Complications: Role of Natural Compounds from Herbal Medicine. Aging Dis. 2021, 12, 1587–1604. [Google Scholar] [CrossRef]
- Ding, N.; Wei, B.; Fu, X.; Wang, C.; Wu, Y. Natural Products that Target the NLRP3 Inflammasome to Treat Fibrosis. Front. Pharmacol. 2020, 11, 591393. [Google Scholar] [CrossRef]
- Liu, B.; Yu, J. Anti-NLRP3 Inflammasome Natural Compounds: An Update. Biomedicines 2021, 9, 136. [Google Scholar] [CrossRef]
- Salehi, B.; Ata, A.; Anil Kumar, V.N.; Sharopov, F.; Ramirez-Alarcon, K.; Ruiz-Ortega, A.; Abdulmajid Ayatollahi, S.; Tsouh Fokou, P.V.; Kobarfard, F.; Amiruddin Zakaria, Z.; et al. Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules 2019, 9, 551. [Google Scholar] [CrossRef]
- Jafari Azad, B.; Yaseri, M.; Daneshzad, E.; Koohdani, F. Interaction between Apo A-II -265T>C polymorphism and dietary total antioxidant capacity on some anthropometric indices and serum lipid profile in patients with type 2 diabetes mellitus. J. Nutr. Sci. 2021, 10, e9. [Google Scholar] [CrossRef] [PubMed]
- Hermsdorff, H.H.; Puchau, B.; Volp, A.C.; Barbosa, K.B.; Bressan, J.; Zulet, M.A.; Martinez, J.A. Dietary total antioxidant capacity is inversely related to central adiposity as well as to metabolic and oxidative stress markers in healthy young adults. Nutr. Metab. 2011, 8, 59. [Google Scholar] [CrossRef] [PubMed]
- Al-Aubaidy, H.A.; Dayan, A.; Deseo, M.A.; Itsiopoulos, C.; Jamil, D.; Hadi, N.R.; Thomas, C.J. Twelve-Week Mediterranean Diet Intervention Increases Citrus Bioflavonoid Levels and Reduces Inflammation in People with Type 2 Diabetes Mellitus. Nutrients 2021, 13, 1133. [Google Scholar] [CrossRef] [PubMed]
- Tanase, D.M.; Gosav, E.M.; Costea, C.F.; Ciocoiu, M.; Lacatusu, C.M.; Maranduca, M.A.; Ouatu, A.; Floria, M. The Intricate Relationship between Type 2 Diabetes Mellitus (T2DM), Insulin Resistance (IR), and Nonalcoholic Fatty Liver Disease (NAFLD). J. Diabetes Res. 2020, 2020, 3920196. [Google Scholar] [CrossRef]
- Hall, P.; Cash, J. What is the real function of the liver ‘function’ tests? Ulst. Med. J. 2012, 81, 30–36. Available online: https://www.ums.ac.uk/081_1.html (accessed on 11 July 2024).
Peak No. | Rt (min) | UV λmax (nm) | [M + H]+ (m/z) | Phenolic Compound | Subclass | Quantity * (μg/mL) |
---|---|---|---|---|---|---|
1. | 3.23 | 270 | 139 | 2-Hydroxybenzoic acid | Hydroxybenzoic acid | 114.600 |
2. | 12.78 | 332 | 344 | Caffeic acid–glucoside | Hydroxycinnamic acid | 152.257 |
3. | 13.81 | 350.270 | 727.271 | Apigenin–glucosyl–glucosyl–arabinoside | Flavone | 725.999 |
4. | 14.04 | 350.260 | 581.287 | Luteolin–glucosyl–arabinoside | Flavone | 1264.852 |
5. | 14.24 | 340.270 | 595.271 | Apigenin–diglucoside | Flavone | 1183.805 |
6. | 15.16 | 350.260 | 449.287 | Luteolin–glucoside | Flavone | 166.615 |
7. | 15.51 | 350.270 | 565.271 | Apigenin–glucosyl–arabinoside | Flavone | 244.841 |
8. | 15.92 | 340.270 | 433.271 | Apigenin–glucoside | Flavone | 140.998 |
9. | 16.25 | 350.260 | 463.287 | Luteolin–glucuronide | Flavone | 590.785 |
10. | 16.65 | 350.260 | 611.287 | Luteolin–diglucoside | Flavone | 545.008 |
11. | 17.25 | 340.260 | 773.303 | Quercetin–rutinoside–glucoside | Flavone | 114.044 |
Total phenolics | 5243.804 |
Sample | DPPH (μgTE/mL) | H2O2 Scavenging Activity (μgTE/mL) | NO Scavenging Activity (μgQE/mL) | FRAP (mgTE/mL) |
---|---|---|---|---|
G. paniculata IC50 | 94.31 ± 10.5 | 102.07 ± 20.03 | 76.33 ± 6.77 | 98.06 ± 17.9 |
Trolox IC50 | 11.2 ± 1.7 | 24.23 ± 3.12 | - | 12.07 ± 2.04 |
Quercetin IC50 | - | - | 20.58 ± 3.67 | - |
p-value | 0.002 | 0.001 | 0.003 | 0.001 |
Parameters | Control | SZT | GPEE100% | GPEE50% | GPEE25% | SZT + M | SZT + TX |
---|---|---|---|---|---|---|---|
TOS (μM/L) | 18.05 ± 3.74 | 42.12 ± 6.23 aaa | 14.02 ± 3.46 bbb,cc,d | 19.13 ± 3.04 bbb | 21.31 ± 2.70 b | 25.02 ± 4.25 bbb | 26.11 ± 1.95 b |
TAC (mM/L) | 1.09 ± 0.00 | 1.084 ± 0.0014 a | 1.087 ± 0.0011 bbb,ccc,ddd | 1.085 ± 0.0003 ccc,ddd | 1.086 ± 0.0011 bb,ccc,ddd | 1.09 ± 0.002 bb | 1.09 ± 0.00 b |
OSI | 16.57 ± 3.43 | 38.83 ± 5.72 aaa | 12.87 ±1.19 bbb,cc | 17.57 ± 3.31 bbb | 19.58 ± 4.93 bb | 22.91 ± 3.87 bbb | 23.99 ± 1.99 b |
MDA (nM/L) | 2.28 ± 0.05 | 3.26 ± 0.24 aaa | 2.24 ± 0.21 bbb | 2.14 ± 0.26 bbb | 2.39 ± 0.17 bb | 2.14 ± 0.17 bbb | 2.25 ± 0.20 bbb |
AOPPs (μM/L) | 126.93 ± 10.70 | 169.27 ± 15.59 aaa | 124.78 ± 29.86 b | 135.72 ± 14.35 bb | 166.48 ± 22.64 | 161.70 ± 26.19 | 165.69 ± 38.15 |
8-OHdG (ng/mL) | 44.81 ± 3.3 | 48.87 ± 3.02 | 45.32 ± 2.13 | 50.24 ± 7.34 | 53.52 ± 2.39 | 44.49 ± 5.34 b | 42.56 ± 3.49 |
NOx (μM/L) | 30.39 ± 5.71 | 60.88 ± 1.35 aaa | 44.29 ± 4.56 bbb,c,dd | 44.20 ± 9.64 bb,c,d | 59.51 ± 4.44 | 57.73 ± 7.96 | 58.48 ± 6.94 |
3NT (ng/mL) | 42.68 ± 7.09 | 62.74 ± 9.70 a | 34.26 ± 2.48 bb,c,d | 48.04 ± 6.49 b | 45.66 ± 6.74 b | 44.39 ± 5.68 b | 64.44 ± 4.95 |
AGEs (ng/mL) | 11.49 ± 1.40 | 13.21 ± 0.38 a | 12.68 ± 0.65 | 11.45 ± 1.14 b,d | 13.39 ± 1.85 | 10.85 ± 1.70 b | 14.20 ± 1.27 |
SH (μM/L) | 324.67 ± 22.21 | 259.67 ± 21.50 a | 417.80 ± 36.19 bb | 373.29 ± 11.12 b | 443.00 ± 43.03 bb | 507.8 ± 149.08 bb | 426.00 ± 40.88 b |
Parameters | Control | SZT | GPEE100% | GPEE50% | GPEE25% | SZT + M | SZT + TX |
---|---|---|---|---|---|---|---|
NF-κB p65 (pg/mL) | 165.11 ± 33.25 | 306.33 ± 59.84 a | 252.18 ± 43.10 b | 240.96 ± 33.18 b | 253.23 ± 49.34 | 230.54 ± 18.45 b | 222.58 ± 46.43 b |
IL-1β (pg/mL) | 23.75 ± 5.67 | 132.5 ± 35.05 a | 20.62 ± 5.82 bbb | 26.00 ± 2.63 bbb | 23.12 ± 1.78 bbb | 19.58 ± 3.99 bbb | 27.91 ± 3.15 bbb |
IL-18 (pg/mL) | 16.30 ± 2.93 | 59.45 ± 6.16 aa | 0.01 ± 0.00 bbb,ccc,ddd | 4.51 ± 1.74 bbb,cc,dd | 5.02 ± 1.32 bbb,cc,dd | 23.08 ± 2.75 bb | 11.74 ± 2.25 bbb |
Gasdermin D (ng/mL) | 5.87 ± 1.05 | 9.50 ± 1.65 aa | 8.22 ± 1.27 | 7.74 ± 2.41 | 8.01 ± 2.30 | 9.38 ± 1.10 | 6.52 ± 1.35 b |
Parameters | Control | SZT | GPEE100% | GPEE50% | GPEE25% | SZT + M | SZT + TX |
---|---|---|---|---|---|---|---|
GLU (mg/dL) | 102.17 ± 9.91 | 432.67 ± 36.14 aaa | 382.80 ± 28.73 b | 374.71 ± 83.05 b | 529.00 ± 13.75 bb,cc | 371.60 ± 58.93 bb | 412.5 ± 39.36 |
TG (mg/dL) | 62.53 ± 12.86 | 128.91 ± 8.24 aaa | 82.83 ± 2.39 bb,d | 87.00 ± 12.92 bb,d | 136.02 ± 17.50 | 132.04 ± 4.36 | 116.62 ± 7.53 b |
TyG index | 4.38 ± 0.12 | 5.46 ± 0.11 aa | 5.18 ± 0.28 | 5.19 ± 0.3 | 5.59 ± 0.15 | 5.40 ± 0.06 | 5.39 ± 0.11 |
TC (mg/dL) | 70.24 ± 5.44 | 123.63 ± 6.66 aaa | 101.83 ± 3.91 bb | 89.44 ± 3.40 bbb,d | 100.29 ± 1.41 bb | 95.25 ± 8.49 bbb | 112.36 ± 12.75 |
BW (g) change | 13.33 ± 1.45 | 62.16 ± 4.22 aa | 74.80 ± 8.49 | 64.00 ± 5.37 | 67.00 ± 22.6 b | 59.0 ± 5.19 | 59.25 ± 7.8 |
AST (U/L) | 69.01 ± 3.46 | 157.98 ± 23.86 aaa | 115.12 ± 35.76 b | 106.99 ± 26.90 bb | 190.70 ± 24.04 | 128.13 ± 38.14 b | 137.79 ± 42.05 a |
ALT (U/L) | 63.33 ± 8.49 | 161.57 ± 27.91 aaa | 116.63 ± 20.03 b | 97.58 ± 3.73 bb,c | 160.52 ± 38.32 c | 128.51 ±20.5 bb | 131.07 ± 28.54 a,b |
AST:ALT | 1.11 ± 0.10 | 0.98 ± 0.47 a | 0.97 ± 0.17 | 1.10 ± 0.14 | 1.21 ± 0.17 | 0.98 ± 0.10 | 0.97 ± 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usatiuc, L.-O.; Pârvu, M.; Pop, R.M.; Uifălean, A.; Vălean, D.; Szabo, C.-E.; Țicolea, M.; Cătoi, F.A.; Ranga, F.; Pârvu, A.E. Phytochemical Profile and Antidiabetic, Antioxidant, and Anti-Inflammatory Activities of Gypsophila paniculata Ethanol Extract in Rat Streptozotocin-Induced Diabetes Mellitus. Antioxidants 2024, 13, 1029. https://doi.org/10.3390/antiox13091029
Usatiuc L-O, Pârvu M, Pop RM, Uifălean A, Vălean D, Szabo C-E, Țicolea M, Cătoi FA, Ranga F, Pârvu AE. Phytochemical Profile and Antidiabetic, Antioxidant, and Anti-Inflammatory Activities of Gypsophila paniculata Ethanol Extract in Rat Streptozotocin-Induced Diabetes Mellitus. Antioxidants. 2024; 13(9):1029. https://doi.org/10.3390/antiox13091029
Chicago/Turabian StyleUsatiuc, Lia-Oxana, Marcel Pârvu, Raluca Maria Pop, Ana Uifălean, Dan Vălean, Csilla-Eniko Szabo, Mădălina Țicolea, Florinela Adriana Cătoi, Floricuța Ranga, and Alina Elena Pârvu. 2024. "Phytochemical Profile and Antidiabetic, Antioxidant, and Anti-Inflammatory Activities of Gypsophila paniculata Ethanol Extract in Rat Streptozotocin-Induced Diabetes Mellitus" Antioxidants 13, no. 9: 1029. https://doi.org/10.3390/antiox13091029
APA StyleUsatiuc, L. -O., Pârvu, M., Pop, R. M., Uifălean, A., Vălean, D., Szabo, C. -E., Țicolea, M., Cătoi, F. A., Ranga, F., & Pârvu, A. E. (2024). Phytochemical Profile and Antidiabetic, Antioxidant, and Anti-Inflammatory Activities of Gypsophila paniculata Ethanol Extract in Rat Streptozotocin-Induced Diabetes Mellitus. Antioxidants, 13(9), 1029. https://doi.org/10.3390/antiox13091029