Antioxidant Effect in Diabetic Peripheral Neuropathy in Rat Model: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Selection Criteria and Eligibility Criteria
2.3. Data Extraction and Analysis
2.4. Quality Assessment
3. Results
3.1. Study Selection
3.2. Description of the Studies
3.3. Animal Model for DPN
Authors, Year | Animal Model | Plant Extract. Compound | Treatment Duration | Rat Species. Age/Weight | Behavioral Parameter | Biochemical Parameter | Histopathological Parameter |
---|---|---|---|---|---|---|---|
Adki 2021 [30] | Type 1 DM STZ (55 mg/kg/ip) | Paeonol 50, 100 and 200 mg/kg/day | 4 w | male Sprague-Dawley rats 180–220 g | ↑ HP, MNCV, SNCV, RS, TI, VF | Sciatic nerve: ↑ GSH, SOD, CAT ↓ MDA | Sciatic nerve H&E |
Al-Rejaie 2015 [36] | Type 1 DM STZ (60 mg/kg/ip) | Naringenin 25 and 50 mg/kg/po/day after 2 w become diabetic | 5 w | Wistar albino rat 250–290 g | ↑ RS, TF | Sciatic nerve: ↑ GSH, SOD, CAT, GPx, NGF, IGF ↓ TBARS, IL-1β, IL-6, TNF-α | Sciatic Nerve H&E |
AlSharari 2014 [43] | Type 1 DM STZ (65 mg/kg/ip) | Morin 15 or 30 mg/kg/po/day after 3 w become diabetic | 5 w | male Wistar albino rats 260–285 g | ↑ RS, TF | Sciatic nerve: ↑ NGF, IGF-1, GSH, SOD, CAT ↓ TNF-α, IL-1β, IL-6, TBARS | none |
Archana 2022 [29] | Type 1 DM STZ (50 mg/kg/iv) | 250, 500 mg/kg/d/oral Tinospora cordifolia after 1 w become diabetic | 7 w | male Albino Wistar rats 180–220 g | ↑ HP, TI (warm and cold), Rotarod | Sciatic nerve: ↑ GSH, CAT, SOD ↓ MDA | none |
Balaha 2018 [5] | Type 1 DM STZ (55 mg/kg/ip) 5% glucose solution to drink overnight of STZ injection | Phloretin 50 or 25 mg/kg/po/day after 4 w become diabetic | 4 w | male Wistar rats 150–200 g | ↑ HP, TI (warm and cold) | Sciatic nerve: ↑ GSH, SOD ↓ TNF-α, IL-6, MDA | Sciatic Nerve H&E, toluidine blue |
Baluchnejadmojarad 2010 [37] | Type 1 DM STZ (60 mg/kg/ip) | Silymarin 100 mg/kg/ip/day | 8 w | male Wistar albino rats 240–290 g | ↓ FT ↑ HP, MNCV | ↑ SOD ↓ MDA | none |
Bana 2023 [6] | Type 1 DM STZ (60 mg/kg/ip) | R. cordifolia 200 and 400 mg/kg/po after 4 w become diabetic | 4 w | male Wistar rats 150–300 g | ↑ HP, TF | Sciatic nerve: ↑ GSH, SOD, CAT ↓ TBARS | Brain and Sciatic nerve H&E |
Bin-Jaliah 2013 [44] | Type 1 DM STZ (65 mg/kg/ip) 5% glucose solution to drink overnight of STZ injection | Vitamin E 300 mg/kg/im/3x per week | 4 w | male Wistar rats 200–250 g | ↓ NCV | Sciatic nerve: ↓ MDA, ↑ GPx | none |
Comelli 2009 [38] | Type 1 DM STZ (60 mg/kg/ip) | Cannabis sativa extract 15 or 30 mg/kg/po/day after 28 days from STZ injection | 8 days | male Wistar rats 200–220 g | ↓ H ↑ VF | Liver: ↓ MDA ↑ GSH Sciatic nerve tissue: ↑ NGF | none |
Cui 2008 [1] | Type 1 DM STZ (55 mg/kg/ip) | Grape seed proanthocyanidin extract (GSPE) 250 mg/kg/day | 24 w | male Wistar rats 200–220 g | ↑ NCV, VF | Sciatic nerve: ↓ MDA ↑ SOD | Sciatic Nerve H&E |
Dhaliwal 2020 [3] | Type 1 DM STZ (55 mg/kg/ip) | Ferulic acid (FA) 25, 50, and 100 mg/kg/po/day after 4 w become diabetic | 4 w | male Sprague-Dawley rats 250–300 g | ↑ CP, HP, MNCV, RS, VF | Sciatic nerve: ↑ NGF, SOD, GSH, CAT ↓ TNF-α, IL-1β, LPO | none |
El-Baz 2020 [11] | Type 1 DM STZ (50 mg/kg/ip) 5% glucose solution overnight of STZ injection | Dunaliella salina powder 100 or 200 mg/kg after 2days become diabetic | 4 w | male Wister albino rats 150–200 g | ↓ HP | Blood: ↑ SOD, TAC, CAT Brain tissue: ↑ Trx, ↓ TNF-α, and IL-6. | Brain H&E |
Fink 2020 [23] | Type 2 DM high-fat diet after 8 w, STZ (30 mg/kg/ip) | Mito-q 0.93 g/kg/po/day | 12 w | male Sprague-Dawley rats 10–11w | ↑ MNCV, SNCV | ↓ LPO | IENFD |
Kamdi 2021 [21] | Type 2 DM high-fat diet after 2 w, STZ (35 mg/kg/ip) | Apple peel extract (APE) 100, 200 and 400 mg/kg/po/day after 2 w become diabetic | 7 days | male Sprague-Dawley rats 160–180 g | ↑ H | ↑ GSH ↓ CAT, MDA | skin H&E |
Kandhare 2012 [31] | Type 1 DM STZ (55 mg/kg/ip) | Naringin 20, 40 and 80 mg/kg/po/day after 4 w become diabetic | 4 w | adult male Wistar rats 150–200 g | ↑ MNCV, RS, TI, VF | ↑ SOD ↓MDA, NO, TNF-α | none |
Kiasalari 2017 [39] | Type 1 DM STZ (60 mg/kg/ip) | Diosgenin 40 mg/kg/po/day after 8 days become diabetic | 5 w | male albino Wistar rats 210–250 g | ↓ FT ↑ RS, TI | Sciatic nerve: ↓ MDA ↑ SOD, CAT blood: ↓ TNFα, NF-κB, IL-1β | none |
Kim 2013 [48] | Type 1 DM STZ (80 mg/kg/ip) 2x in two conservative days | Berberine 5, 10, and 20 mg/kg/ip/bid after 4 w become diabetic | 14 days | male Sprague-Dawley rats 170–190 g | ↑ CP, VF | Liver: ↓ MDA, SOD, GSH, CAT | none |
Kishore 2017 [45] | Type 1 DM STZ (65 mg/kg/ip) Nicotinamide (NAD) (230 mg/kg/ip) | Bacopa monnieri alcohol extract (BA) 100, 200 and 400 mg/kg/po/day Bacosine (BS) 5 and 10 mg/kg after 60 days | 30 days | male Wistar rats 260–280 g | ↑ HP, MNCV, RS, TI, VF | Sciatic nerve: ↑ SOD, GSH ↓ TNF-α, TGF-β, IL-1β | none |
Koneri 2014 [25] | Type 1 DM STZ (45 mg/kg/iv) 5% glucose solution overnight of STZ injection | Saponins of Momordica cymbalaria (SMC) (100 mg/kg/po/day on day 3 | 30 days | male Wistar rats 200–250 g | ↓ HP, TF | Sciatic nerve: ↓ SOD, CAT, MDA | none |
Kuhad 2009 [26] | Type 1 DM STZ (45 mg/kg/ip) | Tocotrienol 25, 50 and 100 mg/kg/oral/day after 4 w | 4 w | male Wistar rats 220–260 g | ↑ HP, RS, TI, VF | Sciatic nerve: ↑ SOD, CAT, ↓ TNF-α, TGF-β, IL-1β, MDA, NO | none |
Kumar 2007 [32] | Type 1 DM STZ (55 mg/kg/ip) | Resveratrol 10, 20 mg/kg/ip/day after 6 w become diabetic | 2 w | male Sprague-Dawley rats 250–270 g | ↑ MNCV, TI, VF | ↑ CAT ↓ MDA, peroxynitrite, DNA fragmentation (TUNEL) | none |
Lee 2018 [40] | Type 1 DM STZ (60 mg/kg/ip) | Alpha lipoic acid 100 mg/kg | 12 w and 24 w | male Sprague-Dawley rats 180–200 g | not significant RS, TF, VF | Blood: ↑ CAT, SOD GSH | Sciatic nerve toluidine blue, IENFD |
Liu 2014 [46] | Type 1 DM STZ (65 mg/kg/ip) | Zinc supplementation after 4w become diabetic | 4 w | male Sprague-Dawley rats | ↑ MNCV, RS | Sciatic nerve: ↓ MDA | Immunohisto staining Metallothionein |
Liu 2010 [28] | Type 1 DM STZ (50 mg/kg/ip) | Tanshinone IIA 20, 50, 100 mg/kg after 4 days become diabetic | 4 w | male Sprague–Dawley albino rats 180–220 g | ↑ HP, MNCV, VF | Sciatic nerve: ↓ MDA ↑ SOD, CAT | none |
Najafi 2017 [47] | Type 1 DM STZ (65 mg/kg/ip) | cerium oxide nanoparticles 65/85 mg/kg/po after 8 w become diabetic | 8 w | male Wistar rats 180–250 g | ↑ HP | ↓ MDA, ↑ TAC | none |
Ranjithkumar 2013 [24] | Type 1 DM STZ (40 mg/kg/ip) | aqueous Tribulus terristris 100 and 300 mg/kg/po after 4 weeks diabetic | 4 w | male Wistar rats 225–250 g | ↑ CP, FT, HP | ↑ SOD, CAT, GSH, ↓ MDA, TNF-α, IL-1β | none |
Rashedinia 2020 [41] | Type 1 DM STZ (60 mg/kg/ip) | Syringic acid 25, 50, and 100 mg/kg | 6 w | male Sprague-Dawley rats 220–240 g | ↑ Passive Avoidance Test, rotarod test | Brain: ↓ GSH, MDA not significant CAT, SOD | Sciatic H&E |
Sharma 2006 [33] | Type 1 DM STZ (55 mg/kg/ip) | Trolox 10 and 30 mg/kg/ip after 6w become diabetic | 2 w | male Sprague-Dawley rats 250–270 g | ↑ MNCV, TI | Sciatic nerve: ↓ MDA ↑ SOD, CAT | none |
Suryavanshi 2020 [34] | Type 1 DM STZ (55 mg/kg/ip) | Escin 5, 10 and 20 mg/kg/po/day after 6w become diabetic | 4 w | male Sprague-Dawley rats 180–230 g | ↑ HP, MNCV, RS, TI, VF | Sciatic nerve: ↓ MDA ↑GSH, SOD | Sciatic H&E |
Tian 2016 [35] | Type 1 DM STZ (55 mg/kg/ip) | Rutin 5, 25 and 50 mg/kg/ip/day after 3 w become diabetic | 2 w | male Sprague-Dawley rats 200–240 g | ↑ CP, HP, MNCV, SNCV, VF | Sciatic nerve: ↑ SOD, GST, GPx ↓ MDA Blood: ↓ IL-6, TNF-α, NF-κB | none |
Tiwari 2011 [27] | Type 1 DM STZ (45 mg/kg/ip) | Emblica officinalis aqueous extract 250, 500 and 1000 mg/kg/po/day after 4w become diabetic | 4 w | male Wistar rats 220–260 g | ↑ HP, RS, TI, VF | Sciatic nerve: ↓ LPO ↑ GSH, SOD ↓ IL-1β, TNF-α Blood: ↓ IL-1β, TNF-α | none |
Yang 2015 [42] | Type 1 DM STZ (60 mg/kg/ip) | Tang Bi Kang (TBK) 4.28, 8.56, 17.12 g/kg/po/day | 4 w | male Wistar rats 180–220 g | ↑ NCV, TF | ↓ MDA ↑ SOD, GSH | Sciatic H&E |
Zhou 2012 [22] | Type 2 DM high-fat diet, STZ (35 mg/kg/ip) | Trigonelline 40 mg/kg/po/day | 48 w | male Wistar rats 180–220 g | ↑ NCV, TI | ↓ MDA ↑ SOD | Electron microscopy of sciatic nerve |
3.4. Effects of Compounds or Extracts on DPN Behavioural Parameters
3.5. Effects of Compounds or Extracts on DPN Biochemical Parameters
3.6. Histological Parameters for DPN
3.7. Assessment of the Risk of Bias (RoB) Tool for Animal Studies
4. Discussion
4.1. Variability in Study Design
4.2. Methodological Quality
4.3. Effect of Antioxidant on DPN Animal Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cui, X.P.; Li, B.Y.; Gao, H.Q.; Wei, N.; Wang, W.L.; Lu, M. Effects of grape seed proanthocyanidin extracts on peripheral nerves in streptozocin-induced diabetic rats. J. Nutr. Sci. Vitaminol. 2008, 54, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Shillo, P.; Sloan, G.; Greig, M.; Hunt, L.; Selvarajah, D.; Elliott, J.; Gandhi, R.; Wilkinson, I.D.; Tesfaye, S. Painful and Painless Diabetic Neuropathies: What Is the Difference? Curr. Diab. Rep. 2019, 19, 32. [Google Scholar] [CrossRef] [PubMed]
- Dhaliwal, J.; Dhaliwal, N.; Akhtar, A.; Kuhad, A.; Chopra, K. Beneficial effects of ferulic acid alone and in combination with insulin in streptozotocin induced diabetic neuropathy in Sprague Dawley rats. Life Sci. 2020, 255, 117856. [Google Scholar] [CrossRef]
- Carmichael, J.; Fadavi, H.; Ishibashi, F.; Shore, A.C.; Tavakoli, M. Advances in Screening, Early Diagnosis and Accurate Staging of Diabetic Neuropathy. Front. Endocrinol. 2021, 12, 671257. [Google Scholar] [CrossRef] [PubMed]
- Balaha, M.; Kandeel, S.; Kabel, A. Phloretin either alone or in combination with duloxetine alleviates the STZ-induced diabetic neuropathy in rats. Biomed. Pharmacother. 2018, 101, 821–832. [Google Scholar] [CrossRef] [PubMed]
- Bana, S.; Kumar, N.; Sartaj, A.; Alhalmi, A.; Qurtam, A.A.; Nasr, F.A.; Al-Zharani, M.; Singh, N.; Gaur, P.; Mishra, R.; et al. Rubia cordifolia L. Attenuates Diabetic Neuropathy by Inhibiting Apoptosis and Oxidative Stress in Rats. Pharmaceuticals 2023, 16, 1586. [Google Scholar] [CrossRef]
- Devigili, G.; Rinaldo, S.; Lombardi, R.; Cazzato, D.; Marchi, M.; Salvi, E.; Eleopra, R.; Lauria, G. Diagnostic criteria for small fibre neuropathy in clinical practice and research. Brain 2019, 142, 3728–3736. [Google Scholar] [CrossRef]
- Pál, E.; Fülöp, K.; Tóth, P.; Deli, G.; Pfund, Z.; Janszky, J.; Komoly, S. Small Fiber Neuropathy: Clinicopathological Correlations. Behav. Neurol. 2020, 2020, 8796519. [Google Scholar] [CrossRef]
- Tavee, J.O. Office approach to small fiber neuropathy. Clevel. Clin. J. Med. 2018, 85, 801–812. [Google Scholar] [CrossRef]
- Starobova, H.; Vetter, I. Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy. Front. Mol. Neurosci. 2017, 10, 174. [Google Scholar] [CrossRef]
- El-Baz, F.K.; Salama, A.; Salama, R.A.A.; Gabr, M. Dunaliella salina Attenuates Diabetic Neuropathy Induced by STZ in Rats: Involvement of Thioredoxin. BioMed Res. Int. 2020, 2020, 1295492. [Google Scholar] [CrossRef]
- Gugliucci, A. Formation of Fructose-Mediated Advanced Glycation End Products and Their Roles in Metabolic and Inflammatory Diseases. Adv. Nutr. 2017, 8, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Dewanjee, S.; Das, S.; Das, A.K.; Bhattacharjee, N.; Dihingia, A.; Dua, T.K.; Kalita, J.; Manna, P. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur. J. Pharmacol. 2018, 833, 472–523. [Google Scholar] [CrossRef]
- Bandeira, S.D.M.; Guedes, G.D.S.; Da Fonseca, L.J.S.; Pires, A.S.; Gelain, D.P.; Moreira, J.C.F.; Rabelo, L.A.; Vasconcelos, S.M.L.; Goulart, M.O.F. Characterization of Blood Oxidative Stress in Type 2 Diabetes Mellitus Patients: Increase in Lipid Peroxidation and SOD Activity. Oxidative Med. Cell. Longev. 2012, 2012, 819310. [Google Scholar] [CrossRef] [PubMed]
- Dworzański, J.; Strycharz-Dudziak, M.; Kliszczewska, E.; Kiełczykowska, M.; Dworzańska, A.; Drop, B.; Polz-Dacewicz, M. Glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity in patients with diabetes mellitus type 2 infected with Epstein-Barr virus. PLoS ONE 2020, 15, e0230374. [Google Scholar] [CrossRef] [PubMed]
- Shabalala, S.C.; Johnson, R.; Basson, A.K.; Ziqubu, K.; Hlengwa, N.; Mthembu, S.X.H.; Mabhida, S.E.; Mazibuko-Mbeje, S.E.; Hanser, S.; Cirilli, I.; et al. Detrimental Effects of Lipid Peroxidation in Type 2 Diabetes: Exploring the Neutralizing Influence of Antioxidants. Antioxidants 2022, 11, 2071. [Google Scholar] [CrossRef]
- Yang, L.; Liang, J.; Lam, S.M.; Yavuz, A.; Shui, G.; Ding, M.; Huang, X. Neuronal lipolysis participates in PUFA-mediated neural function and neurodegeneration. EMBO Rep. 2020, 21, e50214. [Google Scholar] [CrossRef]
- Sánchez-Alcázar, J.; Villalón-García, I.; Povea-Cabello, S.; Álvarez-Córdoba, M.; Talaverón-Rey, M.; Suárez-Rivero, J.; Suárez-Carrillo, A.; Munuera-Cabeza, M.; Reche-López, D.; Cilleros-Holgado, P.; et al. Vicious cycle of lipid peroxidation and iron accumulation in neurodegeneration. Neural Regen. Res. 2023, 18, 1196–1202. [Google Scholar] [CrossRef]
- Gheibi, S.; Kashfi, K.; Ghasemi, A. A practical guide for induction of type-2 diabetes in rat: Incorporating a high-fat diet and streptozotocin. Biomed. Pharmacother. 2017, 95, 605–613. [Google Scholar] [CrossRef]
- Hooijmans, C.R.; Rovers, M.M.; de Vries, R.B.M.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014, 14, 43. [Google Scholar] [CrossRef]
- Kamdi, S.P.; Raval, A.; Nakhate, K.T. Effect of apple peel extract on diabetes-induced peripheral neuropathy and wound injury. J. Diabetes Metab. Disord. 2021, 20, 119–130. [Google Scholar] [CrossRef]
- Zhou, J.Y.; Zhou, S.W. Protection of trigonelline on experimental diabetic peripheral neuropathy. Evid. Based Complement. Altern. Med. 2012, 2012, 164219. [Google Scholar] [CrossRef] [PubMed]
- Fink, B.; Coppey, L.; Davidson, E.; Shevalye, H.; Obrosov, A.; Chheda, P.R.; Kerns, R.; Sivitz, W.; Yorek, M. Effect of mitoquinone (Mito-Q) on neuropathic endpoints in an obese and type 2 diabetic rat model. Free Radic. Res. 2020, 54, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Ranjithkumar, R.; Prathab Balaji, S.; Balaji, B.; Ramesh, R.V.; Ramanathan, M. Standardized aqueous Tribulus terristris (Nerunjil) extract attenuates hyperalgesia in experimentally induced diabetic neuropathic pain model: Role of oxidative stress and inflammatory mediators. Phytother. Res. 2013, 27, 1646–1657. [Google Scholar] [CrossRef]
- Koneri, R.B.; Samaddar, S.; Simi, S.; Rao, S.T. Neuroprotective effect of a triterpenoid saponin isolated from Momordica cymbalaria Fenzl in diabetic peripheral neuropathy. Indian J. Pharmacol. 2014, 46, 76–81. [Google Scholar] [CrossRef]
- Kuhad, A.; Chopra, K. Tocotrienol attenuates oxidative-nitrosative stress and inflammatory cascade in experimental model of diabetic neuropathy. Neuropharmacology 2009, 57, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, V.; Kuhad, A.; Chopra, K. Emblica officinalis corrects functional, biochemical and molecular deficits in experimental diabetic neuropathy by targeting the oxido-nitrosative stress mediated inflammatory cascade. Phytother. Res. 2011, 25, 1527–1536. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, L.; Li, X.; Lv, C.; Feng, D.; Luo, Z. Tanshinone IIA improves impaired nerve functions in experimental diabetic rats. Biochem. Biophys. Res. Commun. 2010, 399, 49–54. [Google Scholar] [CrossRef]
- Archana, J.; Annapurna, A.; Devayani, P. Neuroprotective role of Tinospora cordifolia extract in streptozotocin induced neuropathic pain. Braz. J. Pharm. Sci. 2022, 58, e18501. [Google Scholar] [CrossRef]
- Adki, K.M.; Kulkarni, Y.A. Neuroprotective effect of paeonol in streptozotocin-induced diabetes in rats. Life Sci. 2021, 271, 119202. [Google Scholar] [CrossRef]
- Kandhare, A.D.; Raygude, K.S.; Ghosh, P.; Ghule, A.E.; Bodhankar, S.L. Neuroprotective effect of naringin by modulation of endogenous biomarkers in streptozotocin induced painful diabetic neuropathy. Fitoterapia 2012, 83, 650–659. [Google Scholar] [CrossRef]
- Kumar, A.; Kaundal, R.K.; Iyer, S.; Sharma, S.S. Effects of resveratrol on nerve functions, oxidative stress and DNA fragmentation in experimental diabetic neuropathy. Life Sci. 2007, 80, 1236–1244. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.S.; Sayyed, S.G. Effects of trolox on nerve dysfunction, thermal hyperalgesia and oxidative stress in experimental diabetic neuropathy. Clin. Exp. Pharmacol. Physiol. 2006, 33, 1022–1028. [Google Scholar] [CrossRef]
- Suryavanshi, S.V.; Kulkarni, Y.A. Escin alleviates peripheral neuropathy in streptozotocin induced diabetes in rats. Life Sci. 2020, 254, 117777. [Google Scholar] [CrossRef]
- Tian, R.; Yang, W.; Xue, Q.; Gao, L.; Huo, J.; Ren, D.; Chen, X. Rutin ameliorates diabetic neuropathy by lowering plasma glucose and decreasing oxidative stress via Nrf2 signaling pathway in rats. Eur. J. Pharmacol. 2016, 771, 84–92. [Google Scholar] [CrossRef]
- Al-Rejaie, S.S.; Aleisa, A.M.; Abuohashish, H.M.; Parmar, M.Y.; Ola, M.S.; Al-Hosaini, A.A.; Ahmed, M.M. Naringenin neutralises oxidative stress and nerve growth factor discrepancy in experimental diabetic neuropathy. Neurol. Res. 2015, 37, 924–933. [Google Scholar] [CrossRef]
- Baluchnejadmojarad, T.; Roghani, M.; Khastehkhodaie, Z. Chronic treatment of silymarin improves hyperalgesia and motor nerve conduction velocity in diabetic neuropathic rat. Phytother. Res. 2010, 24, 1120–1125. [Google Scholar] [CrossRef]
- Comelli, F.; Bettoni, I.; Colleoni, M.; Giagnoni, G.; Costa, B. Beneficial effects of a Cannabis sativa extract treatment on diabetes-induced neuropathy and oxidative stress. Phytother. Res. 2009, 23, 1678–1684. [Google Scholar] [CrossRef] [PubMed]
- Kiasalari, Z.; Rahmani, T.; Mahmoudi, N.; Baluchnejadmojarad, T.; Roghani, M. Diosgenin ameliorates development of neuropathic pain in diabetic rats: Involvement of oxidative stress and inflammation. Biomed. Pharmacother. 2017, 86, 654–661. [Google Scholar] [CrossRef]
- Lee, K.A.; Lee, N.Y.; Park, T.S.; Jin, H.Y. Comparison of peripheral nerve protection between insulin-based glucose control and alpha lipoic acid (ALA) in the streptozotocin (STZ)-induced diabetic rat. Endocrine 2018, 61, 58–67. [Google Scholar] [CrossRef]
- Rashedinia, M.; Alimohammadi, M.; Shalfroushan, N.; Khoshnoud, M.J.; Mansourian, M.; Azarpira, N.; Sabahi, Z. Neuroprotective effect of syringic acid by modulation of oxidative stress and mitochondrial mass in diabetic rats. BioMed Res. Int. 2020, 2020, 8297984. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.W.; Liu, F.Q.; Guo, J.J.; Yao, W.J.; Li, Q.Q.; Liu, T.H.; Xu, L.P. Antioxidation and anti-inflammatory activity of Tang Bi Kang in rats with diabetic peripheral neuropathy. BMC Complement. Altern. Med. 2015, 15, 66. [Google Scholar] [CrossRef] [PubMed]
- AlSharari, S.D.; Al-Rejaie, S.S.; Abuohashish, H.M.; Aleisa, A.M.; Parmar, M.Y.; Ahmed, M.M. Ameliorative Potential of Morin in Streptozotocin-Induced Neuropathic Pain in Rats. Trop. J. Pharm. Res. 2014, 13, 1429–1436. [Google Scholar] [CrossRef]
- Bin-Jaliah, I.; El-Attar, S.; Khaleel, E.F.; El-Sayed, L.A.; Haidara, M.A. Remedial effects of vitamin E and L-arginine on peripheral neuropathy in streptozotocin-induced diabetic rats. Am. J. Pharmacol. Toxicol. 2013, 9, 13–23. [Google Scholar] [CrossRef]
- Kishore, L.; Kaur, N.; Singh, R. Bacosine isolated from aerial parts of Bacopa monnieri improves the neuronal dysfunction in Streptozotocin-induced diabetic neuropathy. J. Funct. Foods 2017, 34, 237–247. [Google Scholar] [CrossRef]
- Liu, F.; Ma, F.; Kong, G.; Wu, K.; Deng, Z.; Wang, H. Zinc supplementation alleviates diabetic peripheral neuropathy by inhibiting oxidative stress and upregulating metallothionein in peripheral nerves of diabetic rats. Biol. Trace Elem. Res. 2014, 158, 211–218. [Google Scholar] [CrossRef]
- Najafi, R.; Hosseini, A.; Ghaznavi, H.; Mehrzadi, S.; Sharifi, A.M. Neuroprotective effect of cerium oxide nanoparticles in a rat model of experimental diabetic neuropathy. Brain Res. Bull. 2017, 131, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.O.; Kim, H.J. Berberine ameliorates cold and mechanical allodynia in a rat model of diabetic neuropathy. J. Med. Food 2013, 16, 511–517. [Google Scholar] [CrossRef]
- Furman, B.L. Streptozotocin-Induced Diabetic Models in Mice and Rats. Curr. Protoc. 2021, 1, e78. [Google Scholar] [CrossRef]
- O’Brien, P.D.; Sakowski, S.A.; Feldman, E.L. Mouse models of diabetic neuropathy. ILAR J. 2014, 54, 259–272. [Google Scholar] [CrossRef]
- Barrière, D.A.; Dupuis, A.; Courteix, C. Rodent Models of Painful Diabetic Neuropathy: What Can We Learn from. J. Diabetes Metab. 2012, 2012, 5. [Google Scholar]
- Kern, T.S.; Miller, C.M.; Tang, J.; Du, Y.L.; Ball, S.L.; Berti-Matera, L. Comparison of three strains of diabetic rats with respect to the rate at which retinopathy and tactile allodynia develop. Mol. Vis. 2010, 16, 1629–1639. [Google Scholar] [PubMed]
- Lauria, G.; Lombardi, R.; Borgna, M.; Penza, P.; Bianchi, R.; Savino, C.; Canta, A.; Nicolini, G.; Marmiroli, P.; Cavaletti, G. Intraepidermal nerve fiber density in rat foot pad: Neuropathologic–neurophysiologic correlation. J. Peripher. Nerv. Syst. 2005, 10, 202–208. [Google Scholar] [CrossRef]
- Vinogradova, A.V.; Sysova, M.; Smirnova, P.A.; Sidorova, M.; Turkin, A.; Kurilova, E.; Tuchina, O.P. Enriched Environment Induces Sex-Specific Changes in the Adult Neurogenesis, Cytokine and miRNA Expression in Rat Hippocampus. Biomedicines 2023, 11, 1341. [Google Scholar] [CrossRef]
- Liao, C.; Yang, M.; Liu, P.; Zhong, W.; Zhang, W. Stable Rat Model of Mechanical Allodynia in Diabetic Peripheral Neuropathy: The Role of Nerve Compression. J. Reconstr. Microsurg. 2018, 34, 264–269. [Google Scholar] [CrossRef]
- Muramatsu, K. Diabetes Mellitus-Related Dysfunction of the Motor System. Int. J. Mol. Sci. 2020, 21, 7485. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, A.S.; Somani, R.S. Animal models and biomarkers of neuropathy in diabetic rodents. Indian J. Pharmacol. 2010, 42, 129–134. [Google Scholar] [CrossRef]
- Huseyinoglu, N.; Ozaydin, I.; Huseyinoglu, U.; Yayla, S.; Aksoy, O. Minimally Invasive Motor Nerve Conduction Study of the Rat Sciatic and Tail Nerves. Kafkas Univ. Vet. Fak. Derg. 2013, 19, 943–948. [Google Scholar] [CrossRef]
- Höke, A. Animal Models of Peripheral Neuropathies. Neurotherapeutics 2012, 9, 262–269. [Google Scholar] [CrossRef]
- DaSilva, J.K.; Arezzo, J.C. Use of Nerve Conduction Assessments to Evaluate Drug-Induced Peripheral Neuropathy in Nonclinical Species—A Brief Review. Toxicol. Pathol. 2020, 48, 71–77. [Google Scholar] [CrossRef]
- Lauria, G.; Hsieh, S.T.; Johansson, O.; Kennedy, W.R.; Leger, J.M.; Mellgren, S.I.; Nolano, M.; Merkies, I.S.; Polydefkis, M.; Smith, A.G.; et al. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. Eur. J. Neurol. 2010, 17, 903-e49. [Google Scholar] [CrossRef] [PubMed]
- Timar, B.; Popescu, S.; Timar, R.; Baderca, F.; Duica, B.; Vlad, M.M.; Levai, C.M.; Bălinişteanu, B.; Simu, M.A. The usefulness of quantifying intraepidermal nerve fibers density in the diagnostic of diabetic peripheral neuropathy: A cross-sectional study. Diabetol. Metab. Syndr. 2016, 8, 31. [Google Scholar] [CrossRef]
- Umapathi, T.; Tan, W.L.; Loke, S.C.; Soon, P.C.; Tavintharan, S.; Chan, Y.H. Intraepidermal nerve fiber density as a marker of early diabetic neuropathy. Muscle Nerve 2007, 35, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Graham, J.; Dabbah, M.A.; Petropoulos, I.N.; Ponirakis, G.; Asghar, O.; Alam, U.; Marshall, A.G.; Fadavi, H.; Ferdousi, M.; et al. Small Nerve Fiber Quantification in the Diagnosis of Diabetic Sensorimotor Polyneuropathy: Comparing Corneal Confocal Microscopy With Intraepidermal Nerve Fiber Density. Diabetes Care 2015, 38, 1138–1144. [Google Scholar] [CrossRef]
- Ma, B.; Xu, J.-k.; Wu, W.-J.; Liu, H.; Kou, C.-K.; Liu, N.; Zhao, L. Survey of basic medical researchers on the awareness of animal experimental designs and reporting standards in China. PLoS ONE 2017, 12, e0174530. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, Y.; Shang, Z.; Zhang, N.; Tao, G.; Zhang, T.; Hu, K.; Li, Y.-f.; Shi, X.; Zhang, Y.; et al. The methodological quality of animal studies: A cross-sectional study based on the SYRCLE’s risk of bias tool. bioRxiv 2019. [Google Scholar] [CrossRef]
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. J. Cereb. Blood Flow Metab. 2020, 40, 1769–1777. [Google Scholar] [CrossRef] [PubMed]
- David, K.; Tracey, W.; Bero, J. Instruments for assessing risk of bias and other methodological criteria of published animal tudies: A systematic review. Environ. Health Perspect. 2013, 121, 985–992. [Google Scholar]
- Singh, R.; Kishore, L.; Kaur, N. Diabetic peripheral neuropathy: Current perspective and future directions. Pharmacol. Res. 2014, 80, 21–35. [Google Scholar] [CrossRef]
- Campos, C. Chronic Hyperglycemia and Glucose Toxicity: Pathology and Clinical Sequelae. Postgrad. Med. 2012, 124, 90–97. [Google Scholar] [CrossRef]
- Kafle, D.R. Effect of Persistent Hyperglycemia and Lipid Profile and its role in Glycation and Oxidative stress in Chronic Type 2 Diabetes Mellitus subjects. Nepal Med. J. 2022, 5, 20–24. [Google Scholar] [CrossRef]
- Tomlinson, D.R.; Gardiner, N.J. Glucose neurotoxicity. Nat. Rev. Neurosci. 2008, 9, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Wada, R.; Yagihashi, S. Role of Advanced Glycation End Products and Their Receptors in Development of Diabetic Neuropathy. Ann. N. Y. Acad. Sci. 2005, 1043, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Giri, B.; Dey, S.; Das, T.; Sarkar, M.; Banerjee, J.; Dash, S.K. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity. Biomed. Pharmacother. 2018, 107, 306–328. [Google Scholar] [CrossRef]
- Agnes, J.P.; dos Santos, V.W.; das Neves, R.N.; Gonçalves, R.M.; Delgobo, M.; Girardi, C.S.; Lückemeyer, D.D.; Ferreira, M.d.A.; Macedo-Júnior, S.J.; Lopes, S.C.; et al. Antioxidants improve oxaliplatin-induced peripheral neuropathy in tumor-bearing mice model: Role of spinal cord oxidative stress and inflammation. J. Pain 2021, 22, 996–1013. [Google Scholar] [CrossRef]
- Remelli, F.; Ceresini, M.G.; Trevisan, C.; Noale, M.; Volpato, S. Prevalence and impact of polypharmacy in older patients with type 2 diabetes. Aging Clin. Exp. Res. 2022, 34, 1969–1983. [Google Scholar] [CrossRef]
- Määttä, L.L.; Andersen, S.T.; Parkner, T.; Hviid, C.V.B.; Bjerg, L.; Kural, M.A.; Charles, M.; Søndergaard, E.; Kuhle, J.; Tankisi, H.; et al. Longitudinal Change in Serum Neurofilament Light Chain in Type 2 Diabetes and Early Diabetic Polyneuropathy: ADDITION-Denmark. Diabetes Care 2024, 47, 986–994. [Google Scholar] [CrossRef]
Database | Search Strategy |
---|---|
Web of Science | (((AB = (antioxidant activity)) AND AB = (diabetic neuropathy)) NOT AB = (in vitro)) NOT AB = (systematic review meta-analysis) |
EBSCOhost | AB antioxidant activity AND AB diabetic neuropathy NOT AB in vitro NOT AB (systematic review or meta-analysis) |
Scopus | (TITLE-ABS-KEY (antioxidant AND activity) AND TITLE-ABS-KEY (diabetic AND neuropathy) AND NOT TITLE-ABS-KEY (in AND vitro) AND NOT TITLE-ABS-KEY (systematic AND review AND meta AND analysis)) |
Authors, Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
Adki 2021 [30] | Y | Y | NA | NA | NA | NA | NA | N | Y | Y | 4 |
Al-Rejaie 2015 [36] | Y | Y | NA | NA | NA | NA | NA | N | Y | Y | 4 |
AlSharari 2014 [43] | Y | Y | NA | NA | NA | NA | NA | N | Y | Y | 4 |
Archana 2022 [29] | Y | Y | Y | Y | NA | NA | NA | N | Y | Y | 6 |
Balaha 2018 [5] | Y | Y | NA | Y | N | NA | NA | N | Y | Y | 5 |
Baluchnejadmojarad 2010 [37] | Y | Y | NA | NA | N | NA | NA | N | Y | Y | 4 |
Bana 2023 [6] | Y | Y | Y | Y | NA | NA | NA | N | Y | Y | 6 |
Bin-Jaliah 2013 [44] | Y | NA | NA | NA | N | NA | NA | N | Y | Y | 3 |
Comelli 2009 [38] | Y | Y | Y | NA | NA | NA | NA | N | Y | Y | 5 |
Cui 2008 [1] | Y | Y | Y | Y | N | NA | NA | Y | Y | Y | 7 |
Dhaliwal 2020 [3] | Y | Y | NA | NA | NA | NA | NA | N | N | N | 2 |
El-Baz 2020 [11] | Y | Y | NA | NA | NA | NA | NA | N | N | N | 2 |
Fink 2020 [23] | Y | NA | NA | NA | NA | NA | NA | N | N | N | 1 |
Kamdi 2021 [21] | Y | Y | NA | NA | NA | NA | NA | N | Y | Y | 4 |
Kandhare 2012 [31] | Y | Y | Y | NA | NA | NA | NA | N | Y | Y | 5 |
Kiasalari 2017 [39] | Y | N | NA | NA | NA | NA | NA | N | Y | Y | 3 |
Kim 2013 [48] | Y | Y | Y | Y | NA | NA | NA | N | N | N | 4 |
Kishore 2017 [45] | Y | Y | NA | NA | NA | NA | NA | N | N | N | 2 |
Koneri 2014 [25] | Y | Y | NA | NA | NA | NA | NA | N | Y | Y | 4 |
Kuhad 2009 [26] | Y | Y | NA | NA | NA | NA | NA | N | N | N | 2 |
Kumar 2007 [32] | Y | NA | NA | Y | NA | NA | NA | N | Y | Y | 4 |
Lee 2018 [40] | Y | Y | Y | Y | NA | NA | NA | N | Y | Y | 6 |
Liu 2014 [46] | Y | N | NA | NA | NA | NA | NA | N | Y | Y | 3 |
Liu 2010 [28] | Y | Y | Y | Y | NA | NA | NA | N | Y | Y | 6 |
Najafi 2017 [47] | Y | Y | Y | Y | NA | NA | NA | N | N | Y | 5 |
Ranjithkumar 2013 [24] | Y | NA | NA | Y | NA | NA | NA | N | Y | Y | 4 |
Rashedinia 2020 [41] | Y | Y | NA | NA | NA | NA | NA | N | Y | Y | 4 |
Sharma 2006 [33] | Y | NA | NA | Y | NA | NA | NA | N | Y | Y | 4 |
Suryavanshi 2020 [34] | Y | Y | Y | Y | NA | NA | NA | N | Y | Y | 6 |
Tian 2016 [35] | Y | Y | Y | NA | NA | NA | NA | N | Y | Y | 5 |
Tiwari 2011 [27] | Y | Y | Y | NA | NA | NA | NA | N | Y | Y | 5 |
Yang 2015 [42] | Y | Y | Y | NA | NA | NA | NA | N | Y | Y | 5 |
Zhou 2012 [22] | Y | Y | Y | Y | NA | NA | NA | N | N | Y | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusli, N.; Ng, C.F.; Makpol, S.; Wong, Y.P.; Mohd Isa, I.L.; Remli, R. Antioxidant Effect in Diabetic Peripheral Neuropathy in Rat Model: A Systematic Review. Antioxidants 2024, 13, 1041. https://doi.org/10.3390/antiox13091041
Rusli N, Ng CF, Makpol S, Wong YP, Mohd Isa IL, Remli R. Antioxidant Effect in Diabetic Peripheral Neuropathy in Rat Model: A Systematic Review. Antioxidants. 2024; 13(9):1041. https://doi.org/10.3390/antiox13091041
Chicago/Turabian StyleRusli, Noradliyanti, Chen Fei Ng, Suzana Makpol, Yin Ping Wong, Isma Liza Mohd Isa, and Rabani Remli. 2024. "Antioxidant Effect in Diabetic Peripheral Neuropathy in Rat Model: A Systematic Review" Antioxidants 13, no. 9: 1041. https://doi.org/10.3390/antiox13091041
APA StyleRusli, N., Ng, C. F., Makpol, S., Wong, Y. P., Mohd Isa, I. L., & Remli, R. (2024). Antioxidant Effect in Diabetic Peripheral Neuropathy in Rat Model: A Systematic Review. Antioxidants, 13(9), 1041. https://doi.org/10.3390/antiox13091041