Linking GERD and the Peptide Bombesin: A New Therapeutic Strategy to Modulate Inflammatory, Oxidative Stress and Clinical Biochemistry Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Animals
2.3. GERD Model and Experimental Groups
2.4. Von Frey Test
2.5. Gastric pH
2.6. Quantitative Reverse Transcription PCR (RT-qPCR)
2.7. Malondialdehyde (MDA) Assay
2.8. ELISA Kits
2.9. Statistical Analysis
3. Results
3.1. Bombesin Reduces Epigastric Pain Induced by GERD
3.2. Bombesin Modulates Gastric pH, MUC5AC, and MUC5B Levels
3.3. Bombesin Reduces iNOS, COX2, 3-Nitrotyrosine, and Substance P Levels in the Esophagus
3.4. Bombesin Modulates MDA, GSH, CAT, and SOD Levels in the Esophagus
3.5. Bombesin Re-Establishes the Claudin-1, ZO-1, Filaggrin, and Occludin Levels in the Esophagus
3.6. Bombesin Reduces the TNF-α, IL-1β, IL-6, and IL-8 Levels in Serum
3.7. Bombesin Decreases the PAF, ROS, and RNS Levels in Serum
3.8. Bombesin Re-Establishes the Vitamin A, Vitamin B12, Vitamin C, and Vitamin E Levels in Serum
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Antunes, C.; Aleem, A.; Curtis, S.A. Gastroesophageal Reflux Disease; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Mousa, H.; Hassan, M. Gastroesophageal Reflux Disease. Pediatr. Clin. N. Am. 2017, 64, 487–505. [Google Scholar] [CrossRef] [PubMed]
- Tack, J.; Pandolfino, J.E. Pathophysiology of Gastroesophageal Reflux Disease. Gastroenterology 2018, 154, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Wang, J.; Li, Y.; Tan, N.; Cui, Y.; Chen, M.; Xiao, Y. Esophagogastric Junction Contractility Integral Reflect the Anti-reflux Barrier Dysfunction in Patients with Gastroesophageal Reflux Disease. J. Neurogastroenterol. Motil. 2017, 23, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Clarrett, D.M.; Hachem, C. Gastroesophageal Reflux Disease (GERD). Mo. Med. 2018, 115, 214–218. [Google Scholar]
- Fennerty, M.B. The continuum of GERD complications. Clevel. Clin. J. Med. 2003, 70 (Suppl. S5), S33–S50. [Google Scholar] [CrossRef]
- Sharma, P.; Yadlapati, R. Pathophysiology and treatment options for gastroesophageal reflux disease: Looking beyond acid. Ann. N. Y. Acad. Sci. 2021, 1486, 3–14. [Google Scholar] [CrossRef]
- Matsumura, T.; Arai, M.; Ishigami, H.; Fujie, M.; Ishikawa, K.; Akizue, N.; Taida, T.; Ohta, Y.; Hamanaka, S.; Okimoto, K.; et al. Evaluation of Esophageal Mucosal Integrity in Patients with Gastroesophageal Reflux Disease. Digestion 2018, 97, 31–37. [Google Scholar] [CrossRef]
- Bjorkman, E.V.; Edebo, A.; Oltean, M.; Casselbrant, A. Esophageal barrier function and tight junction expression in healthy subjects and patients with gastroesophageal reflux disease: Functionality of esophageal mucosa exposed to bile salt and trypsin in vitro. Scand. J. Gastroenterol. 2013, 48, 1118–1126. [Google Scholar] [CrossRef]
- Moonwiriyakit, A.; Pathomthongtaweechai, N.; Steinhagen, P.R.; Chantawichitwong, P.; Satianrapapong, W.; Pongkorpsakol, P. Tight junctions: From molecules to gastrointestinal diseases. Tissue Barriers 2023, 11, 2077620. [Google Scholar] [CrossRef]
- Rieder, F.; Biancani, P.; Harnett, K.; Yerian, L.; Falk, G.W. Inflammatory mediators in gastroesophageal reflux disease: Impact on esophageal motility, fibrosis, and carcinogenesis. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 298, G571–G581. [Google Scholar] [CrossRef]
- Ardizzone, A.; Mannino, D.; Casili, G.; Campolo, M.; Paterniti, I.; Lanza, M.; Filippone, A.; Repici, A.; Bova, V.; Capra, A.P.; et al. Efficacy of an oral suspension containing xyloglucan and pea proteins on a murine model of gastroesophageal reflux disease. Phytother. Res. 2024, 38, 1610–1622. [Google Scholar] [CrossRef]
- Altomare, A.; Guarino, M.P.; Cocca, S.; Emerenziani, S.; Cicala, M. Gastroesophageal reflux disease: Update on inflammation and symptom perception. World J. Gastroenterol. 2013, 19, 6523–6528. [Google Scholar] [CrossRef] [PubMed]
- van Rhijn, B.D.; Weijenborg, P.W.; Verheij, J.; van den Bergh Weerman, M.A.; Verseijden, C.; van den Wijngaard, R.M.; de Jonge, W.J.; Smout, A.J.; Bredenoord, A.J. Proton pump inhibitors partially restore mucosal integrity in patients with proton pump inhibitor-responsive esophageal eosinophilia but not eosinophilic esophagitis. Clin. Gastroenterol. Hepatol. 2014, 12, 1815–1823.e2. [Google Scholar] [CrossRef] [PubMed]
- Merali, Z.; McIntosh, J.; Anisman, H. Role of bombesin-related peptides in the control of food intake. Neuropeptides 1999, 33, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.C.; Chang, L.C.; Lin, K.J.; Tey, S.L.; Su, Y.T.; Liu, C.W.; Tsai, T.R.; Huang, S.C. Mechanism of bombesin-induced tonic contraction of the porcine lower esophageal sphincter. Sci. Rep. 2015, 5, 15879. [Google Scholar] [CrossRef]
- Washington, M.C.; Salyer, S.; Aglan, A.H.; Sayegh, A.I. Intravenous infusion of gastrin-releasing peptide-27 and bombesin in rats reveals differential effects on meal size and intermeal interval length. Peptides 2014, 51, 145–149. [Google Scholar] [CrossRef]
- Yang, Y.S.H.; Chang, H.W.; Lin, I.H.; Chien, L.N.; Wu, M.J.; Liu, Y.R.; Chu, P.G.; Xie, G.; Dong, F.; Jia, W.; et al. Long-term Proton Pump Inhibitor Administration Caused Physiological and Microbiota Changes in Rats. Sci. Rep. 2020, 10, 866. [Google Scholar] [CrossRef]
- Ardizzone, A.; Mannino, D.; Capra, A.P.; Repici, A.; Filippone, A.; Esposito, E.; Campolo, M. New Insights into the Mechanism of Ulva pertusa on Colitis in Mice: Modulation of the Pain and Immune System. Mar. Drugs 2023, 21, 298. [Google Scholar] [CrossRef]
- Campolo, M.; Lanza, M.; Paterniti, I.; Filippone, A.; Ardizzone, A.; Casili, G.; Scuderi, S.A.; Puglisi, C.; Mare, M.; Memeo, L.; et al. PEA-OXA Mitigates Oxaliplatin-Induced Painful Neuropathy through NF-kappaB/Nrf-2 Axis. Int. J. Mol. Sci. 2021, 22, 3927. [Google Scholar] [CrossRef]
- Crowe, M.S.; Kinsey, S.G. MAGL inhibition modulates gastric secretion and motility following NSAID exposure in mice. Eur. J. Pharmacol. 2017, 807, 198–204. [Google Scholar] [CrossRef]
- Calabrese, G.; Ardizzone, A.; Campolo, M.; Conoci, S.; Esposito, E.; Paterniti, I. Beneficial Effect of Tempol, a Membrane-Permeable Radical Scavenger, on Inflammation and Osteoarthritis in In Vitro Models. Biomolecules 2021, 11, 352. [Google Scholar] [CrossRef] [PubMed]
- Ardizzone, A.; Capra, A.P.; Repici, A.; Lanza, M.; Bova, V.; Palermo, N.; Paterniti, I.; Esposito, E. Rebalancing NOX2/Nrf2 to limit inflammation and oxidative stress across gut-brain axis in migraine. Free Radic. Biol. Med. 2024, 213, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Capra, A.P.; Crupi, L.; Panto, G.; Repici, A.; Calapai, F.; Squeri, R.; Ardizzone, A.; Esposito, E. Serum Pentraxin 3 as Promising Biomarker for the Long-Lasting Inflammatory Response of COVID-19. Int. J. Mol. Sci. 2023, 24, 14195. [Google Scholar] [CrossRef] [PubMed]
- Meloni, M.; Buratti, P.; Carriero, F.; Ceriotti, L. In vitro modelling of barrier impairment associated with Gastro-Oesophageal Reflux Disease (GERD). Clin. Exp. Gastroenterol. 2021, 14, 361–373. [Google Scholar] [CrossRef] [PubMed]
- Ang, D.; How, C.H.; Ang, T.L. Persistent gastro-oesophageal reflux symptoms despite proton pump inhibitor therapy. Singap. Med. J. 2016, 57, 546–551. [Google Scholar] [CrossRef]
- Colin-Jones, D.G. The role and limitations of H2-receptor antagonists in the treatment of gastro-oesophageal reflux disease. Aliment. Pharmacol. Ther. 1995, 9 (Suppl. S1), 9–14. [Google Scholar] [CrossRef]
- Ravisankar, P.; Koushik, O.; Reddy, A.; KumarU, A.; Pragna, P. A detailed analysis on acidity and ulcers in esophagus, gastric and duodenal ulcers and management. IOSR J. Dent. Med. Sci. (IOSR-JDMS) 2016, 15, 94–114. [Google Scholar]
- Han, X.; Zhang, Y.; Lee, A.; Li, Z.; Gao, J.; Wu, X.; Zhao, J.; Wang, H.; Chen, D.; Zou, D. Upregulation of acid sensing ion channels is associated with esophageal hypersensitivity in GERD. FASEB J. 2022, 36, e22083. [Google Scholar] [CrossRef]
- Kahrilas, P.J. Gastroesophageal reflux disease. N. Engl. J. Med. 2008, 359, 1700–1707. [Google Scholar] [CrossRef]
- Savarino, E.; Bredenoord, A.J.; Fox, M.; Pandolfino, J.E.; Roman, S.; Gyawali, C.P.; International Working Group for Disorders of Gastrointestinal Motility and Function. Advances in the physiological assessment and diagnosis of GERD. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 665–676. [Google Scholar] [CrossRef]
- Parkman, H.P. Normal gastric emptying and disorders of gastric emptying. In Yamada’s Textbook of Gastroenterology; Wiley: Hoboken, NJ, USA, 2022; pp. 1059–1092. [Google Scholar]
- Gaude, G.S. Pulmonary manifestations of gastroesophageal reflux disease. Ann. Thorac. Med. 2009, 4, 115–123. [Google Scholar] [CrossRef]
- Liu, D.; Qian, T.; Sun, S.; Jiang, J.J. Laryngopharyngeal reflux and inflammatory responses in mucosal barrier dysfunction of the upper aerodigestive tract. J. Inflamm. Res. 2021, 13, 1291–1304. [Google Scholar] [CrossRef]
- Niv, Y.; Fass, R. The role of mucin in GERD and its complications. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Jarque, S.; Ibarra, J.; Rubio-Brotons, M.; Garcia-Fernandez, J.; Terriente, J. Multiplex Analysis Platform for Endocrine Disruption Prediction Using Zebrafish. Int. J. Mol. Sci. 2019, 20, 1739. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Persson, C.; Hou, L.; Zheng, Z.; Yeager, M.; Lissowska, J.; Chanock, S.J.; Chow, W.H.; Ye, W. A comprehensive analysis of common genetic variation in MUC1, MUC5AC, MUC6 genes and risk of stomach cancer. Cancer Causes Control 2010, 21, 313–321. [Google Scholar] [CrossRef]
- Yoshida, N. Inflammation and oxidative stress in gastroesophageal reflux disease. J. Clin. Biochem. Nutr. 2007, 40, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Mosińska, P.; Salaga, M.; Fichna, J. The role of oxidative stress in the pathophysiology of gastrointestinal disorders. In Gastrointestinal Tissue; Academic Press: Cambridge, MA, USA, 2017; pp. 53–64. [Google Scholar]
- Nu-Ri, I.; Kim, B.; Jung, K.-Y.; Kim, T.H.; Baek, S.-K. Non-surgical animal model of gastroesophageal reflux disease by overeating induced in mice. J. Investig. Med. 2021, 69, 1208–1214. [Google Scholar] [CrossRef]
- Souza, R.F. Cytokines and immune modulators—Effects on esophageal inflammation. In Esophageal Disease and the Role of the Microbiome; Academic Press: Cambridge, MA, USA, 2023; pp. 13–34. [Google Scholar]
- Kim, Y.J.; Kim, E.H.; Hahm, K.B. Oxidative stress in inflammation-based gastrointestinal tract diseases: Challenges and opportunities. J. Gastroenterol. Hepatol. 2012, 27, 1004–1010. [Google Scholar] [CrossRef]
- Gracia-Sancho, J.; Salvadó, M.J. Gastrointestinal Tissue: Oxidative Stress and Dietary Antioxidants; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Song, J.H.; Han, Y.-M.; Kim, W.H.; Park, J.-M.; Jeong, M.; Go, E.J.; Hong, S.P.; Hahm, K.B. Oxidative stress from reflux esophagitis to esophageal cancer: The alleviation with antioxidants. Free Radic. Res. 2016, 50, 1071–1079. [Google Scholar] [CrossRef]
- Fang, Y.; Chen, H.; Hu, Y.; Djukic, Z.; Tevebaugh, W.; Shaheen, N.J.; Orlando, R.C.; Hu, J.; Chen, X. Gastroesophageal reflux activates the NF-κB pathway and impairs esophageal barrier function in mice. Am. J. Physiol.-Gastrointest. Liver Physiol. 2013, 305, G58–G65. [Google Scholar] [CrossRef]
- Ivashkin, V.; Evsyutina, Y.; Trukhmanov, A.; Lyamina, S.; Malyshev, I. Systemic inflammatory response in patients with gastroesophageal reflux disease. Am. J. Clin. Med. Res. 2015, 3, 64–69. [Google Scholar]
- Sogabe, M.; Okahisa, T.; Kimura, T.; Okamoto, K.; Miyamoto, H.; Muguruma, N.; Takayama, T. Influence of metabolic syndrome on upper gastrointestinal disease. Clin. J. Gastroenterol. 2016, 9, 191–202. [Google Scholar] [CrossRef]
- Martins, J.; Mendes, L.; Durães, S. Cardiovascular complications of gastrointestinal diseases. CCCM 2015, 102, 1–4. [Google Scholar]
- Hait, E.J.; McDonald, D.R. Impact of gastroesophageal reflux disease on mucosal immunity and atopic disorders. Clin. Rev. Allergy Immunol. 2019, 57, 213–225. [Google Scholar] [CrossRef]
- Ma, J.; Harnett, K.M.; Behar, J.; Biancani, P.; Cao, W. Signaling in TRPV1-induced platelet activating factor (PAF) in human esophageal epithelial cells. Am. J. Physiol.-Gastrointest. Liver Physiol. 2010, 298, G233–G240. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.; Kumar, K.; Shah, N. PAF physiology in target organ systems—A deep dive to understand the PAF mystery in pathogenesis of disease. Hearts 2021, 2, 551–560. [Google Scholar] [CrossRef]
- Liu, D.; Xu, L.; Chen, L.; Hu, J.; Wu, D.; Wang, G.; Shen, H.; Zhang, X.; Ji, Y.; Ruan, L. TRPV1 is a risk factor for sleep disturbance in patients with gastro-oesophageal reflux disease: A case control study. Scand. J. Gastroenterol. 2023, 58, 844–855. [Google Scholar] [CrossRef]
- Koyyada, A. Long-term use of proton pump inhibitors as a risk factor for various adverse manifestations. Therapies 2021, 76, 13–21. [Google Scholar] [CrossRef]
- Novotny, M.; Klimova, B.; Valis, M. PPI long term use: Risk of neurological adverse events? Front. Neurol. 2019, 9, 1142. [Google Scholar] [CrossRef]
- Maideen, N.M.P. Adverse effects associated with long-term use of proton pump inhibitors. Chonnam Med. J. 2023, 59, 115. [Google Scholar] [CrossRef]
- Chen, C.-H.; Lin, C.-L.; Kao, C.-H. Gastroesophageal reflux disease with proton pump inhibitor use is associated with an increased risk of osteoporosis: A nationwide population-based analysis. Osteoporos. Int. 2016, 27, 2117–2126. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.W. Proton pump inhibitors, H2-receptor antagonists, metformin, and vitamin B-12 deficiency: Clinical implications. Adv. Nutr. 2018, 9, 511S–518S. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ardizzone, A.; Scuderi, S.A.; Crupi, L.; Campolo, M.; Paterniti, I.; Capra, A.P.; Esposito, E. Linking GERD and the Peptide Bombesin: A New Therapeutic Strategy to Modulate Inflammatory, Oxidative Stress and Clinical Biochemistry Parameters. Antioxidants 2024, 13, 1043. https://doi.org/10.3390/antiox13091043
Ardizzone A, Scuderi SA, Crupi L, Campolo M, Paterniti I, Capra AP, Esposito E. Linking GERD and the Peptide Bombesin: A New Therapeutic Strategy to Modulate Inflammatory, Oxidative Stress and Clinical Biochemistry Parameters. Antioxidants. 2024; 13(9):1043. https://doi.org/10.3390/antiox13091043
Chicago/Turabian StyleArdizzone, Alessio, Sarah Adriana Scuderi, Lelio Crupi, Michela Campolo, Irene Paterniti, Anna Paola Capra, and Emanuela Esposito. 2024. "Linking GERD and the Peptide Bombesin: A New Therapeutic Strategy to Modulate Inflammatory, Oxidative Stress and Clinical Biochemistry Parameters" Antioxidants 13, no. 9: 1043. https://doi.org/10.3390/antiox13091043
APA StyleArdizzone, A., Scuderi, S. A., Crupi, L., Campolo, M., Paterniti, I., Capra, A. P., & Esposito, E. (2024). Linking GERD and the Peptide Bombesin: A New Therapeutic Strategy to Modulate Inflammatory, Oxidative Stress and Clinical Biochemistry Parameters. Antioxidants, 13(9), 1043. https://doi.org/10.3390/antiox13091043