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1. Introduction

Atherosclerosis is a pathological condition characterized by the inflammation of ar-
terial vessels, leading to serious cardiovascular outcomes such as myocardial infarction,
stroke, and death [1]. It is a multifactorial disease driven by classic cardiovascular risk
factors, including active or passive smoking [2], dyslipidemia [3], obesity [4,5], hyper-
tension [6], and diabetes [4,7]. These factors contribute to endothelial dysfunction and
the development of atherosclerosis primarily through mechanisms involving oxidative
stress [8].

Oxidative stress refers to an imbalance between the production of reactive oxygen
species (ROS) and the body’s ability to neutralize these reactive molecules using antioxi-
dants [9]. ROS are highly reactive molecules derived from oxygen, including free radicals
like superoxide anions and non-radical species like hydrogen peroxide [9]. While ROS
play essential roles in normal cellular functions, excessive ROS production or inadequate
antioxidant defenses can lead to cellular and tissue damage. This damage is pivotal in
the progression of atherosclerosis, as the oxidation of low-density lipoprotein (LDL), en-
dothelial dysfunction, and inflammation all contribute to the formation and progression of
atherosclerotic plaques.

Several enzymes, including nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase [2,10], myeloperoxidase (MPO) [11], and uncoupled nitric oxide synthase (NOS) [12],
are involved in generating ROS, which in turn contribute to a pro-inflammatory state. This
pro-inflammatory environment promotes atherosclerosis through mechanisms such as
endothelial dysfunction [13], LDL oxidation, diminished antioxidant defenses, and an
increased tendency toward a prothrombotic state [14,15].

This Special Issue seeks to explore the role of oxidative stress at various stages of the
atherosclerosis process and potential therapeutic approaches to modulate this pathogenic
pathway. Understanding the mechanisms by which oxidative stress influences atherosclerosis
could pave the way for novel therapeutic strategies aimed at reducing cardiovascular risk.

2. Overview of Published Articles

Ballester-Servera et al. explored the role of Lysyl oxidase (LOX)-mediated extracellular
matrix in atherosclerosis and aortic valve disease. Their data showed that LOX critically con-
tributes to oxidative stress, as evidenced by high 8-oxo-dG immunostaining, in cardiovas-
cular calcification (Contribution 1, https://doi.org/10.3390/antiox13050523, accessed on
26 April 2024). In line with the importance of oxidative stress in the atherosclerotic process,
one of the articles describes, for the first time, the pathogenic role of IL-33 in patients with ad-
vanced atherosclerosis (aAT). Specifically, IL-33-primed NETs further induced macrophage
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activation via the NLRP3 inflammasome, facilitating the release of atherogenic inflam-
matory mediators and MMPs (Contribution 2, https://doi.org/10.3390/antiox11122343,
accessed on 26 November 2022).

In addition, Marquès et al. (Contribution 3, https://doi.org/10.3390/antiox11112147,
accessed on 29 October 2022) observed that NOX5 overexpression may favor endothelial
dysfunction and contribute to the onset of cardiovascular diseases such as atherothrombosis
or stroke by promoting apoptosis, mitochondrial dysfunction, and cytoskeleton changes.

The Special Issue also highlighted the importance of modulating oxidative stress to
reduce the atherosclerotic process. For example, Vyas et al. (Contribution 4, https://doi.
org/10.3390/antiox12050997, accessed on 25 April 2023) demonstrated the significance
of carbon monoxide (CO) in atherogenic manifestations. The authors showed that CO-
releasing molecule A1 (CORM-A1), an organometallic compound with a boron core that
facilitates the slow and controlled release of CO, improved the histoarchitecture of the
thoracic aorta and the serum lipid profile of atherogenic SD rats. They reported that CORM-
A1 ameliorated pro-atherogenic manifestations by mitigating miR-34a-5p and subsequently
improving mitochondrial biogenesis and cellular redox status.

Finally, the Special Issue presented an important review that aims to describe the cur-
rent evidence regarding the antioxidant effects of oral antithrombotic therapies in patients
with atherosclerotic disease and atrial fibrillation (Contribution 5, https://doi.org/10.3
390/antiox12061185, accessed on 30 May 2023). In summary, the review underscores the
importance of oxidative stress in the pathophysiology of coronary artery disease (CAD), pe-
ripheral artery disease, venous thrombosis, and atrial fibrillation, as well as the pleiotropic
antioxidant effects of both oral antiplatelet and anticoagulant therapies. In the clinical
setting, the beneficial effects of aspirin, clopidogrel, ticagrelor, and rivaroxaban on oxidative
stress have been demonstrated in preliminary observational clinical studies involving pa-
tients with coronary artery disease. The authors conclude by stating that the choice of oral
antithrombotic therapy based on its antioxidant properties should follow a patient-centered
approach, and that in the future, the use of oxidative stress biomarkers could help identify
these patients.

3. Conclusions

This Special Issue evaluated several steps of atherosclerotic damage caused by oxida-
tive stress on the cardiovascular system, including Lysyl oxidase (LOX)-mediated extracellu-
lar matrix remodeling, the pathogenic role of IL-33, the potential of NOX5 overexpression to
promote endothelial dysfunction, and the anti-atherosclerotic effects of CORM-A1, as well
as the antioxidant effects of antiplatelet and anticoagulant therapies (Figure 1). While these
mechanisms warrant further investigation in larger human studies, they may represent
important avenues for exploring the atherosclerotic process. However, it is important to
mention other pathogenic mechanisms of atherosclerosis, such as the role of other NADPH
oxidase isoforms, like NOX2 [2] or nitric oxide [16], and other pathways implicated in
oxidative stress, such as dysbiosis [17], which are fundamental but were not covered in this
Special Issue.

Regarding the antioxidant effects of anticoagulant and antiplatelet therapies [18,19], it
remains unclear whether these effects can effectively mitigate oxidative stress in atheroscle-
rosis and its complications. So far, intervention studies involving vitamin supplementation
have yielded mixed results in terms of reducing cardiovascular complications. Furthermore,
the role of antioxidants in preventing the onset and recurrence of arrhythmias such as atrial
fibrillation is still unclear [20]. Therefore, future prospective, randomized controlled trials
are needed to assess the clinical impact of these therapies.
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Figure 1. This figure illustrates several potential mechanisms of atherosclerosis discussed in this 
Special Issue. These include the upregulation of LOX-1, which promotes the calcification of the 
extracellular matrix, thereby modulating the process of arterial atherosclerotic calcification. Another 
mechanism involves the overexpression of NOX-5, leading to endothelial dysfunction through the 
excessive production of reactive oxygen species (ROS). Additionally, an increased concentration of 
Interleukin 33 (IL-33) may encourage the formation of neutrophil extracellular traps (NETs), 
resulting in greater ROS production via the NLRP3 inflammasome pathway. An antioxidant and 
anti-atherosclerotic effect could potentially be achieved using certain antithrombotic drugs or by 
activating the CORM-A1 pathway, which is mediated by the inhibition of miR-34a-5p. 
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