Ginkgo Biloba Bioactive Phytochemicals against Age-Related Diseases: Evidence from a Stepwise, High-Throughput Research Platform
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of WGP
2.3. Animals
2.4. Anti-Aging Activity Assay
2.4.1. D-Gal-Induced Aging Mice and Treatments
2.4.2. Morris Water Maze Test
2.4.3. Biochemical Parameters in Serum and Tissue
2.4.4. Histopathological Analysis
2.5. Anti-Atherosclerosis Activity Assay
2.5.1. Diet and Treatment
2.5.2. Serum Chemical Analysis
2.5.3. Histopathological Examination
2.6. Anti-Fatigue Activity Assay
2.6.1. Animals and Experimental Design
2.6.2. Climbing Test
2.6.3. Exhaustive Swimming Test
2.6.4. Measurement of Blood Biochemical Parameters and Tissue Glycogen
2.7. Network Pharmacological Analysis
2.7.1. Active Compound Screening and Potential Targets’ Identification
2.7.2. Identification of Target Genes
2.7.3. Protein-Protein Interaction Network Analysis
2.7.4. GO and KEGG Pathway Analysis
2.7.5. Molecular Docking Analysis
2.8. Statistical Analysis
3. Results
3.1. Anti-Aging Activity
3.1.1. Assessment of Learning and Memory
3.1.2. Effects of WGP on the Spleen, Thymus, and Other Organ Indexes
3.1.3. Effects of WGP on Biochemical Parameters in Serum and Brain
3.1.4. Histopathological Changes
3.2. Anti-Atherosclerosis Activity
3.2.1. Effect of WGP on the Biochemical Parameters of HFD Rats
3.2.2. Histopathological Analysis
3.3. Anti-Fatigue Activity
3.3.1. Effects of WGP on Climbing Time and Exhaustive Swimming Time
3.3.2. Histopathological Changes
3.4. Network Pharmacology
3.4.1. Screening of Active Compounds and Potential Targets
3.4.2. Target Genes of Aging, Atherosclerosis, and Fatigue
3.4.3. PPI Network and Screening of Key Targets
3.4.4. GO Function and KEGG Pathway Enrichment Analysis
3.4.5. Molecular Docking
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Fullname |
AI | atherosclerosis index |
BLA | blood lactic acid |
CVDs | cardiovascular diseases |
D-gal | D-galactose |
GB | Ginkgo biloba L |
HDL-C | high-density lipoprotein cholesterol |
LDL-C | low-density lipoprotein cholesterol |
LG | liver glycogen |
MAO | monoamine oxidase |
MDA | malondialdehyde |
MG | muscle glycogen |
TC | total cholesterol |
TG | triglyceride |
WGP | whole ginkgo biloba L powder |
TCMSP | traditional Chinese medicine systems pharmacology database and analysis platform |
OB | oral bioavailability |
DL | drug likeness |
OMIM | online mendelian inheritance in man |
TTD database | therapeutic target database |
PPI | protein–protein interaction |
GO | gene ontology |
KEGG | Kyoto encyclopedia of genes and genomes |
FDR | false discovery rate |
BP | biological process |
CC | cellular component |
MF | molecular function |
EGCG | (-)-epigallocatechin-3-gallate |
References
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. Hallmarks of aging: An expanding universe. Cell 2023, 186, 243–278. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Huang, X.; Dou, L.; Yan, M.; Shen, T.; Tang, W.; Li, J. Aging and aging-related diseases: From molecular mechanisms to interventions and treatments. Signal Transduct. Target. Ther. 2022, 7, 391. [Google Scholar] [CrossRef]
- Partridge, L.; Fuentealba, M.; Kennedy, B.K. The quest to slow ageing through drug discovery. Nat. Rev. Drug Discov. 2020, 19, 513–532. [Google Scholar] [CrossRef]
- Li, D.; Ma, J.; Wei, B.; Gao, S.; Lang, Y.; Wan, X. Effectiveness and safety of ginkgo biloba preparations in the treatment of Alzheimer’s disease: A systematic review and meta-analysis. Front. Aging Neurosci. 2023, 15, 1124710. [Google Scholar]
- Libby, P. The changing landscape of atherosclerosis. Nature 2021, 592, 524–533. [Google Scholar] [CrossRef]
- Velayutham, N.; Lee, R.T. AGrimlink: The association between subclinical atherosclerosis and epigenetic age. Eur. Heart J. 2023, 44, 2710–2712. [Google Scholar] [CrossRef]
- Li, X.; Lu, L.; Chen, J.; Zhang, C.; Chen, H.; Huang, H. New insight into the mechanisms of ginkgo biloba extract in vascular aging prevention. Curr. Vasc. Pharmacol. 2020, 18, 334–345. [Google Scholar] [CrossRef]
- Björkegren, J.L.M.; Lusis, A.J. Atherosclerosis: Recent developments. Cell 2022, 185, 1630–1645. [Google Scholar] [CrossRef]
- Davies, K.; Dures, E.; Ng, W.-F. Fatigue in inflammatory rheumatic diseases: Current knowledge and areas for future research. Nat. Rev. Rheumatol. 2021, 17, 651–664. [Google Scholar] [CrossRef]
- Fabi, A.; Bhargava, R.; Fatigoni, S.; Guglielmo, M.; Horneber, M.; Roila, F.; Weis, J.; Jordan, K.; Ripamonti, C.I. Cancer-related fatigue: ESMO Clinical Practice Guidelines for diagnosis and treatment. Ann. Oncol. 2020, 31, 713–723. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Wang, X.; Guo, X.; Yan, X.; Li, Z.; Li, W. Chemical constituents, pharmacological activities and quality evaluation methods of genus Hippocampus: A comprehensive review. Chin. Herb. Med. 2024, 16, 344–357. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, X.; Wang, G.; Cui, P.; Wu, S.; Ai, C.; Hu, N.; Li, A.; He, B.; Shao, X.; et al. The nearly complete genome of Ginkgo biloba illuminates gymnosperm evolution. Nat. Plants 2021, 7, 748–756. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sheng, Y.; Liu, J.; Xu, G.; Yu, W.; Cui, Q.; Lu, X.; Du, P.; An, L. Hair-growth promoting effect and anti-inflammatory mechanism of Ginkgo biloba polysaccharides. Carbohydr. Polym. 2022, 278, 118811. [Google Scholar] [CrossRef]
- Christen, Y.; Maixent, J.M. What is Ginkgo biloba extract EGb 761? An overview—From molecular biology to clinical medicine. Cell. Mol. Biol. 2002, 48, 601–611. [Google Scholar]
- Hui, W.; Huang, W.; Zheng, Z.; Li, Y.; Li, P.; Yang, H. Ginkgo biloba extract promotes Treg differentiation to ameliorate ischemic stroke via inhibition of HIF-1alpha/HK2 pathway. Phytother. Res. 2023, 37, 5821–5836. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Xu, X.; Wang, H.; Wang, D.; Yan, W.; Zhu, J.; Hao, H.; Wang, G.; Cao, L.; et al. Ginkgo biloba extract ameliorates atherosclerosis via rebalancing gut flora and microbial metabolism. Phytother. Res. 2022, 36, 2463–2480. [Google Scholar] [CrossRef]
- Xie, L.; Zhu, Q.; Lu, J. Can we use Ginkgo biloba extract to treat Alzheimer’s disease? Lessons from preclinical and clinical Studies. Cells 2022, 11, 479. [Google Scholar] [CrossRef]
- Barbalho, S.M.; Direito, R.; Laurindo, L.F.; Marton, L.T.; Guiguer, E.L.; Goulart, R.A.; Tofano, R.J.; Carvalho, A.C.A.; Flato, U.A.P.; Capelluppi Tofano, V.A.; et al. Ginkgo biloba in the aging process: A narrative review. Antioxidants 2022, 11, 525. [Google Scholar] [CrossRef]
- Zuo, W.; Yan, F.; Zhang, B.; Li, J.; Mei, D. Advances in the studies of Ginkgo biloba leaves extract on aging-related diseases. Aging Dis. 2017, 8, 812–826. [Google Scholar] [CrossRef]
- Wang, H.; Shi, M.; Cao, F.; Su, E. Ginkgo biloba seed exocarp: A waste resource with abundant active substances and other components for potential applications. Food Res. Int. 2022, 160, 111637. [Google Scholar] [CrossRef]
- Wang, X.; Deng, Y.; Xie, P.; Liu, L.; Zhang, C.; Cheng, J.; Zhang, Y.; Liu, Y.; Huang, L.; Jiang, J. Novel bioactive peptides from ginkgo biloba seed protein and evaluation of their alpha-glucosidase inhibition activity. Food Chem. 2023, 404, 134481. [Google Scholar] [CrossRef] [PubMed]
- Boateng, I.D. A critical review of current technologies used to reduce ginkgotoxin, ginkgotoxin-5’-glucoside, ginkgolic acid, allergic glycoprotein, and cyanide in Ginkgo biloba L. seed. Food Chem. 2022, 382, 132408. [Google Scholar] [CrossRef] [PubMed]
- Nogales, C.; Mamdouh, Z.M.; List, M.; Kiel, C.; Casas, A.I.; Schmidt, H. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci. 2022, 43, 136–150. [Google Scholar] [CrossRef]
- Lee, H.; Wang, Z.; Deng, Z.; Wang, Y. Assessment of Six Blackberry Cultivars Using a Combination of Metabolomics, Biological Activity, and Network Pharmacology Approaches. Antioxidants 2024, 13, 319. [Google Scholar] [CrossRef]
- Nam, D.G.; Kim, M.; Choi, A.J.; Choe, J.S. Health Benefits of Antioxidant Bioactive Compounds in Ginger (Zingiber officinale) Leaves by Network Pharmacology Analysis Combined with Experimental Validation. Antioxidants 2024, 13, 652. [Google Scholar] [CrossRef]
- Jin, H.; Yang, C.; Jiang, C.; Li, L.; Pan, M.; Li, D.; Han, X.; Ding, J. Evaluation of Neurotoxicity in BALB/c Mice following Chronic Exposure to Polystyrene Microplastics. Environ. Health Perspect. 2022, 130, 107002. [Google Scholar] [CrossRef]
- Zhang, C.J.; Guo, J.Y.; Cheng, H.; Li, L.; Liu, Y.; Shi, Y.; Xu, J.; Yu, H.T. Spatial structure and anti-fatigue of polysaccharide from Inonotus obliquus. Int. J. Biol. Macromol. 2020, 151, 855–860. [Google Scholar] [CrossRef]
- Cai, M.; Zhu, H.; Xu, L.; Wang, J.; Xu, J.; Li, Z.; Yang, K.; Wu, J.; Sun, P. Structure, anti-fatigue activity and regulation on gut microflora in vivo of ethanol-fractional polysaccharides from Dendrobium officinale. Int. J. Biol. Macromol. 2023, 234, 123572. [Google Scholar] [CrossRef]
- Chen, J.; Wu, X.; Yu, R. Unraveling the Therapeutic Mechanism of Saussurea involucrata against Rheumatoid Arthritis: A Network Pharmacology and Molecular Modeling-Based Investigation. Nutrients 2023, 15, 4294. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, M.; Pan, Z.; Tian, X.; Zhao, Z.; Liu, T.; Yang, H.; Shi, Q.; Chen, X.; Zhang, Y.; et al. Arctiin-reinforced antioxidant microcarrier antagonizes osteoarthritis progression. J. Nanobiotechnology 2022, 20, 303. [Google Scholar] [CrossRef]
- Chen, S.; Li, B.; Chen, L.; Jiang, H. Uncovering the mechanism of resveratrol in the treatment of diabetic kidney disease based on network pharmacology, molecular docking, and experimental validation. J. Transl. Med. 2023, 21, 380. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Duan, C.; Xie, C.; Wang, H.; Li, Z.; Li, B.; Wang, T. Identification of key interferon-stimulated genes for indicating the condition of patients with systemic lupus erythematosus. Front. Immunol. 2022, 13, 962393. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Gong, L.; Luo, Y.; He, S.; Zhang, X.; Xie, X.; Li, X.; Feng, X. Transcriptomic analysis of asthma and allergic rhinitis reveals CST1 as a biomarker of unified airways. Front. Immunol. 2023, 14, 1048195. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, S.; Sun, X.; Meng, D.; Lai, C.; Zhang, M.; Wang, P.; Huang, X.; Gao, X. Analysis of the Protective Effects of Rosa roxburghii-Fermented Juice on Lipopolysaccharide-Induced Acute Lung Injury in Mice through Network Pharmacology and Metabolomics. Nutrients 2024, 16, 1376. [Google Scholar] [CrossRef]
- Lim, H.B.; Kim, D.H. Effect of heat treatment on 4’-O-methylpyridoxine (MPN) content in Ginkgo biloba seed extract solution. J. Sci. Food Agric. 2018, 98, 5153–5156. [Google Scholar] [CrossRef]
- Liu, X.G.; Lu, X.; Gao, W.; Li, P.; Yang, H. Structure, synthesis, biosynthesis, and activity of the characteristic compounds from Ginkgo biloba L. Nat. Prod. Rep. 2022, 39, 474–511. [Google Scholar] [CrossRef]
- Lorenzo, E.C.; Kuchel, G.A.; Kuo, C.L.; Moffitt, T.E.; Diniz, B.S. Major depression and the biological hallmarks of aging. Ageing Res. Rev. 2023, 83, 101805. [Google Scholar] [CrossRef]
- Hofer, S.J.; Liang, Y.; Zimmermann, A.; Schroeder, S.; Dengjel, J.; Kroemer, G.; Eisenberg, T.; Sigrist, S.J.; Madeo, F. Spermidine-induced hypusination preserves mitochondrial and cognitive function during aging. Autophagy 2021, 17, 2037–2039. [Google Scholar] [CrossRef]
- Hong, Y.; Liu, Q.; Peng, M.; Bai, M.; Li, J.; Sun, R.; Guo, H.; Xu, P.; Xie, Y.; Li, Y.; et al. High-frequency repetitive transcranial magnetic stimulation improves functional recovery by inhibiting neurotoxic polarization of astrocytes in ischemic rats. J. Neuroinflammation 2020, 17, 150. [Google Scholar] [CrossRef]
- Zhang, L.D.; Ma, L.; Zhang, L.; Dai, J.G.; Chang, L.G.; Huang, P.L.; Tian, X.Q. Hyperbaric Oxygen and Ginkgo Biloba Extract Ameliorate Cognitive and Memory Impairment via Nuclear Factor Kappa-B Pathway in Rat Model of Alzheimer’s Disease. Chin. Med. J. 2015, 128, 3088–3093. [Google Scholar] [CrossRef]
- Xie, G.; Xu, Z.; Li, F.; Kong, M.; Wang, P.; Shao, Y. Aerobic Exercise Ameliorates Cognitive Disorder and Declined Oxidative Stress via Modulating the Nrf2 Signaling Pathway in D-galactose Induced Aging Mouse Model. Neurochem. Res. 2024, 49, 2408–2422. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qiu, H.; Chen, S.; Li, D.; Zhao, X.; Guo, M.; Li, N.; Chen, C.; Qin, M.; Zhou, Y.; et al. MicroRNA-7 deficiency ameliorates d-galactose-induced aging in mice by regulating senescence of Kupffer cells. Aging Cell 2024, 23, e14145. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, X.; Wang, L.; Xu, L.; Liu, K.; Xu, L.; Shi, F.; Zhang, Y.; Gu, N.; Xiong, F. High-performance SOD mimetic enzyme Au@Ce for arresting cell cycle and proliferation of acute myeloid leukemia. Bioact. Mater. 2022, 10, 117–130. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, Y.M.; Huang, H.; Chen, C.; Wan, J.; Ma, L.H.; Sun, Y.Y.; Miao, H.H.; Wu, Y.Q. Sirtuin 3 protects against anesthesia/surgery-induced cognitive decline in aged mice by suppressing hippocampal neuroinflammation. J. Neuroinflamm. 2021, 18, 41. [Google Scholar] [CrossRef]
- Chen, R.; Yang, J.; Wu, M.; Zhao, D.; Yuan, Z.; Zeng, L.; Hu, J.; Zhang, X.; Wang, T.; Xu, J.; et al. M2 Macrophage Hybrid Membrane-Camouflaged Targeted Biomimetic Nanosomes to Reprogram Inflammatory Microenvironment for Enhanced Enzyme-Thermo-Immunotherapy. Adv. Mater. 2023, 35, e2304123. [Google Scholar] [CrossRef]
- Valsecchi, V.; Errico, F.; Bassareo, V.; Marino, C.; Nuzzo, T.; Brancaccio, P.; Laudati, G.; Casamassa, A.; Grimaldi, M.; D’Amico, A.; et al. SMN deficiency perturbs monoamine neurotransmitter metabolism in spinal muscular atrophy. Commun. Biol. 2023, 6, 1155. [Google Scholar] [CrossRef]
- Li, W.; Hu, X.; Wang, S.; Jiao, Z.; Sun, T.; Liu, T.; Song, K. Characterization and anti-tumor bioactivity of astragalus polysaccharides by immunomodulation. Int. J. Biol. Macromol. 2020, 145, 985–997. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, M.; Zhao, H.; Liu, Y.; Wang, T.; Lei, T.; Xiang, X.; Lu, L.; Yuan, Z.; Xu, J.; et al. Oral supramolecular nanovectors for dual natural medicine codelivery to prevent gastric mucosal lesion. Nanoscale 2022, 14, 8967–8977. [Google Scholar] [CrossRef]
- Xie, X.; Li, Y.; Zhao, D.; Fang, C.; He, D.; Yang, Q.; Yang, L.; Chen, R.; Tan, Q.; Zhang, J. Oral administration of natural polyphenol-loaded natural polysaccharide-cloaked lipidic nanocarriers to improve efficacy against small-cell lung cancer. Nanomedicine 2020, 29, 102261. [Google Scholar] [CrossRef]
- Jebari, K.; Charradi, K.; Mahmoudi, M.; Kadri, S.; Ben-Attia, M.; Mousslim, M.; El May, M.V.; Limam, F.; Aouani, E. Grape Seed Flour Extends Longevity by Improving Multi-Organ Dysfunction and Age-Associated Oxidative Stress and Inflammation in Healthy Rat. J. Gerontol. A Biol. Sci. Med. Sci. 2022, 77, 443–451. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Y.; He, D.; Hu, X.; Li, K.; Yang, Q.; Fang, C.; Zhong, C.; Yang, J.; Tan, Q.; et al. Natural Oral Anticancer Medication in Small Ethanol Nanosomes Coated with a Natural Alkaline Polysaccharide. ACS Appl. Mater. Interfaces 2020, 12, 16159–16167. [Google Scholar] [CrossRef] [PubMed]
- Simha, V. Management of hypertriglyceridemia. BMJ 2020, 371, m3109. [Google Scholar] [CrossRef]
- Ridker, P.M.; Bhatt, D.L.; Pradhan, A.D.; Glynn, R.J.; MacFadyen, J.G.; Nissen, S.E.; Prominent, R.-I.; Investigators, S. Inflammation and cholesterol as predictors of cardiovascular events among patients receiving statin therapy: A collaborative analysis of three randomised trials. Lancet 2023, 401, 1293–1301. [Google Scholar] [CrossRef]
- Bao, X.; Liang, Y.; Chang, H.; Cai, T.; Feng, B.; Gordon, K.; Zhu, Y.; Shi, H.; He, Y.; Xie, L. Targeting proprotein convertase subtilisin/kexin type 9 (PCSK9): From bench to bedside. Signal Transduct. Target. Ther. 2024, 9, 13. [Google Scholar] [CrossRef]
- Asiwe, J.N.; Ojetola, A.A.; Ekene, N.E.; Osirim, E.; Nnamudi, A.C.; Oritsemuelebi, B.; Onuelu, J.E.; Asiwe, N.; Eruotor, H.O.; Inegbenehi, S. Pleiotropic attenuating effect of Ginkgo biloba against isoprenaline-induced myocardial infarction via improving Bcl-2/mTOR/ERK1/2/Na(+), K(+)-ATPase activities. Chin. Herb. Med. 2024, 16, 282–292. [Google Scholar] [CrossRef]
- Wang, L.T.; Huang, H.; Chang, Y.H.; Wang, Y.Q.; Wang, J.D.; Cai, Z.H.; Efferth, T.; Fu, Y.J. Biflavonoids from Ginkgo biloba leaves as a novel anti-atherosclerotic candidate: Inhibition potency and mechanistic analysis. Phytomedicine 2022, 102, 154053. [Google Scholar] [CrossRef]
- Pierre, S.V.; Lesnik, P.; Moreau, M.; Bonello, L.; Droy-Lefaix, M.T.; Sennoune, S.; Duran, M.J.; Pressley, T.A.; Sampol, J.; Chapman, J.; et al. The standardized Ginkgo biloba extract Egb-761 protects vascular endothelium exposed to oxidized low density lipoproteins. Cell. Mol. Biol. 2008, 54, 1032–1042. [Google Scholar]
- Wang, Q.; Zhao, X.; Jiang, Y.; Jin, B.; Wang, L. Functions of Representative Terpenoids and Their Biosynthesis Mechanisms in Medicinal Plants. Biomolecules 2023, 13, 1725. [Google Scholar] [CrossRef]
- Choghakhori, R.; Abbasnezhad, A.; Yazdi, M.; Ahmadvand, H. Antidiabetic, hypolipidemic, and antioxidant activities of Pistacia atlantica: A systematic review and meta-analysis of preclinical studies. Phytother. Res. 2023, 37, 3698–3711. [Google Scholar] [CrossRef]
- Li, Y.; Shi, G.; Liang, W.; Shang, H.; Li, H.; Han, Y.; Zhao, W.; Bai, L.; Qin, C. Allogeneic Adipose-Derived Mesenchymal Stem Cell Transplantation Alleviates Atherosclerotic Plaque by Inhibiting Ox-LDL Uptake, Inflammatory Reaction and Endothelial Damage in Rabbits. Cells 2023, 12, 1936. [Google Scholar] [CrossRef]
- Guan, T.; Li, S.; Guan, Q.; Shi, J.S.; Lu, Z.M.; Xu, Z.H.; Geng, Y. Spore Powder of Paecilomyces hepiali Shapes Gut Microbiota to Relieve Exercise-Induced Fatigue in Mice. Nutrients 2022, 14, 2973. [Google Scholar] [CrossRef] [PubMed]
- Fountain, W.A.; Bopp, T.S.; Bene, M.; Walston, J.D. Metabolic dysfunction and the development of physical frailty: An aging war of attrition. Geroscience 2024, 46, 3711–3721. [Google Scholar] [CrossRef] [PubMed]
- Kamel, K.S.; Oh, M.S.; Halperin, M.L. L-lactic acidosis: Pathophysiology, classification, and causes; emphasis on biochemical and metabolic basis. Kidney Int. 2020, 97, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Huang, Y.; Yan, Z.; He, D.; Zhang, Y.; Xu, J.; Li, Y.; Xie, X.; Xie, J.; Shi, D.; et al. Biomimetic Membrane-Structured Nanovesicles Carrying a Supramolecular Enzyme to Cure Lung Cancer. ACS Appl. Mater. Interfaces 2020, 12, 31112–31123. [Google Scholar] [CrossRef]
- Jiang, P.; Ji, X.; Xia, J.; Xu, M.; Hao, F.; Tong, H.; Jiao, L. Structure and potential anti-fatigue mechanism of polysaccharides from Bupleurum chinense DC. Carbohydr. Polym. 2023, 306, 120608. [Google Scholar] [CrossRef]
- Hargreaves, M.; Spriet, L.L. Skeletal muscle energy metabolism during exercise. Nat. Metab. 2020, 2, 817–828. [Google Scholar] [CrossRef]
- Xu, J.; Wu, M.; Yang, J.; Zhao, D.; He, D.; Liu, Y.; Yan, X.; Liu, Y.; Pu, D.; Tan, Q.; et al. Multimodal smart systems reprogramme macrophages and remove urate to treat gouty arthritis. Nat. Nanotechnol. 2024. [Google Scholar] [CrossRef]
- Choi, Y.; Jeon, H.; Akin, J.W.; Curry, T.E.; Jo, M. The FOS/AP-1 Regulates Metabolic Changes and Cholesterol Synthesis in Human Periovulatory Granulosa Cells. Endocrinology 2021, 162, bqab127. [Google Scholar] [CrossRef]
- Jin, Z.; Li, J.; Pi, J.; Chu, Q.; Wei, W.; Du, Z.; Qing, L.; Zhao, X.; Wu, W. Geniposide alleviates atherosclerosis by regulating macrophage polarization via the FOS/MAPK signaling pathway. Biomed. Pharmacother. 2020, 125, 110015. [Google Scholar] [CrossRef]
- Wu, Y.Z.; Tsai, Y.Y.; Chang, L.S.; Chen, Y.J. Evaluation of Gallic Acid-Coated Gold Nanoparticles as an Anti-Aging Ingredient. Pharmaceuticals 2021, 14, 1071. [Google Scholar] [CrossRef]
- Abulizi, A.; Simayi, J.; Nuermaimaiti, M.; Han, M.; Hailati, S.; Talihati, Z.; Maihemuti, N.; Nuer, M.; Khan, N.; Abudurousuli, K.; et al. Quince extract resists atherosclerosis in rats by down-regulating the EGFR/PI3K/Akt/GSK-3beta pathway. Biomed. Pharmacother. 2023, 160, 114330. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jia, Q.; Zhang, Y.; Wei, J.; Liu, P. Amygdalin Attenuates Atherosclerosis and Plays an Anti-Inflammatory Role in ApoE Knock-Out Mice and Bone Marrow-Derived Macrophages. Front. Pharmacol. 2020, 11, 590929. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Guo, Z.; Lv, P.; Hu, K.; Wu, T.; Lin, Z.; Xue, Y.; Zhang, Y.; Guo, Z. Proline/serine-rich coiled-coil protein 1 inhibits macrophage inflammation and delays atherosclerotic progression by binding to Annexin A2. Clin. Transl. Med. 2023, 13, e1220. [Google Scholar] [CrossRef]
- Park, J.H.; Ryu, S.J.; Kim, B.J.; Cho, H.J.; Park, C.H.; Choi, H.J.C.; Jang, E.J.; Yang, E.J.; Hwang, J.A.; Woo, S.H.; et al. Disruption of nucleocytoplasmic trafficking as a cellular senescence driver. Exp. Mol. Med. 2021, 53, 1092–1108. [Google Scholar] [CrossRef]
- An, H.J.; Gwon, M.G.; Gu, H.; Bae, S.; Leem, J.; Lee, J.B.; Park, K.K. STAT3/NF-kappaB decoy oligodeoxynucleotides inhibit atherosclerosis through regulation of the STAT/NF-kappaB signaling pathway in a mouse model of atherosclerosis. Int. J. Mol. Med. 2023, 51, 37. [Google Scholar] [CrossRef]
- Huang, R.; Sun, Y.; Liu, R.; Zhu, B.; Zhang, H.; Wu, H. ZeXieYin formula alleviates atherosclerosis by inhibiting the MAPK/NF-kappaB signaling pathway in APOE-/- mice to attenuate vascular inflammation and increase plaque stability. J. Ethnopharmacol. 2024, 327, 117969. [Google Scholar] [CrossRef]
- Xu, C.; Huang, X.; Tong, Y.; Feng, X.; Wang, Y.; Wang, C.; Jiang, Y. Icariin modulates the sirtuin/NF-kappaB pathway and exerts anti-aging effects in human lung fibroblasts. Mol. Med. Rep. 2020, 22, 3833–3839. [Google Scholar]
- Nie, L.; He, K.; Qiu, C.; Li, Q.; Xiong, B.; Gao, C.; Zhang, X.; Jing, M.; Wu, W.; Liu, J.; et al. Tetramethylpyrazine Nitrone alleviates D-galactose-induced murine skeletal muscle aging and motor deficits by activating the AMPK signaling pathway. Biomed. Pharmacother. 2024, 173, 116415. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Xiang, X.; Jiang, X.; Liu, Y.; Zhang, M.; Lu, L.; Zhang, X.; Liu, X.; Tan, Q.; Zhang, J. Ginkgo Biloba Bioactive Phytochemicals against Age-Related Diseases: Evidence from a Stepwise, High-Throughput Research Platform. Antioxidants 2024, 13, 1104. https://doi.org/10.3390/antiox13091104
Yuan Y, Xiang X, Jiang X, Liu Y, Zhang M, Lu L, Zhang X, Liu X, Tan Q, Zhang J. Ginkgo Biloba Bioactive Phytochemicals against Age-Related Diseases: Evidence from a Stepwise, High-Throughput Research Platform. Antioxidants. 2024; 13(9):1104. https://doi.org/10.3390/antiox13091104
Chicago/Turabian StyleYuan, Yuming, Xiaoyan Xiang, Xuejun Jiang, Yingju Liu, Ming Zhang, Luyang Lu, Xinping Zhang, Xinyi Liu, Qunyou Tan, and Jingqing Zhang. 2024. "Ginkgo Biloba Bioactive Phytochemicals against Age-Related Diseases: Evidence from a Stepwise, High-Throughput Research Platform" Antioxidants 13, no. 9: 1104. https://doi.org/10.3390/antiox13091104
APA StyleYuan, Y., Xiang, X., Jiang, X., Liu, Y., Zhang, M., Lu, L., Zhang, X., Liu, X., Tan, Q., & Zhang, J. (2024). Ginkgo Biloba Bioactive Phytochemicals against Age-Related Diseases: Evidence from a Stepwise, High-Throughput Research Platform. Antioxidants, 13(9), 1104. https://doi.org/10.3390/antiox13091104