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Abstract: Sperm oxidative stress has been extensively associated to male infertility. However, tests
to detect this parameter have not been yet introduced in clinical practice and no definitive data are
present on the extent of oxidative stress in male infertility. In this study, we used a novel and reliable
flow cytometric method to reveal sperm ROS production in subfertile patients (n = 131) and in healthy
donors (n = 31). Oxidative stress was higher in subfertile patients (14.22 [10.21–22.08]%) than in
healthy donors (9.75 [8.00–14.90]% (p < 0.01)), but no correlation was found with age, semen quality
or sDF. We also failed to detect an increase in sperm ROS production with semen viscosity or leuko-
cytospermia, but a sharp impact of semen bacteria was evident (with bacteria: 31.61 [14.08–46.78]%
vs. without bacteria: 14.20 [10.12–22.00]%, p < 0.01). Finally, after establishing a threshold as the 95th
percentile in healthy donors, we found that 29% of subfertile patients exceeded this threshold. The
percentage decreased to 25.56% when we excluded subjects with bacteriospermia and increased to
60.87% when only these patients were considered. In conclusion, 29% of subfertile patients showed
an excessive sperm ROS production. Surprisingly, this parameter appears to be independent from
routine semen analysis and even sDF determination, promising to provide additional information on
male infertility.

Keywords: oxidative stress; male infertility; routine semen analysis; sperm DNA fragmentation;
leukocytospermia; semen viscosity; bacteriospermia

1. Introduction

Male infertility varies from 4.5 to 12%, with the highest values in Europe and Aus-
tralia [1], and accounts for approximately 30–50% of all infertile couples [2]. A large
percentage of infertile men are idiopathic or unexplained, meaning that the causes remain
obscure. In idiopathic male infertility, semen quality is impaired but physical examination
and hormonal levels are normal and there is not a previous history of reproductive issues.
In unexplained infertility, a female factor can be ruled out and men show normal semen
parameters, remaining undiagnosed because of lack of clinical findings. According to
several authors [3–5], a relevant percentage of cases of idiopathic and/or unexplained
male infertility would be due to oxidative stress, a condition where the redox balance is
perturbed by an excessive presence of oxidant molecules, including reactive oxygen species
(ROS). Indeed, as indicated by studies on humans and animals, many environmental [6–11],
lifestyle [12–26] and endogenous factors [27] known to impact male fertility are believed to
act by inducing oxidative stress; however, the exact mechanism remains elusive. Spermato-
zoa are quite vulnerable to ROS because they lose most cytoplasmic antioxidant enzymes
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during spermiogenesis, show high levels of membrane poly unsaturated fatty acids prone
to lipid peroxidation and do not have DNA repair mechanisms [28].

Accordingly, numerous studies have tested treatments with antioxidants for male
infertility, reporting beneficial effects in several cases [29–33]. However, the evidence is
insufficient to recommend the clinical use of antioxidants [34], which may even cause
deleterious effects on sperm functions when administrated in improper doses. Indeed, it is
well known that small and time-regulated amounts of ROS play an important role in crucial
processes such as the maturation, capacitation, hyperactivation and acrosome reaction
of spermatozoa [35–37]. In addition, excessive or unnecessary exposure to antioxidants
alters redox balance and may lead to reductive stress, a condition also deleterious as
oxidative stress [38]. In this scenario, it is clear that it is of upmost importance to assess the
individual’s seminal redox state both before starting the treatment and during the follow up
of the patient. Hence, as recently discussed [39], there is an urgency to develop validated
assays able to reveal sperm oxidative stress.

Our group recently showed a novel flow cytometric method to detect excessive ROS
production by the viable sperm fraction of native semen samples [40]. Native semen
samples are more representative of the in vivo conditions than selected sperm populations,
used by most flow cytometric methods. In addition, the viable fraction is the most important
one from a clinical point of view, as well as to represent the real target of oxidative attack [41].
In previous studies, we showed that this method is able to reveal the oxidative burst
accompanying the freezing/thawing processes during sperm cryopreservation [42] and
the spontaneous increase of sperm ROS generation during short in vitro incubations [40].
Further, with this method, we showed that cancer highly increases sperm oxidative stress
with respect to normozoospermic subfertile subjects and healthy donors [43].

The aim of this study was to use the above novel method for measuring excessive
sperm ROS production in male partners of infertile couples attending our clinics to undergo
routine semen analysis. After establishing a threshold value in healthy donors, we deter-
mined how many men exhibited high levels of sperm oxidative stress. We also evaluated
the relationship between sperm ROS production and putative signs of semen oxidative
stress, standard semen parameters and sperm DNA fragmentation (sDF) amounts.

2. Materials and Methods
2.1. Reagents and Media

Human Tubal Fluid (HTF) was purchased by Fujifilm, Irvine Scientific (Rome, Italy).
Halosperm kit was from Halotech DNA (Madrid, Spain). MitoSOX Red and LIVE⁄DEAD
Fixable Green Dead Cell Stain (LD-G) were from Thermo Fisher Scientific (Waltham, MA,
USA). All the other reagents were from Merck Life Science, Milan, Italy.

2.2. Study Population and Semen Collection

Semen samples were collected consecutively among male partners of infertile cou-
ples (hereon indicated as subfertile patients) attending the Semen Cryopreservation and
Andrology Laboratory of Careggi Hospital to undergo routine semen analysis from April
2023 to May 2024. Men with azoospermia or an insufficient sperm number for executing
determination of oxidative stress (<0.5 million available) were excluded. In the recruited
subjects, we detected sperm ROS production (n = 131) and sDF (n = 127). For control,
we recruited 31 healthy donors who were selected among volunteers by administrating a
structured questionnaire aimed at collecting information on any condition which might
induce semen oxidative stress. A daily sedentary time higher than 8 h/day, occupational
exposure to toxicants or high temperature, smoking habits, daily alcohol consumption,
cryptorchidism and varicocele, occurrence of urogenital infections within 6 months, drug
consumption and current disease were exclusion criteria. We also excluded, from the
control group, men with leukocytospermia, semen viscosity and semen bacteria.

Written informed consent was obtained from participants. The study was approved
by the ethical committee of AOU Careggi (protocol No. 15693/CAM_BIO).
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2.3. Routine Semen Analysis

Semen sample collection and routine semen analysis were conducted according to
the WHO guidelines [44]. Briefly, sperm concentration was assessed in formalin-diluted
samples by a Neubauer-improved cell counting chamber; sperm motility was scored
by distinguishing progressive, non-progressive and immotile spermatozoa in at least
200 cells; and Diff-Quick staining was used for assessing sperm morphology in at least
200 spermatozoa. Semen pH and semen volume were determined using a pH paper and
weighting the sample, respectively. Detection of leukocytes was conducted when round
cells exceeded 1 million/mL using pre-stained slides Testsimplets® (AB Analitica, Padua,
Italy) then evaluated at microscope with a 100x objective. We took a concentration of
leukocytes ≥1 × 106/mL as threshold for leukocytospermia. Agglutinates and aggregates
were determined by checking the presence of motile spermatozoa sticking, respectively,
to each other and to cells or debris or immotile spermatozoa. Viscosity was assessed by
aspirating semen with a pipette, allowing it to drop by gravity and verifying whether
discrete drops or any thread were formed. The presence of bacteria was qualitatively evalu-
ated by microscopic observation. The Semen Cryopreservation and Andrology Laboratory
of Careggi Hospital participates in external quality control programs: United Kingdom
National External Quality Assessment Service (NEQAS) and External Quality Assessment
of Tuscany.

2.4. Determination of Semen Oxidative Stress

Oxidative stress was determined by double staining with MitoSOX Red and LD-G
then detected by flow cytometry [40]. Briefly, semen samples (0.5–3 million of spermatozoa)
were washed twice and then incubated in 500 µL PBS containing LD-G (1:10,000 dilution,
1 h at RT in the dark). After two washes with 200 µL of PBS, samples were split into
two 100 µL aliquots which were incubated for 15 min at RT after adding (test sample) or
not (negative control) 2 µM MitoSOX Red. After two further washes with PBS, samples
were resuspended in 400 µL of PBS for acquisition with a flow cytometer (FACScan, BD
Biosciences, San Jose, CA, USA) equipped with a 15-mW argon-ion laser for excitation.
After proper compensation of the spillover of LD-G into MitoSOX Red or propidium iodide
(PI, see below) channel and of MitoSOX Red into LD-G channel, LD-G was revealed by
an FL-1 detector (515–555 nm wavelength band), whereas MitoSOX Red and PI were
detected by an FL-2 detector (563–607 nm wavelength band). For each sample, 5000 LD-G
negative events (i.e., viable spermatozoa) were recorded within a flame-shaped region (FR)
drawn in the FSC/SSC dot plot. FR excludes debris and all non-sperm cells and contains
spermatozoa and apoptotic bodies [45]. Apoptotic bodies are stained by LD-G and, thus,
do not interfere with analysis of viable spermatozoa (LD-G negative) [40]. For data analysis,
we established quadrants including about 1% of events in the Low Right quadrant of the
MitoSOX Red/LD-G dot plot of negative control (Figure 1, upper panels). Hence, such
quadrants were copied in the dot plot of the corresponding test sample (Figure 1, lower
panels). Finally, we calculated oxidative stress as the percentage of viable spermatozoa
with MitoSOX Red staining on total viable spermatozoa (lower right quadrant/lower right
and lower left quadrants in the MitoSOX Red/LD-G dot plot, Figure 1). We also calculated
the percentage of viable spermatozoa with MitoSOX Red staining on total (viable and
non-viable) spermatozoa (hereon indicated as total oxidative stress, tOS). To determine
total spermatozoa, after the first acquisition, we treated the negative control with digitonin
(200 mg/mL) and PI (30 mg/mL) and, then, acquired it again by flow cytometer. Since
PI stains spermatozoa but not apoptotic bodies, only the former are shifted towards high
values of red fluorescence, allowing their exact identification (for other details, see [43]).
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Figure 1. Sperm ROS production in semen samples. Representative MitoSOX Red/LD-G dot plots of
a healthy donor (A), a subfertile patient (B) and a subfertile patients with semen bacteria (C). The
percentage of oxidative stress is also reported for each example. Quadrant setting of each dot plot
was established on the corresponding negative control (first row). LL, lower left quadrant; LR, lower
right quadrant; UL, upper left quadrant; UR, upper right quadrant.

2.5. Determination of sDF

SDF was determined with SCD (Sperm Chromatin Dispersion) test using Halosperm
kit, following manufacturer’s instructions with some modifications. Briefly, 50,000 sperma-
tozoa were resuspended in 1% low melting point agarose, layered on pre-coated agarose
slides and covered with coverslips. Hence, slides were kept at 4 ◦C for few minutes and then
treated with the acid denaturation solution and the lysing solution, both provided by the
kit. Then, we dehydrated samples with 70% and then 100% Ethanol and stained them with
eosin and then thiazine (15 min at RT for each stain). After drying, sDF was determined by
scoring spermatozoa without or with small halo in at least 200 spermatozoa/slide [46].

2.6. Statistical Analyses

For data analysis, we used Statistical Package for the Social Sciences for Windows
(SPSS 29, Inc., Chicago, IL, USA). To check the normal distribution of the tested variables,
we used a Kolmogorov–Smirnov test. Most variables exhibited a non-normal distribution;
hence, data were expressed as median [interquartile range, IQR]. Statistical differences in
age, abstinence, semen parameters, oxidative stress and sDF between subfertile patients
and healthy donors were assessed by the Mann–Whitney U test. The same test was used to
compare the values of oxidative stress, tOS and sDF between patients with and without
leukocytospermia, viscosity, presence of agglutinates/aggregates and bacteria. Correlation
analyses were performed calculating the Spearman’s coefficient and applying the Holm
method for adjusting the p value for multiple comparisons. These last analyses were
conducted using R software 4.4.0 with the following libraries: “correlation”, “ggstatsplot”,
and “PerformanceAnalytics”.
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3. Results

In this study, we detected oxidative stress in native semen samples with a MitoSOX
Red/LD-G double staining then revealed by flow cytometry. This method detects the
viable sperm fraction with excessive ROS production and expresses oxidative stress as
a percentage of the viable spermatozoa. We also calculated the percentage of viable
spermatozoa with excessive ROS production on total (viable and non-viable) spermatozoa
(tOS) (see Materials and Methods for further details). In Table 1, the values for age and
conventional semen parameters of 131 consecutively recruited subfertile patients and of
31 healthy donors are reported. As shown, subfertile patients were older and with a worse
motility (lower progressive motility and a higher percentage of immotile cells) than healthy
donors. An increase in semen pH and abstinence length was also observed in subfertile
patients, albeit remaining within a physiological range or the WHO guidelines indications,
respectively. Finally, a trend towards a better sperm morphology was also observed in
healthy donors. As shown in Figures 1 and 2, subfertile patients also had higher values for
oxidative stress (14.22 [10.21–22.08]%) and sDF (16.00 [11.00–23.50]%) than HD (oxidative
stress: 9.75 [8.00–14.90]%, p < 0.01; sDF: 10.00 [7.00–14.00]%, p < 0.001), whereas similar
values of tOS were found in the two groups (subfertile patients: 8.37 [6.50–13.28]% vs.
healthy donors: 7.70 [6.00–10.61]%, p = 0.093).

Table 1. Age, abstinence and main semen parameters in subfertile patients and healthy donors. SP,
subfertile patients; HD, healthy donors. Data are median [IQR]. Mann-Whitney U-test.

Parameter SP
n = 131

HD
n = 31 p-Values

Age
(y)

35.00
[29.00–42.00]

29.00
[25.00–32.00] <0.001

Abstinence
(d)

4.00
[3.00–5.00]

3.00
[2.00–5.00] 00.012

Volume
(mL)

3.80
[2.80–4.80]

3.60
[2.30–4.60] 0.375

pH 7.60
[7.60–7.80]

7.40
[7.20–7.60] <0.001

Concentration
(106/mL)

57.00
[23.80–96.00]

83.00
[40.00–100.00] 0.112

Number
(106/ejaculate)

205.84
[87.00–338.00]

228.80
[138.56–393.30] 0.194

Progressive Motility
(%)

49.00
[36.00–60.00]

57.00
[51.00–65.00] 0.002

Immotile
(%)

41.00
[32.00–54.00]

32.00
[25.00–40.00] <0.001

Normal Morphology
(%)

4.00
[2.00–6.00]

4.00
[3.00–7.00] 0.063

Then, we studied the relationship of oxidative stress, tOS and sDF with age and con-
ventional semen parameters by calculating the Spearman’s coefficient (Table 2). We found
the expected significant correlations between sDF and progressive motility, percentage of
immotile spermatozoa and sperm concentration [47,48]. In addition, sDF also correlated
negatively with tOS. Conversely, oxidative stress showed no significant correlation with
either age or conventional sperm parameters or sDF (Table 2).
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Figure 2. Oxidative stress and sDF as found in subfertile patients (SP) and healthy donors (HD). Box
graphs report median [IQR] and minimum and maximum values (excluding outliers). * p (vs. HD) < 0.01;
** p (vs. HD) < 0.001; Mann-Whitney U-test.

Table 2. Spearman’s correlation coefficients of the associations between oxidative stress or tOS or
sDF and age, abstinence and semen parameters.

Rho Coefficient
(95%CI) Oxidative Stress p-Values tOS p-Values sDF p-Values

Age 0.07
(−0.11–0.24) 0.450 0.11

(−0.07–0.28) 0.225 0.06
(−0.12–0.24) 0.480

Abstinence 0.08
(−0.10–0.25) 0.450 0.11

(−0.07–0.28) 0.225 0.09
(−0.09–0.27) 0.297

Volume 0.15
(−0.03–0.31) 0.095 0.06

(−0.11–0.24) 0.466 0.18
(0.00–0.35) 0.040

pH −0.02
(−0.19–0.16) 0.861 −0.06

(−0.24–0.12) 0.485 −0.02
(−0.20–0.16) 0.808

Concentration −0.14
(−0.31–0.04) 0.116 0.01

(−0.16–0.19) 0.867 −0.18
(−0.35–0.00) 0.038

Number −0.06
(−0.24–0.11) 0.461 0.05

(−0.13–0.22) 0.571 −0.11
(−0.29–0.07) 0.210

Progressive
Motility

−0.11
(−0.29–0.06) 0.191 0.15

(−0.03–0.32) 0.087 −0.37
(−0.51–0.20) <0.001

Immotile 0.13
(−0.05–0.30) 0.141 −0.12

(−0.29–0.06) 0.171 0.32
(0.15–0.47) <0.001

Normal
Morphology

0.07
(−0.11–0.24) 0.460 0.17

(−0.01–0.34) 0.051 −0.07
(−0.24–0.12) 0.465

Oxidative Stress / 0.82
(0.75–0.87) 0.000 0.07

(−0.11–0.24) 0.461

tOS 0.82
(0.75–0.87) <0.001 / −0.21

(−0.37–0.03) 0.018

sDF 0.07
(−0.11–0.24) 0.461 −0.21

(−0.37–0.03) 0.018 /

p value adjustment for multiple comparisons (Holm method).

Beside main semen and sperm parameters, routine semen analysis determines also
leukocytospermia, viscosity, presence of agglutinates or aggregates and bacteriospermia.
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Since some of these characteristics have been associated to semen oxidative stress [49–54],
we verified whether leukocytospermia (n = 7, 15.3%), viscosity (n = 35, 26.7%), presence of
aggregates (n = 29, 22.1%) or agglutinates (n = 46, 35.1%) and bacteriospermia (n = 4, 3.1%)
increased the values of oxidative stress, tOS and sDF. Results indicated that none of these
signs changed the value of the tested variables (Table S1). An important exception was the
presence of semen bacteria. Indeed, bacteriospermia did not affect sDF values but highly
increased oxidative stress and tOS (Table S1), albeit without reaching the full statistical
significance (p = 0.071 and p = 0.053, respectively), possibly because of the low number of
subjects in the group with semen bacteria. Hence, to confirm the effect of bacteriospermia,
we recruited an additional 19 subfertile patients with semen bacteria, reaching a total
of 23 subjects (Table S2). Then, we compared the values of oxidative stress and tOS in
patients with (n = 23) and without (n = 127) bacteriospermia. The results are reported in
Figure 3, confirming that the presence of bacteria highly increased both oxidative stress
(29.37 [11.18–36.00]% vs. 14.20 [1.12–22.00]%, p < 0.01) and tOS (16.62 [7.79–22.35] vs. 8.30
[6.48–12.46]%, p < 0.01). No difference was found in sDF values between the two groups
(without: 16.00 [11.00–23.13]% vs. with: 16.50 [12.88–23.44]%, p = 0.246).
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Finally, we established a threshold of oxidative stress, calculating the 95th percentile
in healthy donors which resulted 20.72%. Among the consecutively recruited patients, we
found that 29.00% (38 out of 131) showed values of oxidative stress above this threshold.
This percentage decreased to 25.56% (35 out of 127) when we excluded men with semen
bacteria. Conversely, when only patients with semen bacteria (n = 23) were considered,
the percentage of men with a value of oxidative stress above the threshold increased to
60.87% (14 out 23) (Figure 4). When a similar threshold was calculated for tOS (17.54%),
only 12.98% subfertile patients exceeded the threshold; the percentage decreased to 12.60%
when patients with semen bacteria were excluded, and increased to 43.48% when only
patients with bacteria were considered.
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4. Discussion

In this study, we detected oxidative stress with a novel flow cytometric method in
subfertile patients, finding higher levels of the parameter in these patients than in the
control group of healthy donors. After establishing a threshold as the 95th percentile of
oxidative stress in healthy donors, we found that 29% of subfertile patients had values
exceeding this threshold and that the percentage highly increased when only patients with
semen bacteria were considered. We also found that oxidative stress did not correlate with
either age or conventional semen parameters or sDF amounts, suggesting that the novel
method detects a parameter independent from routine semen analysis and even from sDF
determination. Hence, the novel method appears to promise additional information on
male fertility status with respect to the current used semen parameters.

The lack of correlation with routine semen parameters is in contrast to many previ-
ous studies reporting an increase of oxidative stress with poor semen quality. Several of
these studies used luminol or lucigenin as probes emitting light upon oxidation [55,56] or
malondialdehyde detection [57,58] for evaluating oxidative stress in native semen samples
after washing away semen plasma. Hence, these studies provided average measures of
oxidative stress affected not only by spermatozoa but also by the amount of non-sperm ele-
ments (cells and apoptotic bodies), which increases with worsening semen quality [59,60].
Although we cannot conclude that these elements could increase oxidative stress, these
measures are heavily biased by different contents in such elements depending on semen
quality. Conversely, our study used flow cytometry, providing individual measures coming
only from the viable sperm fraction of native semen samples, guaranteeing a more accurate
detection of sperm oxidative stress. On the other hand, the reported associations between
semen quality and oxidative stress as assessed by evaluation of the oxidation-reduction
potential (ORP) [61–63] are only apparent. Indeed, such associations are driven by ORP
normalization to sperm concentration and, thus, by the internal correlations between sperm
concentration itself and the other semen parameters [39,64]. This is true also for the re-
ported correlations between ORP and sDF [17], as the amount of sperm DNA breakage well
correlates with semen quality and, in particular, with sperm concentration (present study
and [47,48]). The lack of correlation between oxidative stress and sDF found in our study is
not surprising also because sDF was detected in native semen samples. Indeed, in these
specimens, sDF mainly is due to non-viable spermatozoa and associates to abortive apopto-
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sis and/or defects in chromatin maturation [41,65], whereas no correlation is detected with
signs of oxidative attack [41,66]. Only when sDF is detected in viable spermatozoa a large
concomitance with oxidative damage can be observed [41,67]. Overall, our data indicate,
for the first time, that excessive sperm ROS production, at least when measured by our
method, may not be associated to idiopathic male infertility. Conversely, the independence
of this parameter from any semen markers until now used in the clinical practice appears
to promise additional information for, in particular, men with unexplained male infertility.
The costs and need of experts of flow cytometry may, however, limit the practical utility of
the method used in this study.

Beside assessing the main sperm parameters, routine semen analysis detects several
semen traits that have been associated to oxidative stress, like viscosity [49–51], leuko-
cytospermia [52,53] and bacteriospermia [54]. We did not find any increase of sperm
ROS production in semen showing viscosity, a result that is in agreement with Layali
et al., 2015 [68] but in contrast with other studies reporting a positive correlation between
viscosity and levels of MDA and protein carbonyl [50] or a decrease of semen viscosity
after treatment with the antioxidant N-acetylcysteine [69]. These discrepancies could be
attributed to different methods to detect oxidative stress and semen viscosity. In particular,
it has been reported that measuring viscosity with a capillary tube viscosimeter identified
as hyperviscous a subgroup of samples classified as normoviscous by the WHO guide-
lines [50]. This finding shows that the viscosimeter is more accurate than the procedure
indicated by the WHO manual [50,70] and used in this study [44].

In this study, we also failed to reveal an increase of sperm ROS production in samples
where leukocyte concentrations were higher than 1 million/mL. Leukocytes are believed
a major source of semen ROS, responsible for impairing sperm functions and structures.
In particular, ROS can trigger sperm lipid peroxidation [71], which, in turn, stimulates
mitochondrial superoxide generation [72]. However, the biological meaning of semen
leukocyte in semen is a subject of some debate, with several studies failing to reveal its
impact on semen quality [73–75]. In addition, there are conflicting opinions about the
cut-off value of 1 million/mL as indicative of infections or inflammatory processes when
exceeded [53]. These controversies are likely explained by the fact that several cell subsets
of leukocytes are present in semen and only the activated ones can exert detrimental effects
on spermatozoa [76]. In this scenario, it is not surprising that we did not find an increase
of sperm ROS production in samples with leukocytes. However, we cannot rule out that
recruiting a higher number of subjects with leukocytospermia than that included in this
study (n = 7) might unveil the impact of this semen trait on oxidative stress.

Contrary to the results obtained for viscosity and leukocytospermia, we found that
the presence of bacteria in semen highly increased sperm ROS production, a finding
confirming previous studies on humans [53] and animals [77–79]. As explained in a
recent review [54], bacteria can induce semen ROS not only by stimulating leukocytes,
mainly polymorphonuclear neutrophilic granulocytes [80,81], but also through damaged
spermatozoa [82] and bacterial metabolites/products [83,84]. In our study, we did not find
a large concomitance between leukocytospermia and semen bacteria (Table S2), suggesting
that a direct action on spermatozoa could be responsible of the observed increase in sperm
ROS production in subjects with semen bacteria.

As mentioned, in this study, we found that in the male population undergoing routine
semen analysis, 29% showed levels of oxidative stress higher than a threshold established
in healthy donors. When only men without semen bacteria were considered, the percentage
decreases to 25.56%. In these men, the increase of sperm ROS production might be due
to lifestyle factors or exposure to pollution or endogenous conditions. Indeed, studies
on animal models have extensively shown that obesity [12,13], tobacco [19,20] and alco-
hol abuse [21–23], prolonged sitting [24,25], recreational drugs [14,26], poor nutritional
diet [15,16], varicocele [27], psychological stress [17,18], exposure to excessive heat [8,9],
endocrine disrupters [10,11] and ionizing/nonionizing radiation [6,7] are all conditions
which can increase semen oxidative stress. In addition, these findings have also been
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confirmed in humans, as recently reviewed [85,86]. In a fraction of this 25.56%, it is also
possible that the observed high levels of oxidative stress were due to a presence of semen
bacteria that we could not detect because of the qualitative evaluation of bacteriospermia
(see below for further discussion on this point).

In this study, we also measured viable spermatozoa with excessive ROS production as
percentage of total (viable and non-viable) spermatozoa (tOS). This parameter, however,
failed to reveal a difference in sperm ROS production between subfertile patients and the
control group. In addition, a lower number of patients exceeded the threshold established
on this parameter with respect to the percentage calculated on only viable spermatozoa.
These results might be caused by the fact that tOS values are decreased by non-viable
spermatozoa, which likely are more present in subfertile patients than in healthy donors.
Conversely, oxidative stress expressed as percentage of only viable spermatozoa is totally
independent from sperm viability. The decrease in tOS with the amount of non-viable
spermatozoa also explains the negative correlation of the parameter with sDF (Table 2),
which, when detected in native semen samples, is near completely due to dead spermato-
zoa [41,65,87]. Overall, the current results confirm a previous study [43] indicating a lower
sensitivity of tOS for the detection of sperm oxidative stress.

One major limitation of this study is that bacteriospermia were assessed qualitatively
by microscopic evaluation, as routine semen analysis conducted according to the WHO
guidelines does not include quantitative detection of semen bacteria [44]. Since we found
that semen bacteria did not necessarily increase sperm ROS production (Figure 4), further
studies are necessary for assessing (i) whether the increase of oxidative stress occurs only
when bacteria exceed a certain threshold (for instance, 103 colony-forming units/mL) [53,88]
and (ii) which bacterial species are able to induce excessive sperm ROS production. Another
limitation of the study is that we could not collect any information on female factors of
couple infertility; thus, it is possible that a certain percentage of fertile men could be present
in the recruited male population. If so, given the importance attributed to sperm oxidative
stress for male infertility, the percentage of subfertile patients exceeding the threshold
of 20.72% might be higher than that found in the study. Finally, we do not have any
information on the presence of environmental, lifestyle and endogenous factors in the
recruited patients. Hence, we cannot definitely conclude that one or more of these factors
are responsible for the increase in sperm oxidative stress observed in a relevant fraction of
subfertile men.

In conclusion, we showed here that 29% of men undergoing routine semen analysis
exhibit high values of sperm ROS production, meaning that these values exceeded a
threshold of 20.72% established in healthy donors. The amounts of oxidative stress did not
correlate to either age or conventional semen parameters or sDF, suggesting that sperm ROS
production detected by the flow cytometric method used in this study is independent from
semen parameters until now used in the clinical practice. The presence of bacteria in semen
highly increased sperm ROS production at variance with viscosity and leukocytospermia.
Factors related to lifestyle, exposure to pollutants and endogenous conditions might be
responsible for excessive sperm ROS production in men without semen bacteria.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox13091123/s1, Table S1: Impact of leukocytospermia, ag-
glutinates, aggregates, viscosity and bacteriospermia on oxidative stress, tOS and sDF in the 131
consecutively recruited subfertile patients; Table S2: Age, abstinence and semen parameters in
subfertile patients with semen bacteria.
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