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Abstract: Recently, a single-neuron degeneration model has been proposed to understand the de-
velopment of idiopathic Parkinson’s disease based on (i) the extremely slow development of the
degenerative process before the onset of motor symptoms and during the progression of the disease
and (ii) the fact that it is triggered by an endogenous neurotoxin that does not have an expansive
character, limiting its neurotoxic effect to single neuromelanin-containing dopaminergic neurons. It
has been proposed that aminochrome is the endogenous neurotoxin that triggers the neurodegener-
ative process in idiopathic Parkinson’s disease by triggering mitochondrial dysfunction, oxidative
stress, neuroinflammation, dysfunction of both lysosomal and proteasomal protein degradation,
endoplasmic reticulum stress and formation of neurotoxic alpha-synuclein oligomers. Aminochrome
is an endogenous neurotoxin that is rapidly reduced by flavoenzymes and/or forms adducts with
proteins, which implies that it is impossible for it to have a propagative neurotoxic effect on neighbor-
ing neurons. Interestingly, the enzymes DT-diaphorase and glutathione transferase M2-2 prevent
the neurotoxic effects of aminochrome. Natural compounds present in fruits, vegetables and other
plant products have been shown to activate the KEAP1/Nrf2 signaling pathway by increasing the
expression of antioxidant enzymes including DT-diaphorase and glutathione transferase. This re-
view analyzes the possibility of searching for natural compounds that increase the expression of
DT-diaphorase and glutathione transferase through activation of the KEAP1/Nrf2 signaling pathway.

Keywords: Parkinson’s disease; KEAP1/Nrf2; dopamine; neurodegeneration; neuroprotection;
single-neuron degeneration; aminochrome; preclinical model; dopaminergic neurons; neuromelanin

1. Parkinson’s Disease

Parkinson’s disease is the second most prevalent neurodegenerative disease, and its
main symptoms are tremors, muscle rigidity and bradykinesia. Seventy percent of people
with Parkinsonism have idiopathic Parkinson’s, which is characterized by an onset after
55–60 years of age [1]. The identity of the neurotoxin that triggers the degenerative process
of dopaminergic neurons containing neuromelanin is unknown. Although the identity of
the neurotoxin that triggers the degenerative process in idiopathic Parkinson’s is unknown,
there is a consensus within the scientific community that mitochondrial dysfunction, alpha-
synuclein aggregation, dysfunction of both lysosomal and proteasomal protein degradation
systems, endoplasmic reticulum stress, neuroinflammation and oxidative stress are in-
volved in the neurodegenerative process [2–9]. In 20% of all Parkinson’s patients, the
cause that triggers the degenerative process is known. Parkinsonism inducers in this
group include metals such as manganese and copper; pesticides such as paraquat; certain
drugs (such as antidepressants, calcium channel antagonists, cholinomimetics, antiemetics,
anti-vertigo drugs, antiarrhythmics and antiepileptic drugs) and traumas such as head
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injuries received during boxing [10,11]. Ten percent of Parkinson’s patients have genetic
Parkinson’s in which the cause that triggers the degenerative process is a mutation in a
gene such as alpha-synuclein, parkin or LRRK2, among other genes [12].

2. Clinical Studies of Parkinson’s Disease

The discovery of the decrease in dopamine levels resulting from the loss of neuromelanin-
containing dopaminergic neurons in the substantia nigra has been one of the most important
discoveries in research on idiopathic Parkinson’s disease [13]. This drop in dopamine levels
is related to the appearance of motor symptoms when 60% of the neuromelanin-containing
dopaminergic neurons in the nigrostriatal system have been lost. Given this drop in
dopamine levels, the idea arose that by replacing the patient’s dopamine levels, the motor
symptoms could disappear. In the 1960s, the first clinical studies began with the dopamine
precursor L-dopa, which, unfortunately, were not successful because the dose of L-dopa
was not high enough. However, as early as 1967, L-dopa had been incorporated into the
treatment of the disease. The results of L-dopa are excellent at the beginning because the
patient recovers a large proportion of normal mobility, which allows the individual to live
a relatively normal life. However, after chronic treatment for 4–6 years, severe secondary
symptoms appear, such as dyskinesias, which have a devastating effect on the patient’s
normal life [14].

It took a few years to develop a drug for the pharmacological treatment of Parkinson’s
disease once it was clear what the treatment needed to accomplish (restore dopamine
levels). In 57 years of intense basic research, several molecules were identified that
could have a potential therapeutic effect in idiopathic Parkinson’s disease. The poten-
tial therapeutic effect of these drugs was based on successful preclinical studies using
exogenous neurotoxins such as 6-hydroxydopamine and MPTP (1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine) [15–18]. These successful preclinical studies included drugs such
as isradipine, mitoquinone, coenzyme Q10, zonisamide, TCH346, nilotinib, deferiprone,
prasinezumab, cinpanemab and neurturin [19–22]. The most promising drug is neurturin,
an analogue of glial cell-derived neurotrophic factor (GDNF), which showed spectacular
effects and could even be used in patients with L-dopa dyskinesias since they regenerated
neuronal tissues in preclinical studies with 6-hydroxydopamine [23,24]. However, the
translation of these successful preclinical studies to clinical studies and new drugs for
the treatment of idiopathic Parkinson’s disease has failed. The question is why all these
clinical studies failed. The authors of the phase 3 clinical trial of mitoquinone explained
that the failure of the study depended on several factors: (i) The study had methodological
problems such as an inadequate number of patients. (ii) By the time symptoms appear,
more than 50% of the dopaminergic neurons containing neuromelanin have been lost.
Therefore, the fate of the surviving neurons is already decided, and they are eventually lost
regardless of treatment with mitoquinone. (iii) The penetration of mitoquinone into the
brain is insufficient to have a neuroprotective effect. (iv) Oxidative damage to mitochondria
is not the main reason for the loss of dopaminergic neurons containing neuromelanin, and
therefore, treatment with mitoquinone cannot stop the progression of the disease [21]. The
authors of the phase 3 clinical trial of coenzyme Q10 suggested that the failure of the study
was due to the fact that the diagnosis of the disease is made when more than 50% of the
neuromelanin-containing dopaminergic neurons have been lost and that it is already too
late to start treatment with coenzyme Q10; treatment should be started before the onset
of motor symptoms [20]. A review has recently been published that thoroughly analyzes
the antioxidant therapy of Parkinson’s disease and suggests that the failure of clinical
studies depends on two factors: (i) the animals used in preclinical studies with antioxidants
were not aged animals; (ii) the diagnosis of patients was based on clinical criteria in which
symptoms appear when 60–80% of the dopaminergic neurons containing neuromelanin
have been lost, due to the lack of molecular diagnosis [25]. In our opinion, this depends
on preclinical models based on exogenous neurotoxins such as 6-hydroxydopamine and
MPTP that do not represent the neurodegenerative process that occurs in the nigrostriatal
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system in idiopathic Parkinson’s disease. These preclinical models with exogenous neu-
rotoxins such as MPTP and 6-hydroxydopamine induce extremely rapid Parkinsonism
in animals. In humans, we only know the effect of MPTP, which induces severe Parkin-
sonism in just 3 days [26], which contrasts with the extremely slow progress of idiopathic
Parkinson’s disease.

It has been proposed that the degenerative process of the nigrostriatal system may take
years before motor symptoms appear, which occurs when 60% of the dopaminergic neurons
containing neuromelanin have been lost. After the onset of motor symptoms, progress can
take 10–15 years. For example, Pope John Paul II died after suffering for 13 years from
idiopathic Parkinson’s; he was diagnosed in 1992, when he was 71 years old, and died in
2005. A study has recently been published that estimates the number of neuromelanin-
containing dopaminergic neurons in the substantia nigra. Considering the two hemispheres
of the human brain, it was determined that there are 1,000,000–800,000 dopaminergic
neurons that contain neuromelanin [27]. This implies that at the time of the appear-
ance of motor symptoms when 60% of these neurons have disappeared, there should be
400,000–320,000 surviving neurons. This implies that in a patient who survives 15 years
after the onset of motor symptoms, 73–58 neuromelanin-containing dopaminergic neu-
rons are lost per day. In the clinical study of mitoquinone, a powerful mitochondrial
antioxidant, two oral doses were administered over 12 months [21]. In the best of cases,
mitoquinone has a 100% effect, stopping the loss of 26,645–21,170 dopaminergic neurons
containing neuromelanin. In the case that mitoquinone has a 50% neuroprotective effect,
13,322–10,585 dopaminergic neurons containing neuromelanin will survive after this treat-
ment. The question is whether the Unified Parkinson Disease Rating Scale is sensitive
enough to detect a slowing of disease progression under these conditions. The extremely
slow progress of the disease could explain the failure of these clinical studies because the
therapeutic effect of the drug is limited to a very small number of neurons that degenerate
every day. In contrast, the positive effect observed in preclinical studies was achieved with
exogenous neurotoxins that induce a rapid and massive effect and are also not responsible
for the degenerative process in the brain of the patient with idiopathic Parkinson’s.

3. The Role of Endogenous Neurotoxins in Idiopathic Parkinson’s Disease

The extremely slow progress of the degenerative process of idiopathic Parkinson’s
disease suggests that (i) the degenerative process before and after the appearance of
motor symptoms cannot be induced by exogenous neurotoxins due to its massive and
extremely rapid character, and (ii) the neurotoxin that triggers the degenerative process
in idiopathic Parkinson’s disease must be generated within dopaminergic neurons that
contain neuromelanin and cannot have an expansive character that affects neighboring
neurons. The degenerative process seems to be individual, affecting only the neuron that
generates this endogenous neurotoxin, explaining the extremely slow loss of dopaminergic
neurons that contain neuromelanin. Recently, a single-neuron degeneration model has
been proposed for idiopathic Parkinson’s disease based on these ideas [28].

Among the endogenous neurotoxins that are formed within dopaminergic neurons
that contain neuromelanin, alpha-synuclein is one of the best candidates. It has been
proposed that alpha-synuclein may exert its neurotoxic effect by aggregating to form
fibrils that are deposited in Lewy bodies or oligomers. Alpha-synuclein induces oxidative
stress, mitochondrial dysfunction, neuroinflammation, lysosomal dysfunction, autophagy
impairment, synaptic dysfunction and proteasome impairment [2–9]. However, both the
fibrils and their oligomers have been reported to have an expansive character [9,29–33].
The concept of a propagative neurotoxin refers to its ability not only to induce neurotoxicity
and death in the neuron where it acts but also to affect neighboring neurons through the
secretion of this neurotoxin. Alpha-synuclein can exert a neurotoxic effect by forming
neurotoxic oligomers and inducing death of a specific neuron. It has been shown that
oligomers of alpha-synuclein can be secreted, affecting neighboring neurons, generating
a propagative effect in which a single neurotoxic oligomer affects many neurons. Alpha-
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synuclein can also form fibrils that accumulate in Lewy bodies, which have been reported to
have a propagative effect, since they propagate from one brain region to another [9,29–33].
This expansive character of alpha-synuclein aggregation implies that it is not suitable for
the single-neuron degeneration model.

Another endogenous neurotoxin formed within dopaminergic neurons is 3,4-dihy-
droxyphenylacetaldehyde (DOPAL), generated in the oxidative deamination of dopamine
mediated by monoamine oxidase [34]. In a study carried out with postmortem mate-
rial from patients with Parkinson’s disease, a low expression of the enzyme aldehyde
dehydrogenase-1 was observed, suggesting that a low expression of this enzyme would end
in an accumulation of DOPAL [35]. However, the low expression of aldehyde dehydrogenase-
1 was observed in postmortem material that survived the degenerative process for years
with Parkinson’s disease. DOPAL induces the formation of alpha-synuclein oligomers,
apoptosis and oxidative stress and affects mitochondrial function [36,37]. DOPAL also has
an expansive character based on its transmissibility from dopaminergic neurons to glial
cells, which makes it incompatible with the single-neuron degeneration model [38].

Aminochrome is a transient endogenous neurotoxin that is formed during the syn-
thesis of neuromelanin. Neuromelanin is formed from the oxidation of the catechol group
of dopamine to ortho-quinone dopamine, which, at physiological pH, cyclizes to amino-
like immediately at a rate of 0.15 s−1. Aminochrome is also not stable, but in in vitro
NMR experiments it is stable for 40 min before converting to 5,6-indolequinone at a
rate of 0.06 min−1, which rapidly polymerizes, forming neuromelanin [39]. The char-
acteristic of being a transient metabolite in the synthesis of neuromelanin suggests that
aminochrome cannot generate expansive neurotoxicity to neighboring neurons. It is im-
possible that aminochrome in the cytosol of a neuromelanin-containing dopaminergic
neuron full of proteins, lipids and biomolecules can be stable for 40 min. Aminochrome
can be rapidly reduced by flavoenzymes that transfer one electron to the aminochrome
o-semiquinone radical, which is extremely reactive with oxygen [40] or can be reduced
by NAD(P)H:quinone oxidoreductase (DT-diaphorase; NQO1; EC 1.6.99.2) with two elec-
trons to leukoaminochrome [41,42]. Alternatively, aminochrome can form adducts with
proteins such as actin, alpha- and beta-tubulin, alpha-synuclein and mitochondrial complex
I, among other proteins [43,44]. This implies that the formation of aminochrome and its
neurotoxic action within the neuromelanin-containing dopaminergic neuron only affects a
single neuron. Another interesting characteristic of aminochrome is that its neurotoxicity
depends on its ability to induce mitochondrial dysfunction, oxidative stress, aggregation of
alpha-synuclein to neurotoxic oligomers, dysfunction of protein degradation of both the
lysosomal and proteasomal systems, endoplasmic reticulum stress and neuroinflamma-
tion [44–52].

Among the neurotoxins that are currently known, aminochrome is the endogenous
neurotoxin that is most suitable for the single-neuron degeneration model proposed as a
model of neurodegeneration in idiopathic Parkinson’s disease, since its neurotoxic action
affects a single neuron. The neurotoxic action of aminochrome affecting a single neu-
ron is consistent with the extremely slow progression of the degenerative process of the
nigrostriatal system in idiopathic Parkinson’s disease.

4. Aminochrome as a Preclinical Model of Idiopathic Parkinson’s Disease

The use of aminochrome in preclinical models for idiopathic Parkinson’s disease in
animals is technically impossible. With current technology, an intracerebral injection of
aminochrome in the striatum, substantia nigra or medial forebrain bundle results in the
neurotoxic action of aminochrome in all areas where the aminochrome injection reaches,
affecting the neurons that have a dopamine transporter [47].

If we consider that aminochrome may be the endogenous neurotoxin capable of in-
ducing the degeneration of a single neuron in idiopathic Parkinson’s disease, the question
is how to prevent the neurotoxic action of aminochrome. DT-diaphorase prevents the
formation of leukoaminochrome o-semiquinone radical when aminochrome is reduced
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with one electron by flavoenzymes that transfer an electron using NADH or NADPH as the
electron donor. The leukoaminochrome o-semiquinone radical is extremely reactive with
oxygen, generating oxidative stress [40,48]. DT-diaphorase also prevents the formation
of aminochrome adducts with several proteins. DT-diaphorase prevents the formation of
neurotoxic alpha-synuclein oligomers [44] that have been postulated to play an important
role in the degenerative process of idiopathic Parkinson’s disease [53]. DT-diaphorase
prevents disruption of the cytoskeleton when aminochrome forms adducts with alpha- or
beta-tubulin [43]. Interestingly, astrocytes secrete glutathione transferase M2-2 through exo-
somes that penetrate dopaminergic neurons, releasing this enzyme into their cytosol [54–56].
DT-diaphorase and glutathione transferase M2-2 constitute a neuroprotective mechanism
in which astrocytes play an important role by secreting exosomes loaded with glutathione
transferase M2-2, which increases the neuroprotection that DT-diaphorase can provide to
neuromelanin-containing dopaminergic neurons. This neuroprotective mechanism may
explain why neuromelanin synthesis is not neurotoxic in older adults who, at the time of
death, have their neuromelanin-containing dopaminergic neurons intact in the substantia
nigra even though aminochrome is formed during neuromelanin synthesis [57,58].

5. KEAP1/Nrf2 Signaling Pathway

The transcription factor nuclear factor E2-related factor 2 (Nrf2) regulates the expres-
sion of a wide range of genes that play a cytoprotective role in the presence of oxidative
stress or xenobiotic [59,60]. Normally, the human body is exposed to a series of xenobiotics
of external origin through food, drugs, environmental contaminants or illicit drugs. All
water-soluble xenobiotics are eliminated through urine, but those that are not water-soluble
must be metabolized by Phase 1 enzymes. The goal of Phase 1 enzymes such as cytochrome
P450 is to activate these compounds so that Phase 2 enzymes can conjugate them to increase
their water solubility, facilitating their elimination [61]. The category of enzymes that
conjugate xenobiotics includes glutathione transferases, UDP-glucuronosyltransferases, N-
acetyltransferases, sulfotransferases and methyltransferases. During oxidative stress, Nrf2
increases the expression of antioxidant enzymes such as superoxide dismutase, glutathione
peroxidase, catalase, heme oxygenase-1 and DT-diaphorase, among others [62].

Nrf2 activation is regulated by the Kelch-like ECH-associated protein 1 (KEAP1)
protein, which has a binding site in the Neh2 domain located near the NH3 terminus
of the Nrf2 protein. The function of binding two KEAP1 molecules to Nrf2 is to allow
their ubiquitination, mediated by Cul3 E3 ubiquitin ligase, for Nrf2 degradation through
the proteasomal system. This mechanism maintains very low basal levels of Nrf2 and
prevents transcription of antioxidant genes. The KEAP1 protein has two cysteine amino
acids located at position 273 and 288 that are oxidized in the presence of oxidative stress,
leaving free the Nrf2 protein that activates the transcription of antioxidant genes [63,64].
Another study on the structure of the KEAP1 protein and its cysteine residues revealed that
cysteine 151 is also important in the maintenance of the KEAP1/Nrf2 complex, necessary
for its ubiquitination, which is required for degradation in the proteasomal system [65].
The cysteine residues in Nrf2 at positions 119, 235 and 506 also play an essential role in the
binding of Nrf2 with the antioxidant responsive element for the activation of transcription
of antioxidant genes. The mutation of these cysteines prevents the transcription of these
antioxidant genes [66] (Figure 1).
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Figure 1. Increased expression of DT-diaphorase, glutathione transferase M2-2 and other antioxidant
enzymes through activation of the KEAP1/Nrf2 signaling pathway. Cullin 3 E3 ubiquitin ligase (Cul3);
Kelch-like ECH-associated protein 1 (KEAP1); E2-related factor 2 (Nfr2); small musculoaponeurotic
fibrosarcoma (sMaf); antioxidant responsive element (ARE).

6. Activation of the KEAP2/Nrf2 Signaling Pathway by Natural Products Increases the
Expression of Antioxidant Enzymes

A long list of natural products has been shown to have antioxidant properties medi-
ated by activation of the KEAP1/Nrf2 signaling pathway. Natural products that activate the
KEAP1/Nrf2 signaling pathway are present in the following: (i) dietary phytochemicals,
including cruciferous vegetables such as broccoli, cauliflower and cabbage that contain
sulforaphane, which is marketed as an antioxidant and anti-inflammatory; (ii) fruits such
as red grapes that contain resveratrol which is marketed as an antioxidant; (iii) plants such
as the species Curcuma longa, the source of curcumin, which is marketed as food flavoring
and food coloring; and (iv) carotenoids that contain astaxanthin which is marketed as an an-
tioxidant, anti-inflammatory and UV protectant. The natural compound hyperoside has an
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antioxidant effect against oxidative stress by activating the KEAP1/Nrf2 signaling pathway,
promoting an increase in antioxidant enzymes in testicular tissue [67,68]. Sulforaphane, a
natural compound detected in broccoli sprout extracts, has been shown to exert antioxidant
and cytoprotective effects by activating Nrf2, which regulates the levels of thyroglobulin, a
precursor of thyroid hormones [69–72]. Natural compounds that we consume in a diet com-
posed of vegetarian products and fruits regulate oxidative stress through the KEAP1/Nrf2
signaling pathway and are important in the prevention and treatment of cancer; examples
include resveratrol, curcumin, sulforaphane, quercetin, phenethyl isothiocyanate, epigal-
locatechin gallate, hesperidin and 2′-hydroxyflavanone [72–78]. An experiment in PC 12
cells exposed to Aβ25-35-dependent oxidative stress demonstrated the neuroprotective
and antioxidant role of two curcumin analogues that increase the expression of superox-
ide dismutase, catalase and heme oxidase-1 through the activation of the KEAP1/Nrf2
signaling pathway [74]. The natural compound withaferin A, found in the plant Withania
somnifera activates Nrf2, increases the expression of antioxidant enzymes in cultures of
human umbilical vein endothelial cells and in endothelial cell lines [79]. Thonningianin A, a
natural compound found in Penthorum chinense Pursh, has shown a protective effect against
ferroptosis in experiments with SH-SY5Y cells treated with 6-hydroxydopamine by activat-
ing the KEAP1/Nrf2 signaling pathway [80]. Berberine, an alkaloid of the isoquinoline type
extracted from plants, demonstrated a protective effect against methotrexate-dependent
nephrotoxicity accompanied by recovery of reduced glutathione levels and superoxide
dismutase activity through the activation of the KEAP1/Nrf2 signaling pathway [81]. A
byproduct grape seed meal was shown to counteract the oxidative stress induced by E. coli
lipopolysaccharide in IPEC-1 cells and restore the levels of antioxidant enzymes such as cata-
lase, superoxide dismutase and glutathione peroxidase by activating the KEAP1/Nrf2 sig-
naling pathway [82]. The natural product hederagenin, a pentacyclic triterpenoid saponin,
extracted from various plant herbs has neuroprotective, anti-inflammatory, anti-cancer,
anti-lipid peroxidation and oxidative-stress-mitigating properties through the activation of
the KEAP1/Nrf2 pathway [83]. The compound isoglycyrrhizinate extracted from licorice
has antioxidant, anti-apoptotic and anti-inflammatory effects. In experiments with animals
treated with the hepatotoxicity inducer arsenic trioxide, isoglycyrrhizinate was shown to
attenuate oxidative stress through the activation of the KEAP1/Nrf2 signaling pathway [84].
In experiments with the natural probiotic Clostridium butyricum that decreases the oxidative
effect induced by enterotoxigenic Escherichia coli K88, it was demonstrated that it increases
the expression of superoxide dismutase, glutathione peroxidase and decreases oxidative
stress through the activation of the KEAP1/Nrf2 signaling pathway [85].

In a study with alloxan induced type 1 diabetes mellitus in mouse-derived pancreatic
islet β-cell line, the isoflavonoid formononetin, a component of Astragalus gallinaceus
Bunge, activates the KEAP1/Nrf2 signaling pathway, decreasing oxidative stress [86,87].
Physalin H, a compound isolated from the plant Physalisangulata L., exerts anti-inflammatory
effects by activating the KEAP1/Nrf2 signaling pathway [88]. In a study with diabetes
mellitus rats and with the MPC-5 cell line Icarin, a flavonoid extract isolated from Herba
epimedii, increases mitophagy to inhibit NLRP3 inflammasome activation through the acti-
vation of the KEAP1/Nrf2 signaling pathway [89]. A study to determine the mechanism
of the pharmacological effect of the alkaloid Oxymatrine, a component of the herb Radix
Sophorae flavescentis, in the treatment of cardiovascular dysfunctions demonstrated that this
effect depends on the activation of the KEAP1/Nrf2 signaling pathway [90]. The extract of
the inflorescent Coptis chinensis plant, which is used as tea, exerts hepatoprotective effects
by activating the KEAP1/Nrf2 signaling pathway, increasing the expression of antioxidant
enzymes and reducing oxidative stress induced by carbon tetrachloride [91]. The natural
compound withaferin A present in the plant Withania somnifera was shown to activate
the KEAP1/Nrf2 signaling pathway by increasing the expression of heme oxygenase-1
in an endothelial cell line and primary cultures of human umbilical vein [79]. The an-
tirheumatic drug auranofin increases heme oxygenase-1 expression through activation of
the KEAP2/Nrf2 signaling pathway [92]. The activation of transcription of antioxidant
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enzyme genes mediated by Nrf2 plays a fundamental role in protection against oxidative
stress. However, the activation of transcription of antioxidant enzyme genes by Nrf2 can
have a negative effect, as in patients with cancer that use drugs where their therapeutic
action requires the formation of free radicals that induce oxidative stress [93–95].

Experiments in cell cultures with extracts of the herb Callicarpa kwangtungensis showed
an anti-inflammatory effect mediated by the activation of the KEAP1/Nrf2 signaling path-
way, increasing heme oxygenase-1 and DT-diaphorase expression [95]. Oxyresveratrol,
a natural compound present in mulberry, which has anti-inflammatory and antioxidant
effects, in experiments on mice with liver injury demonstrated a hepatoprotective effect
by reducing the activity of aspartate transaminase, alanine transaminase, oxidative stress,
expression of inflammatory factors and increasing the expression of heme oxygenase-1
and DT-diaphorase through the activation of the KEAP1/Nrf2 signaling pathway [96].
In experiments with drug-induced liver injury in mice monoammonium glycyrrhizinate,
a component of the plant Glycyrrhiza, in combination with cysteine hydrochloride pro-
tect against drug-induced liver injury in mice through the activation of the KEAP1/Nrf2
signaling pathway that decreases the oxidative stress and increase expression of heme
oxygenase-1 and DT-diaphorase [97]. Shufeng Jiedu has been used in traditional Chinese
medicine for decades to treat respiratory conditions. An anti-inflammatory effect accom-
panied with an increase in the expression of glutathione transferases, heme oxygenase-1,
superoxide dismutase, DT-diaphorase through the activation of the KEAP1/Nrf2 sig-
naling pathway was observed in experiments with rats treated with Shufeng Jiedu [98].
Ginnalin A, a natural compound from red maple, activates the KEAP1/Nrf2 signaling
pathway, increasing the expression of the enzymes DT-diaphorase, heme oxygenase and the
glutamate-cysteine ligase catalytic subunit. Pretreatment of SH-SY5Y cells with ginnalin A
prevents 6-hydroxydopamine neurotoxic effects [99]. In experiments with mice presenting
acute lung injury, S-allylmercaptocysteine, a compound derived from garlic, demonstrated
a protective effect accompanied by a decrease in the production of proinflammatory factors,
oxidative stress and an increase in the expression of heme oxygenase-1 and DT-diaphorase
through the activation of the KEAP1/Nrf2 signaling pathway [100]. Compound 13f, which
contains selenium, was synthesized from verubecestat and ebselen. It has been shown
to have a cytoprotective effect against 6-hydroxydopamine and hydrogen peroxide by
reducing oxidative stress, apoptosis, mitochondrial damage and calcium overload. An
increase in antioxidant enzymes such as heme oxygenase-1 and DT-diaphorase among
others was observed through the activation of the KEAP1/Nrf2 signaling pathway [101].

The natural compound carnosic acid, found in the herbs sage and rosemary, increases
the expression of antioxidant enzymes by activating the KEAP1/Nrf2 signaling path-
way through their conversion to ortho-quinone species during oxidative stress. Synthe-
sized para-hydroquinones increase the expression of antioxidant enzymes such as heme
oxygenase-1 and DT-diaphorase through the KEAP1/Nrf2 signaling pathway [102].

Crocin, a natural carotenoid present in the natural compound flower of crocus and
gardenia species, activates the KEAP1/Nrf2 signaling pathway by increasing and de-
creasing oxidative stress by increasing the expression of antioxidant enzymes such as
glutathione transferase, superoxide dismutase, catalase and glutathione peroxidase as well
as glutathione levels [103]. In brain injury after blood infusion, the KEAP1/Nrf2 signaling
pathway is activated, increasing the expression of glutathione transferase, heme oxygenase-
1 and the levels of reduced glutathione and thioredoxin [104]. The prenylated flavonoid
chalcone xanthohumol, present in spent hops, increases the expression of detoxifying
enzymes such as DT-diaphorase and glutathione transferase [105]. Atractylodis rhizoma,
a Chinese medicinal drug with anti-inflammatory and antiviral properties, activates the
KEAP1/Nrf2 signaling pathway, which increases the expression of DT-diaphorase [106]. Af-
ter subarachnoid hemorrhage during early brain injury tert-butylhydroquinone decreased
cognitive dysfunction and damage by activating the KEAP1/Nrf2 signaling pathway that
increased the expression of glutathione transferase, DT-diaphorase and heme oxygenase-
1 [107]. Safranal, which has anti-apoptotic and antioxidant activity, protects from the
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neurotoxic effects of rotenone in in vitro experiments by activating the KEAP1/Nrf2 sig-
naling pathway by increasing the expression of glutathione S transferase, DT-diaphorase
and heme oxygenase-2. [108]. Dietary antioxidants such as astaxanthin, a carotenoid, and
docosahexaenoic acid and eicosapentaenoic acid, found in fish, increase the expression
of DT-diaphorase and glutathione transferase M2-2 through the KEAP1/NRF2 signaling
pathway [109]. The natural compound Geniposide, isolated from Gardenia jasminoides Ellis,
induces the expression of glutathione transferase M1-1 and M2-2 probably through the
activation of the KEAP1/Nrf2 signaling pathway [110]. The phytochemical berberrubine
and resveratrol activate the expression of glutathione transferase M2-2 probably through
the KEAP1/Nrf2 signaling pathway(Table 1) [111,112].

Table 1. Natural compounds that activate KEAP1/Nrf2 signaling pathway. DT-diaphorase
(NQO1); Hemeoxigenase-1 (HO-1); γ-glutamylcysteine-synthetase (γGCS); heme oxygenase 1 (HO-
1); NAD(P)H quinone oxidoreductase 1 (NQO1); superoxide dismutase-1 (SOD-1); catalase (CAT),
superoxide; glutathione peroxidase (GPx), endothelial and inducible nitric oxide synthases (eNOS
and iNO), glutathione transferase (GST); glutathione transferase M2-2 (GSTM2).

Compound Model Increased Enzymes Methodology
(Nrf2)

Reference
(N◦)

Hyperoside Testicular injury
Renal cells

CAT, Mn-SOD, HO-1, NQO1
NQO1

Western blot
Western blot

[67]
[68]

Sulforaphane Rotenone animal
Keratinocytes

HO-1, NQO1,
HO-1, NQO1, γGCS

Western blot
mRNA level

[69]
[70]

Resveratrol PC12 cells
Neural stem cells

HO-1
HO-1, NQO1

Western blot
Western blot

[72]
[73]

Curcumin
PC12 cells

Corneal endothelial cells
Kunming mice

HO-1
SOD-1, HO-1

HO-1,NQO1, γGCS

Western blot
Nuclear/cytosol
fractionation kit

Western blot

[74]
[75]
[76]

Quercetin Human HepG2 cells NQO1 Western blot [77]

Epigallocatechin gallate Mammary epithelial cells HO-1, SOD-1 Western blot [72]

Withania somnifera Primary human umbilical
vein endothelial cells HO-1 Western blot [79]

Thonningianin A SH-SY5Y cells HO-1 Western blot
Molecular docking [80]

Berberine Male rats SOD-1 q-RT-PCR [81]

Byproduct grape seed meal IPEC-1 cells CAT, SOD-1, GPx, eNOS, iNO q-RT-PCR [84]

Hederagenin Extracellular matrix HO-1, NQO1 Western blot [83]

Isoglycyrrhizinate KunMing mice CAT, SOD-1 Western blot [84]

Clostridium butyricum IPEC-J2) cells SOD-1, GPx siRNA [85]

Formononetin C57BL/6J mice
HK-2 cells

HO-1, NQO1
HO-1, NQO1

Nrf2 knockout
Western blot

[86]
[87]

Physalin H RAW264.7 cells HO-1, NQO1 qRT-PCR, western blot [88]

Icarin Diabetes mellitus rats HO-1 Western blot [89]

Oxymatrine Primary cardiac fibroblasts HO-1 qRT-PCR, siRNA [90]

Coptis chinensis HepG2 cells GST, NQO1, HO-1 Western blot [91]

Withaferin A Endothelial cells HO-1 Western blot, siRNA [79]

Callicarpa kwangtungensis RAW 264.7 macrophages HO-1, NQO1 Western blot [95]

Oxyresveratrol Hepatocytes HO-1, NOQ1 Western blot [96]
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Table 1. Cont.

Compound Model Increased Enzymes Methodology
(Nrf2)

Reference
(N◦)

Monoammonium
glycyrrhizinate Hepatic injury HO-1, NOQ1 Western blot [97]

Shufeng Jiedu LPS-induced acute lung
injury HO-1, NQO1 Western blot [98]

Ginnalin A SH-SY5Y cells HO-1, NQO1 Western blot, qRT-PCR [99]

S-allylmercaptocysteine LPS-induced acute lung
injury HO-1, NQO1 Western blot [100]

Crocin Male rats HO-1, NQO1 Western blot [103]

Chalcone xanthohumol PC12 cells NQO1 Nrf2 knockdown [101]

Safranal Rotenone HO-1,GST, NQO1 Western blot [108]

Astaxanthin Increase HO-1, NQO1, GSTM2 qRT-PCR [109]

Docosahexaenoic acid Increase HO-1, NQO1, GSTM2 qRT-PCR [109]

Eicosapentaenoic acid Increase HO-1, NQO1, GSTM2 qRT-PCR [109]

Thonningianin A SH-SY5Y cells HO-1 Immunofluorescence [80]

7. Activation of the KEAP2/Nrf2 Signaling Pathway by Natural Products to Search for
Potential New Drugs in the Treatment of Parkinson’s Disease

In idiopathic Parkinson’s disease, the identity of the neurotoxin that triggers the mech-
anisms involved in the loss of neuromelanin-containing dopaminergic neurons is unknown.
It has been proposed that aminochrome could be the neurotoxin that triggers all of these
neurotoxic mechanisms mentioned above, and it does not have a propagating character.

The role of phase 2 enzymes is to deactivate and detoxify molecules that have been
activated by phase-1 enzymes of drug metabolism with the goal of eliminating them from
the body. Within the group of phase 2 enzymes we have antioxidant enzymes that increase
their expression by activating the KEAP1/Nrf2 signaling pathway. However, activation
of the KEAP1/Nrf2 signaling pathway increases the expression of DT-diaphorase and
glutathione transferase M2-2 enzymes which prevents neurotoxic effects of aminochrome
such as mitochondrial dysfunction, the formation of neurotoxic alpha-synuclein oligomers,
oxidative stress, neuroinflammation, endoplasmic reticulum stress plasma reticulum stress
and protein degradation dysfunction (Figure 2).

If we consider that the degenerative process of idiopathic Parkinson’s disease depends
on a degenerative model such as single neuron degeneration that is triggered by the
neurotoxic action of aminochrome, efforts to find a new drug that stops or slows the
progress of the disease should be directed towards finding molecules that increase the
expression of the enzymes DT-diaphorase and glutathione transferase M2-2.

The disadvantage of single neuron degeneration is the difficulty of being used in
an animal model. Unfortunately, it is impossible to use aminochrome as a preclinical
model in an animal since the technology does not exist to inject a single neuron. Therefore,
the only possibility to search for new molecules that may have a therapeutic effect in a
single-neuron degeneration model is to search for molecules that (i) increase the expression
of DT-diaphorase and Glutathione transferase M2-2 through activation of the KEAP1/Nrf2
signaling pathway; and (ii) these molecules prevent the neurotoxic effects of aminochrome
in cell cultures.
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Figure 2. Natural compounds activate the KEAP1/Nrf2 signaling pathway, which increases the
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transferase M2-2 (GSTM2) in astrocytes. In neuromelanin-containing dopaminergic neurons, Nfr2
increases the expression of DT-diaphorase, which prevents neurotoxic effects of aminochrome such
as the formation of neurotoxic oligomers of alpha-synuclein, dysfunction of protein degradation
systems, mitochondrial dysfunction, oxidative stress, endoplasmic reticulum stress and neuroinflam-
mation. In astrocytes, Nfr2 increases the expression of GSTM2, which is excreted through exosomes
that penetrate neuromelanin-containing dopaminergic neurons. Within this neuron, GSTM2 is re-
leased, conjugating aminochrome to 4-S-glutathionyl 5,6-dihydroxindoline, which is resistant to
biological oxidants such as hydrogen peroxide, superoxide and dioxygen. In addition, GSTM2
conjugates dopamine o-quinone to 5-glutathionyldopamine, which is enzymatically degraded to 5-
cysteinyldopamine, a metabolite that has been found in human neuromelanin and cerebrospinal fluid,
suggesting that this metabolite is a final product. Cullin 3 E3 ubiquitin ligase (Cul3); Kelch-like ECH-
associated protein 1 (KEAP1); ubiquitin (ub); E2-related factor 2 (Nfr2); small musculoaponeurotic
fibrosarcoma (sMaf); antioxidant responsive element (ARE); endoplasmic reticulum (ER); reduced glu-
tathione (GSH); glutamate (glu); glycine (gly); alpha-synuclein (SNCA); hydrogen peroxide (H2O2).

8. Conclusions

The possible use of phytocompounds in the treatment of Parkinson’s disease has been
studied in preclinical models. Plant derivatives such as kurarinone, Ginkgo biloba L., cur-
cumin, Hibiscus asper Hook. f., berberine [113] and Carthamus tinctorius L. have been shown
to have a positive effect in preclinical models of Parkinson’s disease [114–120]. The failure
of a series of clinical studies of potential molecules intended to stop or slow the progress of
the degenerative process in idiopathic Parkinson’s disease is one of the largest problems
for patients and research groups. In our opinion, the reason for the failure depends on
the use of preclinical models based on exogenous neurotoxins that do not represent what
happens in idiopathic Parkinson’s disease because they use massive and very rapid de-
generative models that contrast with the extremely slow progress of the disease, which
takes years for the appearance of motor symptoms and their subsequent progress. We
have proposed a single-neuron model of degeneration in which an endogenous neurotoxin
generated within the same neuron induces a non-expansive neurodegenerative process,
which only induces the loss of this single neuron without affecting neighboring neurons. To
date, aminochrome is the only endogenous neurotoxin we know of that is formed within
neuromelanin-containing dopaminergic neurons and does not induce expansive neurode-
generation. The increased expression of DT-diaphorase and glutathione transferase M2-2
enzymes and other antioxidant enzymes is mediated by the activation of the KEAP1/Nrf2
signaling pathway. However, only DT-diaphorase and glutathione transferase M2-2 prevent
the neurotoxic effects of aminochrome in neuromelanin-containing dopaminergic neurons.
Given the technical impossibility of injecting aminochrome into a single neuron, the only
alternative is to search for new molecules such as natural compounds that both increase
DT-diaphorase and glutathione transferase M2-2 expression by activating the KEAP1/Nrf2
signaling pathway and prevent the neurotoxic effects of aminochrome in cell cultures.
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