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Abstract: The herbaceous peony (Paeonia lactiflora Pall.) plant is world-renowned for its ornamental,
medicinal, edible, and oil values. As global warming intensifies, its growth and development are
often affected by high-temperature stress, especially in low-latitude regions. Superoxide dismutase
(SOD) is an important enzyme in the plant antioxidant systems and plays vital roles in stress
response by maintaining the dynamic balance of reactive oxygen species (ROS) concentrations.
To reveal the members of then SOD gene family and their potential roles under high-temperature
stress, we performed a comprehensive identification of the SOD gene family in the low-latitude
cultivar ‘Hang Baishao’ and analyzed the expression patterns of SOD family genes (PlSODs) in
response to high-temperature stress and exogenous hormones. The present study identified ten
potential PlSOD genes, encoding 145–261 amino acids, and their molecular weights varied from
15.319 to 29.973 kDa. Phylogenetic analysis indicated that PlSOD genes were categorized into
three sub-families, and members within each sub-family exhibited similar conserved motifs. Gene
expression analysis suggested that SOD genes were highly expressed in leaves, stems, and dormancy
buds. Moreover, RNA-seq data revealed that PlCSD1-1, PlCSD3, and PlFSD1 may be related to
high-temperature stress response. Finally, based on the Quantitative Real-time PCR (qRT-PCR)
results, seven SOD genes were significantly upregulated in response to high-temperature stress,
and exogenous EBR and ABA treatments can enhance high-temperature tolerance in P. lactiflora.
Overall, these discoveries lay the foundation for elucidating the function of PlSOD genes for the
thermotolerance of herbaceous peony and facilitating the genetic breeding of herbaceous peony
cultivars with strong high-temperature resistance.

Keywords: herbaceous peony (P. lactiflora); high-temperature stress; thermotolerance; reactive oxygen
species (ROS); superoxide dismutase (SOD); exogenous hormones

1. Introduction

Reactive oxygen species (ROS), including superoxide radicals (O2·−),bhydroxyl radi-
cals (·OH), hydrogen peroxide (H2O2), and singlet oxygen (1O2), are inevitable by-products
of aerobic metabolism in plant cells and play a dual role in plant growth, development, and
stress response [1,2]. For example, appropriate levels of ROS can act as signaling molecules
to regulate the expression of downstream genes, thereby improving plants’ tolerance to
stress. However, excessive accumulation of ROS can cause membrane oxidation, damage to
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biological macromolecules, and even cell death [3]. When plants are subjected to biotic and
abiotic stresses such as extreme temperature, drought, heavy metal, and salt, the dynamic
equilibrium of ROS becomes disrupted, leading to a large amount of ROS [4,5]. To adapt to
adverse environmental conditions, plants have evolved complex and efficient antioxidant
defense mechanisms, including antioxidant enzymes and antioxidants [6]. For instance,
the frequently studied antioxidant enzymes include superoxide dismutase (SOD), catalase
(CAT), ascorbate peroxidase (APX), and glutathione peroxidase (GPX). Antioxidants such
as ascorbate, proline, glutathione (GSH), α-Tocopherols, and Carotenoids are also involved
in the scavenging of ROS [6–8].

Among these antioxidants, SOD is the first line of defense as it can catalyze the toxic
O2·− to generate O2 and H2O2, effectively cleaning up ROS and protecting cells from
harm [6]. SOD is a ubiquitous metal enzyme family, and higher plants have three SOD
isoforms according to different metal cofactors: copper zinc SOD (Cu/Zn-SOD), iron SOD
(Fe-SOD), and manganese SOD (Mn-SOD) [9]. Another type of SOD, nickel SOD (Ni-SOD),
mainly exists in Streptomyces, cyanobacteria, and marine life, and has yet to be described in
plants [10,11]. Plant SOD genes are localized in various cellular organelles and are usually
related to the production site of O2·− [12]. Previous studies have found that Cu/Zn-SODs
are mainly localized in the cytoplasm, chloroplasts, and peroxisomes; Fe-SODs are localized
in chloroplasts; and Mn-SODs are localized in mitochondria and peroxisomes [6,13]. Due
to their essential role in the antioxidant system and plant resistance, the SOD genes family
have been widely studied in many plants, such as Arabidopsis, tobacco, soybean, banana,
tomato, upland cotton, barley, and so on [14–20].

Studies have reported that plant SOD genes can be induced to cope with various
environmental stresses. For example, in rapeseed, eight BnSOD genes were found to be
significantly upregulated under hormone treatments and abiotic stresses such as salt, cold,
waterlogging, and drought [21]. In liquorice, SOD activity was upregulated under salt and
drought stress [22]. A progressive rise in SOD activity and upregulation of OsCu/Zn-SOD
and OsFe-SOD expressions were observed under drought conditions in rice [23]. Simi-
larly, high-temperature stress-induced AsSODs encode functional SOD enzymes, which
increase the tolerance of garlic plants [24]. Moreover, overexpression of OsMn-SOD and
OsCu/Zn-SOD enhanced resistance to heat and salt stresses in rice, respectively, by increas-
ing the detoxification capacity of ROS [25,26]. Overexpression of Cu/Zn-SOD in potatoes
also conferred salt tolerance [27]. These results indicate a positive correlation between
higher SOD activity/expression and stress tolerance. Although some plant SODs have
been suggested to improve tolerance against adverse environments, particularly under
salt, drought, and high-temperature stress, the thermal response mechanism of SODs in
ornamentals remains unknown.

Plant hormones are signaling compounds that regulate critical aspects of growth, devel-
opment, and environmental stress responses [28]. Different studies suggest that pretreating
plants with phytohormones increases the expression of genes encoding ROS-scavenging
enzymes such as catalase, and results in enhanced plant thermotolerance [29]. For exam-
ple, the activity of antioxidant enzymes were induced by exogenous 2,4-Epibrassinolide
(EBR) treatment under high-temperature stress in tomatoes [30]. The exogenous applica-
tion of Abscisic Acid (ABA) increases H2O2 accumulation, which mediates ABA-induced
thermotolerance by elevating ROS scavenging enzymes and antioxidant substances. In
ABA biosynthesis-deficient mutant plants that lack ABA production, heat-inducible H2O2
accumulation is abolished, consequently resulting in impaired high-temperature toler-
ance [31]. The exogenous Methyl Jasmonate (MeJA) application has also been found to
significantly improve the high-temperature tolerance of perennial ryegrass by altering
osmotic adjustment, antioxidant defense, and JA-responsive gene expression [32].

Herbaceous peony (Paeonia lactiflora Pall.) is an excellent ornamental perennial, culti-
vated worldwide for its colorful flowers and high medicinal, edible, and oil values [33,34].
It could be used as potted flowers, cut flowers, and materials for gardening to create
unique seasonal landscapes [35]. However, P. lactiflora prefers a cool climate, and high



Antioxidants 2024, 13, 1128 3 of 20

temperatures (usually exceeding 40 ◦C) often cause damage, particularly in low-latitude
regions [36]. This issue is becoming more severe due to global warming [37]. Prolonged
exposure to high temperatures can lead to yellowing and browning leaves, premature
wilting of above-ground parts, and a subsequent decrease in yield due to the insufficient
accumulation of photosynthates in peony plants [38,39]. These effects directly reduce its
ornamental and green value during the summer and limit the popularity and application of
P. lactiflora. Consequently, there is an urgent need to develop herbaceous peony germplasms
with enhanced resistance to high-temperature stress.

Analyzing the SOD genes in herbaceous peony could provide critical information for
the genetic improvement of high-temperature stress resistance. In the present study, we
performed a systematic analysis of the SOD gene family in the herbaceous peony ‘Hang
Baishao’, investigating its characteristics, including physicochemical properties, protein
structure, phylogenetic relationships, conserved structural domains, motif composition,
and expression profiles under high-temperature stress. Additionally, we explored the
expression changes of key SOD family members under high-temperature stress treated
with different hormones: EBR, ABA, and MeJA, using quantitative real-time PCR (qRT-
PCR) in herbaceous peony. This comprehensive analysis of the herbaceous peony SOD
gene family provides a theoretical basis for improving the high-temperature tolerance of
herbaceous peony cultivars.

2. Materials and Methods
2.1. Identification of PlSOD Genes in P. lactiflora

The identification of the PlSOD gene family was performed in two ways based on
transcriptome sequencing data of the P. lactiflora cultivar ‘Hang Baishao’ under natural high
temperatures measured by our group. First, protein sequences of the Arabidopsis thaliana
SOD family members were downloaded from the Arabidopsis genome database (TAIR).
These sequences were then used as seed sequences to search the P. lactiflora protein database
for the candidate PlSOD using BLASTp with an e-value ≤ 1 × 10−5. Second, Hidden
Markov Model (HMM) profiles of Cu/Zn-SOD (PF00080) and Fe/Mn-SOD (PF02777 and
PF00081) were downloaded from the InterPro database. Then, the P. lactiflora protein
database was scanned using an HMM search with TBtools-II software [40]. For further
identification, the SOD candidate proteins were scanned in the NCBI-CDD and SMART
databases to remove transcripts with incomplete domains and overlapping sequences.

2.2. Physicochemical Characteristics and Subcellular Localization

The physicochemical characteristics of the PlSOD proteins were predicted using the
ExPASY ProtParam tool [41], including the number of amino acids, molecular weight, theo-
retical isoelectric point (pI), instability index, and grand average of hydropathicity (GRAVY).
Subcellular localization was predicted using ProtComp 9.0 (http://linux1.softberry.com/,
accessed on 15 September 2024) [42] and Cell-PLoc 2.0 (http://www.csbio.sjtu.edu.cn/
bioinf/Cell-PLoc-2/, accessed on 20 February 2024) [43]. Additionally, the secondary
structures of PlSODs were analyzed through SOPMA.

2.3. Phylogenetic Analysis, Motif, and Conserved Domain Analysis

To investigate the phylogenetic relationships of PlSOD genes, SOD protein sequences
from five plant species (A. thaliana, Solanum lycopersicum, Vitis vinifera, Zea mays, and
Glycine max) were downloaded from the NCBI and Phytozome servers. Multiple sequence
alignments of the total 61 protein sequences were performed using Clustal W with default
parameters [44], and a phylogenetic tree was constructed using MEGA7 via the neighbor-
joining (NJ) method with a bootstrap value of 1000 [45]. The iTOL online tool was used for
visualization [46]. Multiple sequence alignment of PlSODs was performed using DNAMAN
V6 software (Lynnon Biosoft, San Ramon, CA, USA) to analyze conserved structures [47].
The MEME Suite online tool was used to identify the motifs of the SOD genes family [48],
and domain information was obtained from NCBI Batch-CD-search.

http://linux1.softberry.com/
http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/
http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/
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2.4. Expression Patterns of PlSOD Genes Based on RNA-Seq Data

Eighteen independent leaf samples from the ‘Hang Baishao’ at six stages under natural
high temperature stress in summer were collected for transcriptome sequencing (RNA-
Seq), with three replicates at each stage (Table S1). The expression levels of the PlSOD
genes were analyzed using the RNA-seq data. The expression of all SOD genes was
normalized and represented as fragments per kilo base of exon per million fragments
mapped (FPKM). Based on the FPKM value, TBtools-II was used to evaluate the time-
specific expression profile of SOD genes with Log2-based expression fold-changes and to
create the heatmap [40].

2.5. Plant Materials

The test plants were one-year-old seedlings of P. lactiflora ‘Hang Baishao’, a typical
low-latitude herbaceous peony. Seeds of ‘Hang Baishao’ were collected from mature fruits
in late summer and sown in the Perennial Flower Resources Garden of Zhejiang University
in Hangzhou (E 118◦21′–120◦30′, N 29◦11′–30◦33′), Zhejiang Province, China, in July 2022.
In March of the following year, the seeds germinated, and after half a year of accumulation,
one-year-old roots (length, 10–12 cm; diameter, 0.8–1.2 cm) suitable for the experiment had
formed and were then collected [49].

Four groups of the roots were then potted in a mixture of peat soil and perlite at a
1:2 ratio and moved to a glasshouse (25/15 ◦C, 16/8 h day/night, 2000 lx, 85% relative
humidity), with regular watering and fertilizer applications on 7 October 2023. After the
three leaflets of the compound leaves of the seedlings matured, healthy plants with similar
height and growth conditions were selected as the biological material for testing.

2.6. Treatments and Sampling

Four treatments were set up (Table 1), and the leaves of the seedlings were sprayed
with solutions of EBR (Solarbio, 72962-43-7, Beijing, China), ABA (Macklin, 21293-29-8,
Shanghai, China), MeJA (TCI, 1101843-02-0, Tokyo, Japan), and distilled water, respectively.
The exogenous hormones were dissolved in anhydrous ethanol and then diluted to the
desired concentration for each treatment, ensuring that the concentration of anhydrous
ethanol in the spray solution was 0.1% (v/v). Additionally, 0.1% (v/v) Tween 80 was added
as a surfactant. The control group received the same volume of anhydrous ethanol and
Tween 80 as the treatment groups. Each plant was sprayed at 10:00 am for three consecutive
days (preferably when water droplets had just formed).

Table 1. Experimental design.

Distilled Water
Treatment

1 µM EBR
Treatment

100 µM ABA
Treatment

100 µM MeJA
Treatment

High-temperature
treatment (42 ◦C) Control Group EBR Group ABA Group MeJA

After the final spray, the seedlings were placed into a chamber (RXZ-380, Ningbo
Jiangnan instruments, Ningbo, China) for the heat treatment. The temperature in the
chamber was set at 42 ◦C (day/night); light intensity was 2000 lx; the photoperiod was
12 h/12 h; and relative humidity (RH) was 70%. Each treatment was replicated three
times, with 15 seedlings per replicate. At 0, 12, 36, and 48 h after the heat treatment, three
whole seedlings from the same replicate were randomly selected and combined into one
sample. These samples were then rapidly frozen in liquid nitrogen and stored at −80 ◦C
for further experiments.
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2.7. Determination of Chl Fluorescence

The Chl fluorescence characteristics of the four groups were observed after heat
treatment for 48 h using an Imaging-PAM Chl fluorescence system (Hansatech Instruments,
Norfolk, UK). After 30 min dark adaptation, the basal fluorescence (Fo) and the maximum
quantum yield of photosystem II (Fv/Fm) were measured on nine leaves from three plants
per treatment (three biological replicates, with three leaves per replicate) at 10.00 am. The
Y(NPQ), Y(II), and Y(NO) parameters were also measured at 48 h [33].

2.8. Measurements of ROS-Related Physiological and Biochemical Indices

ROS-related physiological and biochemical indices were measured using detection kits
purchased from Nanjing Jiancheng Bioengineering Co., Ltd. (Nanjing, China) following
the manufacturer’s instructions [33]. Specifically, the Malondialdehyde (MDA) contents
were measured using the thiobarbituric acid (TBA) method according to the MDA assay kit
(A003-3). The concentration of hydrogen peroxide (H2O2) was measured by spectropho-
tometry using detection assay kits (A064-1). For the enzyme assays, SOD activity was
measured by the WST-1 method using a SOD detection kit (A001-3).

2.9. RNA Extraction and qRT-PCR Analysis

Total RNA was extracted using the RNAprep Pure Plant Kit (Tiangen, Beijing, China).
The purity and concentration of the RNA were assessed with a NanoDrop (ND-1000)
spectrophotometer (Isogen Life Science, Utrecht, The Netherlands). Reverse transcription
was performed using a PrimeScript RT Reagent Kit (TaKaRa, Kyoto, Japan). qRT-PCR was
conducted using TB Green® Premix Ex Taq (TaKaRa) on a CFX ConnectTM Real-Time PCR
Detection system (Bio-Rad, Hercules, CA, USA) and the PCR procedure was as follows:
2 min at 95 ◦C; 39 cycles of 5 s at 95 ◦C and 30 s at 55 ◦C; and a melting curve program of
5 s at 95 ◦C, 5 s at 65 ◦C, and 5 s at 95 ◦C [50]. Primers for qRT-PCR were designed according
to the herbaceous peony transcriptome database from NCBI and are listed in Table S2.
Each gene was normalized to the Alpha-tubulin (ATUBA) internal reference gene [51]. The
relative expression levels of these genes were determined using the 2−∆∆Ct method with
three biological replicates [52].

2.10. Statistical Analysis

All experiments in this study were conducted using a completely randomized design.
One-way analysis of variance (ANOVA) and Duncan’s multiple repeat comparative analysis
were performed to compare differences among different indices or treatments using the
SPSS statistical program (IBM Corporation, Armonk, NY, USA), with a probability value of
p < 0.05 considered significant. GraphPad Prism 9.0 (GraphPad Software, Inc., La Jolla, CA,
USA) and Tbtools Software [40] were applied for visualization of the experimental data.

3. Results
3.1. Identification of SOD Gene Family in P. lactiflora

In this study, a total of ten SOD proteins containing at least one complete SOD domain
were identified in P. lactiflora using eight A. thaliana SOD (AtSODs) protein sequences as
queries, which are displayed in Table 2. Based on domain analysis, six of these proteins
containing a copper/zinc superoxide dismutase domain (Pfam: 00080) were classified into
the Cu/Zn-SOD sub-family, while four proteins containing Iron/manganese superoxide
dismutases alpha-hairpin (Pfam: 00081) and C-terminal (Pfam: 02777) domains were
classified into the Fe/Mn-SOD sub-family (Table 2). Comprehensive statistics for the ten
PlSOD genes were also documented in Table 2. The protein lengths ranged from 145 to
261 amino acids (aa), and molecular weight ranged from 15,318.57 to 29,972.54 Da (from
PlCSD1-3 to PlFSD3). The isoelectric points extended from 6.04 (PlMSD2) to 8.98 (PlMSD1).
The instability index determines whether a protein is likely to be stable (≤40, probably
stable; >40, probably not stable) [53].
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Table 2. The characteristics of SOD family proteins in Paeonia lactiflora.

Gene Name Gene ID Amino Acid Molecular
Weight PI Instability

Index GRAVY Subcellular
Location

Pfam
Domain

PlCSD1-1 Peony_Unigene_344154 194 20,123.57 7.38 28.85 −0.28 Chl CZ

PlCSD1-2 Peony_Unigene_468541 194 20,070.52 6.94 26.58 −0.244 Chl CZ

PlCSD1-3 Peony_Unigene_151283 145 15,318.57 6.95 10.21 −0.028 Chl, Cyt. CZ

PlCSD2-1 Peony_Unigene_483257 221 22,713.7 6.1 20.01 0.011 Chl CZ

PlCSD2-2 Peony_Unigene_424839 189 19,737.87 6.9 28.47 −0.514 Chl, Cyt. CZ

PlCSD3 Peony_Unigene_299453 163 16,766.82 6.74 18.39 −0.209 Chl, Cyt. CZ

PlFSD1 Peony_Unigene_433554 236 26,301.77 6.71 37.04 −0.43 Chl IMA, IMC

PlFSD3 Peony_Unigene_453151 261 29,972.54 8.17 41.09 −0.35 Chl IMA, IMC

PlMSD1 Peony_Unigene_259976 237 26,472.27 8.98 48.54 −0.346 Mit IMA, IMC

PlMSD2 Peony_Unigene_061444 248 27,771.29 6.04 26.19 −0.344 Mit IMA, IMC

PI: isoelectric points; GRAVY: grand average of hydropathy; Chl: chloroplast; Cyt: cytoplasm; Mit: mitochondrion;
CZ: Copper/zinc superoxide dismutase; IMA: Iron/manganese superoxide dismutases, alpha-hairpin domain;
IMC: Iron/manganese superoxide dismutases, C-terminal domain.

According to the prediction of subcellular localization, the products of three
Cu/Zn-SODs (PlCSD1-1, PlCSD1-2, PlCSD2-1) and two Fe-SODs (PlFSD1 and PlFSD3)
were localized to the chloroplast, while those of two Mn-SODs (PlMSD1 and PlMSD2) were
localized to the mitochondria. Additionally, PlCSD1-3, PlCSD2-2, and PlCSD3 were local-
ized to both the chloroplast and cytoplasm. Our predictions are consistent with the existing
literature, which states that Cu/Zn-SODs localize in the cytoplasm and chloroplasts, Fe-
SODs primarily localize in the chloroplasts, and Mn-SODs localize in the mitochondria [54].

The secondary structure prediction indicated that the PlSOD proteins are mainly
composed of alpha helices, extended strands, and random coils, with beta turns present
in relatively small proportions (Table 3). Specifically, the Cu/Zn-SODs are dominated by
alpha helices, while Fe/Mn-SODs are predominantly composed of extended strands.

Table 3. Secondary structure prediction of PlSOD proteins in P. lactiflora.

Gene Alpha Helix (%) Beta Turn (%) Extended Strand (%) Random Coil (%)

PlCSD1-1 10.31 5.15 30.41 54.12
PlCSD1-2 13.40 6.70 28.87 51.03
PlCSD1-3 8.11 7.43 34.46 50.00
PlCSD2-1 19.46 8.14 26.24 46.15
PlCSD2-2 12.17 6.35 32.28 49.21
PlCSD3 9.20 5.52 30.67 54.60
PlFSD1 32.63 3.81 16.53 47.03
PlFSD3 37.55 3.07 15.33 44.06
PlMSD1 52.74 4.22 12.66 30.38
PlMSD2 53.63 3.63 14.11 28.63

3.2. Phylogenetic Analysis of PlSODs

To clarify the evolutionary relationships and classification of PlSOD gene sub-families,
a phylogenetic tree was constructed using the protein sequences of 10 PlSODs, eight A.
thaliana SODs, nine S. lycopersicum SODs, nine V. vinifera SODs, 12 Z. mays SODs, and 13
G. max SODs (Table S3). Moreover, given that orthologs often retain equivalent functions
throughout evolution [55], the orthologous relationships between SODs from A. thaliana
and P. lactiflora were examined using the Clustal Omega Multiple Sequence Alignment Tool
at EMBL-EBI (Table S4).

Based on domain analysis and the phylogenetic tree, the SOD genes of all species
were clustered into three major clades: Cu/Zn-SODs (I), Fe-SODs (II), and Mn-SODs
(III), represented by blue, red, and light yellow, respectively (Figure 1). The Cu/Zn-SOD
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group contained 30 SOD members (6 PlSODs, 3 AtSODs, 4 SlSODs, 5 VvSODs, 6 Zm-
SODs, and 6 GmSODs), the Fe-SOD included 20 members (2 PlSODs, 3 AtSODs, 4 SlSODs,
2 VvSODs, 4 ZmSODs, and 5 GmSODs), and the Mn-SOD group had 11 members (2 PlSODs,
2 AtSODs, 1 SlSODs, 2 VvSODs, 2 ZmSODs, and 2 GmSODs). Interestingly, Cu/Zn-SOD
and Fe-SOD groups contained more SODs compared to the Mn-SOD group. Additionally,
sequence similarities among the six Cu/Zn-SOD proteins ranged from 51.63% to 88.24%
when compared to the AtCSD1, AtCSD2, and AtCSD3 orthologs. Notably, PlCSD1-1 and
PlCSD1-2 shared 82.24% homology with AtCSD1. In the Fe-SOD group, PlFSD1 had 56.50%
similarity with AtFSD1, and PlFSD3 had 72.09% similarity with AtFSD3. The Mn-SOD
group included PlMSD1 and PlMSD2, which showed 75.98% and 36.16% homology with
AtMSD1 and AtMSD2, respectively. Additionally, PlCSD1-1 and PlCSD1-2 displayed
99.48% sequence similarity, indicating they may be paralogs resulting from gene dupli-
cation. This gene duplication could be a crucial factor for diversification and functional
divergence in duplicated genes, and may contribute to molecular innovation in higher
organisms [56].
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Figure 1. Phylogenetic tree of SOD proteins in P. lactiflora, A. thaliana, S. lycopersicum, V. vinifera, Z.
mays, and G. max constructed using the neighbor-joining method. The tree was clustered into three
major groups (Cu/Zn-SODs, Fe-SODs, and Mn-SODs), denoted by different colors. The proteins of
herbaceous peony are marked in red and the SODs from different species were distinguished with
different colors and shapes.
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3.3. Phylogeny and Conserved Motifs of PlSOD Genes

To further investigate the conserved regions among the ten members in P. lactiflora,
multiple protein sequence alignments and pairwise identity analyses were performed. The
highly conserved Sod_Cu domain ranged from approximately 132 to 141 aa, the Sod_Fe_N
domain ranged from 82 to 89 aa, and the Sod_Fe_C domain spanned from 64 to 107 aa.
Additionally, the ten PlSOD proteins exhibited low homology with each other, while the
similarity within each sub-family was higher (Figure 2). In particular, Cu/Zn-SODs shared
44.14 to 99.48% identity, and Fe/Mn-SODs shared 23.41 to 41.18% identity (Table S5).
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Figure 2. Multiple alignment of PlSOD proteins of functional domains. (A) Cu/Zn-SODs sub-family
sequence alignment. (B) Fe-SODs and Mn-SODs sub-family sequence alignment. The SOD domains
Sod_Cu, Sod_Fe_N, and Sod_Fe_C are marked in red boxes. The black, red, and blue parts represent
homology equal to 100%, greater than 75%, and greater than 50%, respectively.

The ten PlSODs were divided into two groups (Figure 3A): one group consisted
of six Cu/Zn-SODs, while the other group included four proteins: two Fe-SODs and
two Mn-SODs. Analysis of conserved domains indicated that PlFSDs and PlMSDs have
similar domain compositions, both containing the Sod_Fe_C and Sod_Fe_N domains. In
contrast, PlCSDs have only a single Sod_Cu domain (Figure 3B). Conserved motif analysis
further revealed the structural features of PlSODs. Nine conserved motifs were identified
(Figure 3C), and their amino acid sequences are detailed in Figure 3D. Motifs 1, 2, 4, and 6
constitute the key functional domains of SODs mentioned above. Among these, motifs 1, 2,
and 3 were presented in all six Cu/Zn-SODs, while motifs 4, 6, and 7 were shared in the
four Fe/Mn-SODs. Except for PlCSD1-3, motif 8 was a common conserved motif in the
Cu/Zn-SODs sub-family. Furthermore, motif 9 only existed in PlCSD1-1 and PlCSD1-2,
and motif 5 was the only motif common to both Cu/Zn-SODs (PlCSD1-1, PlCSD1-2) and
Fe/Mn-SODs (PlFSD3, PlMSD1, PlMSD2). These results indicate that members within
the same sub-family exhibit high similarity in motif compositions. However, no common
motifs were shared by all ten PlSOD genes, further confirming the functional diversity of
SOD genes in herbaceous peony.
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3.4. Expression Analysis of PlSOD Genes in Different Tissues

qRT-PCR was used to analyze the relative tissue-specific expression levels of ten PlSOD
family members in flower bud, stem, dormancy bud, leaf, petal, stamen, and pistil of herba-
ceous peony under normal growth conditions. The expression of ten PlSOD genes was
detected, with nearly all of them being highly expressed in stems, dormancy buds, and leaves,
particularly in leaves, and showing low expression in flower buds, petals, stamens, and pistils
(Figure 4). However, the PlCSD2-2 and PlMSD2 could not be detected in any of the six tissues,
indicating that their expression levels were very low. Notably, PlCSD3 and PlFSD1 exhibited
strong expression levels in leaves, with extremely significant differences. Additionally, no
significant differences were observed for PlCSD3 in other tissues. Based on these results, we
chose leaves as the experimental material for follow-up observations and sampling.

3.5. Expression Analysis of PlSODs under Natural High-Temperature Stress

To investigate the potential functions of SOD genes in herbaceous peony under sum-
mer high-temperature stress, we analyzed their expression at six stages from May 15 to
August 15 (May 15, June 15, July 1, July 15, August 1, August 15) in leaves using RNA-seq
data. We then conducted a significance analysis of differences compared with stage one.
The expression levels of herbaceous peony SOD genes at different stages exhibited substan-
tial variations, and most PlSOD genes showed significant (p-value ≤ 0.05) changes under
high-temperature stress (Figure 5). For example, PlCSD1-1, PlCSD1-2, PlCSD3, and PlFSD1
were upregulated initially and then decreased. PlCSD1-3, PlCSD2-2, and PlMSD2 exhibited
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extremely low expression levels compared to others, with no expression detected in the
first four stages, though they increased in the fifth stage and then decreased. Additionally,
the expression levels of PlCSD2-1, PlFSD3, and PlMSD1 varied from high to low across all
stages under high-temperature stress, showing no clear pattern. The above results indicated
that PlCSD1-1, PlFSD1, and PlCSD3 may play roles in the response to high-temperature
stress. Overall, the herbaceous peony SOD genes may display potential divergent functions
throughout plant growth and development.
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phenotypes of herbaceous peony leaves subjected to high-temperature stress. (B) Expression profiles
of PlSOD genes under high-temperature stress. The FPKM values of genes in samples were shown by
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indicates high expression. Statistically significant differences are indicated using asterisks (Duncan’s
test, * p < 0.05, ** p < 0.01, and *** p < 0.001). Data are presented as the means ± SD of three replicates.
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3.6. Phenotypic and Physiological Responses to High-Temperature Stress

To explore the effects of different hormone treatments on the high-temperature re-
sistance of P. lactiflora, two-week-old peony seedlings were divided into four treatment
groups: Control, Group EBR, Group ABA, and Group MeJA (Table 1). There were signifi-
cant phenotypic differences between the hormone-treated groups and the control group.
The leaves of control plants exhibited significant shrinking, curling, and drooping, whereas
the hormone-treated groups grew normally, with group EBR and group ABA performing
better than group MeJA (Figure 6A). The Fv/Fm of the control group was also lower than
that of the hormone-treated groups (Figure 6B). As shown in Figure 6C, the SOD activity in
the hormone-treated groups was significantly higher than in the control group, indicating
that exogenous EBR, ABA, and MeJA treatments could increase SOD activity and reduce
ROS accumulation, thereby enhancing the plants’ resistance to high-temperature stress.
Additionally, the MDA content was significantly lower in the treated groups than in the
control. However, the H2O2 content in treatment groups was significantly higher than in
the control group after high-temperature stress.
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Figure 6. Phenotype, physiological indices, and Chl fluorescence of P. lactiflora plants treated with
different hormones after high-temperature treatment for 48 h. (A) Phenotype of control group
and hormone-treated group. (B) Chl fluorescence imaging screens. (C) SOD activity, MDA, and
H2O2 accumulation. (D) Chlorophyll fluorescence parameters. All data are the means of three
replicates with standard deviations, and different letters indicate significant differences among the
data according to Duncan’s multiple range test (p < 0.05).
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Chlorophyll fluorescence parameters reflect the plants’ adaptability to external en-
vironments and are important criteria for measuring plants’ stress-resistance [57]. The
fluorescence origin (Fo), fluorescence maximum (Fm), the maximum quantum yield of
photosystem II (Fv/Fm), and quantum efficiency of photosystem II (YII) values of all groups
initially decreased and then stabilized, while the quantum yield of regulated energy dissi-
pation (Y(NPQ)) and quantum yield of non-regulated energy dissipation (Y(NO)) showed
the opposite trend (Figure 6D). After high-temperature stress, the Fo and Fm values of
hormone-treated plants were higher than those of control plants, with the ABA-treated
plants showing the highest parameters. Additionally, the Fv/Fm value, reflecting the poten-
tial activity of plant PS II, was higher in treated plants, indicating less stress compared to
controls. In this study, the Fv/Fm of treated plants after high-temperature stress was higher
than that of control plants, indicating that the treated plants experienced less stress. The
Y(NO) of treated plants was higher than that of the control, while the Y (NPQ) was lower
compared to the control.

3.7. Exogenous Hormones and High-Temperature Stress-Induced Expression Profiles of PlSOD
Family Genes

To further investigate the potential roles of the PlSOD gene family in response to
high-temperature stress and the effects of different hormones on PlSOD expression in
herbaceous peony, we selected and examined the relative expression levels of eight PlSOD
genes after various hormone treatments and subsequent high-temperature stress at 42 ◦C
for 0 h, 12 h, 36 h, and 48 h using qRT-PCR (Figure 7). Most PlSOD genes were induced
by exogenous hormones, and significant transcriptional changes were observed under
high-temperature stress. In the Control, EBR, and ABA treatment groups, PlSOD genes
generally showed a trend of increasing expression followed by a decrease. Conversely, in
the MeJA treatment group, most PlSOD genes exhibited decreased expression during high-
temperature treatment. Notably, the EBR treatment group displayed a stronger response
compared to the others (Figure 7).

In the Control group, the expression of most SOD genes, except for PlCSD1-1 and
PlFSD1, was significantly upregulated during high-temperature stress before decreasing
after reaching peak levels. Specifically, the expression of PlCSD1-1 was significantly down-
regulated, while PlFSD1 initially increased slightly in the second stage before showing
significant downregulation in the third and fourth stages (Figure 7A). These results in-
dicated that, while most SOD family members could respond to high temperatures, the
plant’s defense system struggles to maintain its normal state over time, leading to a decrease
in SOD gene expression.

In Group EBR, all PlSOD genes were highly induced. With the exception of PlFSD1,
which first decreased and then peaked with an expression level 3.02 times higher than at
0 h, the expression levels of other PlSOD genes increased initially before declining, peaking
in the second stage (Figure 7B). Additionally, the upregulation of most SOD genes in the
EBR group was notably higher than in the control group.

PlSOD genes in Group ABA exhibited similar expression patterns, which increased
first and then decreased. PlCSD3 reached its peak expression in the third stage, while
other genes peaked in the second stage, indicating that ABA treatment might prolong
the response of PlCSD3 to high-temperature stress. All genes, except for PlCSD1-1, were
significantly upregulated. (Figure 7C).

It is notable that, in seedlings treated with MeJA under high-temperature stress,
all SOD genes except PlCSD3 were markedly downregulated. PlCSD3, however, was
significantly upregulated at the second stage and subsequently decreased (Figure 7D),
indicating it may be influenced by MeJA signal transduction. In conclusion, the qRT-PCR
data confirm that herbaceous peony SOD genes are likely involved in high-temperature
stress responses. Moreover, EBR and ABA treatments may enhance the plant’s high-
temperature stress response by inducing SOD genes expression.
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Figure 7. Expression profiles of PlSOD genes in peony leaves treated with distilled water (A),
exogenous EBR (B), ABA (C), and MeJA (D) under high-temperature stress. EBR: 2, 4-epibrassinolide;
ABA: Abscisic acid; MeJA: Methyl jasmonate. The mean values were derived from three independent
biological replicates. ANOVA was used to test significance. * p < 0.05, ** p < 0.01, and *** p < 0.001.
Error bars represent the standard deviation.
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4. Discussion

Herbaceous peony is a prominent landscape plant widely cultivated around the
world. However, with the intensification of global warming, P. lactiflora is increasingly
subjected to summer high-temperature stress, particularly in low-latitude regions. Such
high-temperature stress interrupts physiological thermostability and triggers biochemi-
cal responses critical for plant survival [58], significantly impacting its cultivation and
application [39]. SODs are crucial enzymes involved in oxidation processes, effectively
reducing oxidative damage by scavenging reactive oxygen species produced under stress
conditions [7]. The essential roles of SOD genes in plant acclimation to various abiotic
stresses, including cold, drought, heat, and salinity, have been demonstrated in many
previous studies [17,21,59]. However, detailed information on the characteristics and func-
tions of PlSODs, particularly their roles in stress responses of P. lactiflora, remained limited.
Therefore, this study conducted a systematic analysis of the PlSOD gene family and exam-
ined the impact of exogenous hormone treatments on the high-temperature resistance of
herbaceous peony.

4.1. Characteristics and Evolutionary Analysis of PlSODs in P. lactiflora

In this study, a total of ten PlSOD genes were identified based on transcriptome data
(Table 1). The number of SOD members in P. lactiflora was similar to that in A. thaliana (8),
S. lycopersicum (9) [17], and V. vinifera (10) [60], but less than that in Gossypium hirustum
(18) [16] and Triticum aestivum (26) [61]. The variety in SOD genes among different species
could be due to differences in genome sizes. The results of subcellular localization of SOD
proteins revealed that Cu/Zn-SODs and Fe-SODs are likely expressed in the cytoplasm
and chloroplasts, while Mn-SODs are expressed in mitochondria. This distribution allows
them to collaborate in maintaining the balance of free radicals in cells by functioning in
different cellular compartments.

The phylogenetic relationship is based on domain analysis, with proteins clustered into
the same clade generally possessing similar conserved motifs and biological functions. In
this study, we constructed a phylogenetic tree of SOD proteins in P. lactiflora and five other
species (Figure 1). These proteins were categorized into three sub-families, consistent with
previous research [62,63]. Fe-SODs and Mn-SODs from different plants clustered together
and were separated by a high bootstrap value, indicating that they might have originated
from common ancestral genes [64]. However, as the latest enzyme in the evolutionary
history of SOD, the Cu/Zn-SODs mostly existed in eukaryotes and evolved independently.
At the same time, the existence of certain motifs, such as 1, 2, and 3 in all Cu/Zn-SODs
and 4, 6, and 7 in all Fe/Mn-SODs, suggested that different sub-families have conserved
their structures during evolution. Furthermore, the similarity between Cu/Zn-SODs and
Fe/Mn-SODs showed considerable divergence. Overall, the obvious differences in motif
structure and conserved domains of Cu/Zn-SODs and Fe/Mn-SODs suggest that SOD
genes have a high level of function diversity during the growth and development of
herbaceous peony.

4.2. PlSODs Are Widely Involved in High-Temperature Stress Response

Differences in expression levels and temporal and spatial specificity of a gene family
are often associated with functional differentiation [12]. Based on the qRT-PCR data, we
found that, except for the low expression of PlCSD2-2 and PlMSD2 in all tissues, the
expression levels of other SOD family genes were higher in stems, leaves, and dormant
buds, but lower in flower buds, petals, pistils, and stamens (Figure 4). These results suggest
that SOD family genes may be involved in the growth and development of stems, leaves,
and buds, especially in regulating the phenotypic changes of stems and leaves under
environmental stresses, such as stalk collapse and leaf scorching. Notably, the expression
levels of PlCSD3 and PlFSD1 in leaves were 16.41 and 21.8 times higher than those in flower
buds, respectively. Leaves play a fundamental role in maintaining the life of plants through
photosynthesis [65], and therefore these SOD genes may participate in scavenging the ROS
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generated from photosynthesis. Additionally, according to the FPKM values of 10 PlSOD
genes at different periods, we found that PlCSD1-1, PlCSD1-2, PlCSD3, and PlFSD1 all
showed a trend of first increasing and then decreasing, indicating that they could respond
to high-temperature stress (Figure 5). However, due to the limited regulatory effect, the
expression levels of all genes decreased as the stress gradually increased. In summary, the
PlSOD genes exhibited spatiotemporally specific expression patterns.

Previous studies have reported that the main function of SOD genes is to respond
extensively to various abiotic stresses [14,66,67]. For example, in bottle gourd (Lagenaria
siceraria) almost all LsiSOD genes were upregulated during heat treatment [68]. Similarly,
all SOD genes exhibited significant upregulation in tomato when subjected to salt and
drought treatments [17]. Among these stresses, temperature is one of the most important
environmental factors that affect plant growth and development. Subtle changes in temper-
ature might impact plants morphologically, physiologically, biochemically, and molecularly,
especially high temperatures in summer [38]. Indeed, high-temperature stress is now a
critical issue worldwide, as it inhibits plant growth and development, and severely reduces
crop yield [69,70]. For ornamental plants, their growth performance, ornamental value,
and productivity are also seriously affected by high temperatures [71,72]. Studies of wheat
(Triticum aestivum) seedlings showed that the thermotolerance to high-temperature stress
was enhanced by improving the expression of chloroplast Cu/Zn-SOD and mitochondrial
Mn-SOD genes [73]. Moreover, high-temperature stress strongly induced the activities of
Cu/Zn-SODs, Fe-SODs, and Mn-SODs in garlic leaves [24]. In this study, eight PlSOD
genes were significantly upregulated by high-temperature treatment, with PlCSD2-1 and
PlCSD3 showing the most significant increases (Figure 7A), indicating that these genes may
play vital roles in the high-temperature stress response. In the future, we will further verify
whether these genes can regulate the thermotolerance of herbaceous peony and explore
their specific regulatory mechanisms.

4.3. EBR and ABA Treatments Can Enhance the Tolerance of P. lactiflora under High-Temperature Stress

Recently, studies have found that the exogenous application of hormones significantly
ameliorates heat-induced damage and improves plants’ high-temperature tolerance [74].
Among them, EBR, ABA, and MeJA are well-known plant growth regulators that mediate
adaptations to environmental conditions [75–77]. In this study, we treated the herbaceous
peony seedlings with EBR, ABA, and MeJA, respectively, and then measured SOD enzyme
activity, and the MDA and H2O2 content, of different groups under 42 ◦C high-temperature
stress (Figure 6). Additionally, the expression patterns of PlSOD genes were tested
(Figure 7).

Biochemical and physiological consequences following high-temperature stress in-
clude excess accumulation of reactive oxygen species (ROS) and increased membrane
permeability [78,79]. ROS can react with unsaturated fatty acids on cell membranes, lead-
ing to substantial MDA production, which exacerbates cell biofilm oxidation and disrupts
its structure [80]. Therefore, the MDA levels in plant cells can indicate the degree of ox-
idative stress. This study showed that the activity of SOD enzyme in the hormone-treated
group was higher than that of the control, while the content of MDA was lower than that of
the control (Figure 6C). This indicates that exogenous hormone treatment could enhance the
ROS scavenging ability of plant cells, maintain low membrane lipid peroxidation, and fur-
ther reduce plant damage under high-temperature stress. Numerous studies have also been
conducted to test the changes in the levels of different SOD isozymes under various abiotic
stresses. For example, salt stress increased the activity of Cu/Zn-SOD in the leaves of Citrus
limonum, and a low temperature increased SOD and catalase activity in an Avena nuda plant.
Additionally, H2O2 content in the four groups significantly increased under heat treatment
because SODs remove O2·− by catalyzing its dismutation and produce H2O2, which pos-
sibly acts as a signal to rapidly promote the expression of stress-response proteins [81].
The photosynthetic system is highly sensitive to high-temperature stress, which induces
various forms of damage, ranging from attenuating the photosynthetic rate to eliminating
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photosynthetic capacity [82,83]. Chlorophyll fluorescence is now widely used to monitor
the photosynthetic performance of plants, especially the parameter Fv/Fm, which has been
widely used to reflect the tolerance of plants to environmental stresses [37,84,85]. The
Fv/Fm value of plants in the hormones-treated group was significantly higher than that
in the control group after 48 h (Figure 6D), indicating that spraying EBR, ABA, and MeJA
could alleviate the damage to PS II of P. lactiflora leaves at high temperatures, improve
photosynthetic efficiency, and thus enhance the plants’ high-temperature resistance.

Our qRT-PCR results showed significant differences in PlSOD gene expression across
different treatment groups. After EBR treatment, all the genes were upregulated from 0 to
12 h under high-temperature stress, with the upregulation trend of five genes (PlCSD1-1,
PlCSD1-2, PlCSD1-2, PlCSD2-1, and PlMSD1) being significantly higher than that of the
control, especially PlFSD1. It reached the maximum expression level at 36 h under high
temperature, indicating that EBR prolonged its response time. The expression pattern
of PlSOD family genes in the ABA-treated group was similar to that in the EBR-treated
group under high-temperature stress. The difference was that the expression level of
PlCSD3 reached the highest at 36 h, while the expression level of PlFSD1 decreased to the
lowest at 36 h. It is worth noting that, in the MeJA group, almost all PlSOD genes were
inhibited during high-temperature stress, and their expression levels gradually decreased
with continued high temperature exposure. Only the expression level of PlCSD3 was
significantly upregulated after 12 h of high temperature treatment, and then it decreased.
This suggests that PlCSD3 may be involved in the ABA and MeJA pathways to regulate
plants’ high-temperature tolerance. These discoveries offer robust evidence that PlSOD
genes have different mechanisms of action and are regulated by diverse upstream factors.
Moreover, these genes are involved in the high-temperature stress response, possibly via a
hormone-dependent signaling pathway.

5. Conclusions

The current study identified ten PlSOD genes in herbaceous peony through
RNA-seq analysis under natural high-temperature conditions. To boost our understand-
ing, phylogenetic relationships, conserved motifs and domains, tissue-specific expression,
and differential expression of these genes under natural high temperatures have been
performed. Furthermore, we confirmed the expression profiles under high-temperature
stress by different hormone treatments using qRT-PCR and measured the physiological
indices of peony leaves post-treatment. The results revealed that several genes significantly
respond to both hormonal and high-temperature stimuli, thereby enhancing our under-
standing of PlSOD genes. Thus, these genes can be targeted for breeding improvement.
Our findings provided valuable insights into the SOD gene family in herbaceous peony and
laid the framework for further exploring the molecular mechanisms underlying SOD gene
responses to high-temperature stress. Moving forward, further validation of these genes’
functions using homologous or heterologous approaches will be a key part of subsequent
work, which will help to solidify our understanding and potentially pave the way for
practical applications in plant breeding and stress-tolerance enhancement.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox13091128/s1, Table S1: RNA-seq data of PlSOD genes
from leaves at six stages under natural high-temperature stress in herbaceous peony ‘Hang Baishao’;
Table S2: details of the primers used in the qRT-PCR analysis of SOD genes of P. lactiflora; Table S3:
SOD sequences in P. lactiflora and five other species; Table S4: SOD protein sequence similarities
between P. lactiflora and A. thaliana. Sequence similarities (≥70) are shown in bold; Table S5: pairwise
identity of SOD family genes in P. lactiflora.
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