The Effect of Maturity Stage on Polyphenolic Composition, Antioxidant and Anti-Tyrosinase Activities of Ficus rubiginosa Desf. ex Vent. Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Instrumentation
2.3. Plant Material
2.4. Plant Material Extraction
2.5. Evaluation of the Total Phenol Content (TPC), Total Flavonoid Content (TFC), and Total Antioxidant Capacity (TAC)
2.5.1. Evaluation of Total Phenol Content (TPC)
2.5.2. Evaluation of the Total Flavonoid Content (TFC)
2.5.3. Evaluation of the Total Catechin Content (TCC)
2.5.4. Evaluation of the Total Antioxidant Capacity (TAC) Using the Frap Method
2.5.5. Evaluation of the Radical Scavenging Capacity (RSC) by the DPPH Method
2.5.6. Evaluation of the Radical Scavenging Capacity (RSC) Using the ABTS Method
2.6. HPLC-UV/DAD and UHPLC-MS Analysis of the Extracts and for the Tyrosinase Binding Tests
2.7. Evaluation of the Tyrosinase Affinity Using the Target Binding® Technology
2.8. Evaluation of the Anti-Tyrosinase Activity
2.9. Statistics
3. Results and Discussion
3.1. Solvent Optimisation
3.2. Changes in TPC, TFC, and TCC over Time
3.3. Evaluation of the Antioxidant Activity Using the DPPH, FRAP, and ABTS Methods
3.4. Chromatography- and Mass Spectrometry-Based Analyses and Tyrosinase Binding Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WFO Plant List Ficus L. Available online: https://wfoplantlist.org/plant-list (accessed on 29 November 2023).
- Lansky, E.P.; Paavilainen, H.M. Figs: The Genus Ficus; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Singh, D.; Singh, B.; Goel, R.K. Traditional uses, phytochemistry and pharmacology of Ficus religiosa: A review. J. Ethnopharmacol. 2011, 134, 565–583. [Google Scholar] [CrossRef]
- Devanesan, E.B.; Anand, A.V.; Kumar, P.S.; Vinayagamoorthy, P.; Basavaraju, P. Phytochemistry and Pharmacology of Ficus religiosa. Syst. Rev. Pharm. 2018, 9, 45–48. [Google Scholar] [CrossRef]
- Sandeep; Kumar, A.; Sepla, D.; Tomer, V.; Gat, Y.; Kumar, V. Ficus religiosa: A wholesome medicinal tree. J. Pharmacogn. Phytochem. 2018, 7, 32–37. [Google Scholar]
- Cheng, J.-X.; Zhang, B.-D.; Zhu, W.-F.; Zhang, C.-F.; Qin, Y.-M.; Abe, M.; Akihisa, T.; Liu, W.-Y.; Feng, F.; Zhang, J. Traditional uses, phytochemistry, and pharmacology of Ficus hispida Lf: A review. J. Ethnopharmacol. 2020, 248, 112204. [Google Scholar] [CrossRef]
- Bucic-Kojic, A.; Planinic, M.; Tomas, S.; Jokic, S.; Mujic, I.; Bilic, M.; Velic, D. Effect of extraction conditions on the extractability of phenolic compounds from lyophilised fig fruits (Ficus carica L.). Pol. J. Food Nutr. Sci. 2011, 61, 195–199. [Google Scholar] [CrossRef]
- Lansky, E.P.; Paavilainen, H.M.; Pawlus, A.D.; Newman, R.A. Ficus spp. (fig): Ethnobotany and potential as anticancer and anti-inflammatory agents. J. Ethnopharmacol. 2008, 119, 195–213. [Google Scholar] [CrossRef]
- Salehi, B.; Prakash Mishra, A.; Nigam, M.; Karazhan, N.; Shukla, I.; Kiełtyka-Dadasiewicz, A.; Sawicka, B.; Głowacka, A.; Abu-Darwish, M.S.; Hussein Tarawneh, A.; et al. Ficus plants: State of the art from a phytochemical, pharmacological, and toxicological perspective. Phytother. Res. 2021, 35, 1187–1217. [Google Scholar] [CrossRef]
- Dell’Annunziata, F.; Sellitto, C.; Franci, G.; Marcotullio, M.C.; Piovan, A.; Della Marca, R.; Folliero, V.; Galdiero, M.; Filippelli, A.; Conti, V.; et al. Antiviral Activity of Ficus rubiginosa Leaf Extracts against HSV-1, HCoV-229E and PV-1. Viruses 2022, 14, 2257. [Google Scholar] [CrossRef]
- PlantNET. Ficus Rubiginosa Desf. ex Vent; Royal Botanic Gardens and Domain Trust: Sydney, Australia, 1990. [Google Scholar]
- Li, A.N.; Li, S.; Zhang, Y.J.; Xu, X.R.; Chen, Y.M.; Li, H.B. Resources and biological activities of natural polyphenols. Nutrients 2014, 6, 6020–6047. [Google Scholar] [CrossRef] [PubMed]
- Lang, Y.; Gao, N.; Zang, Z.; Meng, X.; Lin, Y.; Yang, S.; Yang, Y.; Jin, Z.; Li, B. Classification and antioxidant assays of polyphenols: A review. J. Future Foods 2024, 4, 193–204. [Google Scholar] [CrossRef]
- Bharadvaja, N.; Gautam, S.; Singh, H. Natural polyphenols: A promising bioactive compounds for skin care and cosmetics. Mol. Biol. Rep. 2023, 50, 1817–1828. [Google Scholar] [CrossRef] [PubMed]
- Scandar, S.; Zadra, C.; Marcotullio, M.C. Coriander (Coriandrum sativum) Polyphenols and Their Nutraceutical Value against Obesity and Metabolic Syndrome. Molecules 2023, 28, 4187. [Google Scholar] [CrossRef]
- Zhor, C.; Wafaa, L.; Ghzaiel, I.; Kessas, K.; Zarrouk, A.; Ksila, M.; Ghrairi, T.; Latruffe, N.; Masmoudi-Kouki, O.; El Midaoui, A.; et al. Effects of polyphenols and their metabolites on age-related diseases. Biochem. Pharmacol. 2023, 214, 115674. [Google Scholar] [CrossRef]
- Kar, A.; Mahar, D.; Biswas, S.; Chakraborty, D.; Efferth, T.; Panda, S. Phytochemical profiling of polyphenols and thyroid stimulatory activity of Ficus religiosa leaf extract in 6-propyl-thiouracil-induced hypothyroid rats. J. Ethnopharmacol. 2023, 313, 116479. [Google Scholar] [CrossRef]
- Muema, F.W.; Kimutai, F.; Xu, Y.-B.; Zhang, H.; Chen, G.-L.; Guo, M.-Q. Antioxidant and antiproliferative potentials of Ficus glumosa and its bioactive polyphenol metabolites Moses Mutuse Mutungi. Pharmaceuticals 2021, 14, 266. [Google Scholar]
- Shih, Y.-Z.; Huang, A.-J.; Hou, C.-Y.; Jiang, C.-M.; Wu, M.-C. The stimulating effects of polyphenol and protein fractions from jelly fig (Ficus awkeotsang Makino) achenes against proliferation of leukemia cells. J. Food Drug Anal. 2017, 25, 854–861. [Google Scholar] [CrossRef]
- Saleh, B.; Hammoud, R.; Al-Mariri, A. Antimicrobial activity of Ficus sycomorus L. (Moraceae) leaf and stem-bark extracts against multidrug resistant human pathogens. Herba Pol. 2015, 61, 39–49. [Google Scholar] [CrossRef]
- Chhoud, R.; Montero, F.V.; Haj Romdhane, M.; Majdoub, H.; Duran Ogalla, R. Phytochemical and Bioactivities of Male Flower Buds of Fruit Trees from the Southern Tunisia: Polyphenols UPLC-MS Profiles and Antioxidant Enzymatic Potential in Human Plasma of Parkinson’s Disease Patients. Chem. Afr. 2022, 5, 1337–1350. [Google Scholar] [CrossRef]
- Hakiman, M.; Syed, M.A.; Syahida, A.; Maziah, M. Total antioxidant, polyphenol, phenolic acid, and flavonoid content in Ficus deltoidea varieties. J. Med. Plants Res. 2012, 6, 4776–4784. [Google Scholar] [CrossRef]
- Kone, A.D.; Mbow, B.; Gaye, A.A.; Ndoye, S.F.; Gaye, M. Ficus sycomorus L. extracts: Phytochemical screening, total polyphenols and flavonoids contents, antioxidant and antibacterial activity. Sci. J. Chem. 2022, 10, 126–132. [Google Scholar]
- Nakilcioğlu-Taş, E.; Ötleş, S. Influence of extraction solvents on the polyphenol contents, compositions, and antioxidant capacities of fig (Ficus carica L.) seeds. An. Acad. Bras. Cienc. 2021, 93, e20190526. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.P.; Singh, B.; Kaur, A. Polyphenols in fig: A review on their characterisation, biochemistry during ripening, antioxidant activity and health benefits. Int. J. Food Sci. Technol. 2022, 57, 3333–3342. [Google Scholar] [CrossRef]
- Thamburaj, S.; Rajagopal, V.; Palanivel, R.; Pugazhendhi, S. Effect of different drying treatments on total polyphenolics content and in-vitro biological properties of Ficus benghalensis fruit: A comparative study. Biocatal. Agric. Biotechnol. 2022, 39, 102249. [Google Scholar] [CrossRef]
- Kittibunchakul, S.; Hudthagosol, C.; Sanporkha, P.; Sapwarobol, S.; Suttisansanee, U.; Sahasakul, Y. Effects of Maturity and Thermal Treatment on Phenolic Profiles and In Vitro Health-Related Properties of Sacha Inchi Leaves. Plants 2022, 11, 1515. [Google Scholar] [CrossRef] [PubMed]
- Korus, A. Level of Vitamin C, Polyphenols, and Antioxidant and Enzymatic Activity in Three Varieties of Kale (Brassica oleracea L. Var. Acephala) at Different Stages of Maturity. Int. J. Food Prop. 2011, 14, 1069–1080. [Google Scholar] [CrossRef]
- Oszmiański, J.; Lachowicz, S.; Gorzelany, J.; Matłok, N. The effect of different maturity stages on phytochemical composition and antioxidant capacity of cranberry cultivars. Eur. Food Res. Technol. 2018, 244, 705–719. [Google Scholar] [CrossRef]
- Nadeem, M.; Zeb, A. Impact of maturity on phenolic composition and antioxidant activity of medicinally important leaves of Ficus carica L. Physiol. Mol. Biol. Plants 2018, 24, 881–887. [Google Scholar] [CrossRef]
- Zolghadri, S.; Bahrami, A.; Hassan Khan, M.T.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A.A. A comprehensive review on tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem. 2019, 34, 279–309. [Google Scholar] [CrossRef]
- Hassan, M.; Shahzadi, S.; Kloczkowski, A. Tyrosinase Inhibitors Naturally Present in Plants and Synthetic Modifications of These Natural Products as Anti-Melanogenic Agents: A Review. Molecules 2023, 28, 378. [Google Scholar] [CrossRef]
- Renda, G.; Barut, B.; Ceren, R.; Aydin, E. In vitro tyrosinase inhibitory, DNA interaction studies, and LC? HRMS analysis of Ficus carica leaves. Turk. J. Chem. 2023, 47, 465–475. [Google Scholar] [CrossRef]
- Rafiq, M.; Ilyas, H.; Ali, A.; Tarar, Z.; Hanif, U.; Javed, H.; Tahir, T. Anti-tyrosinase and anti-oxidant potential of methanolic extracts of selected Citrus bergamia and Ficus carica parts. J. Weed Sci. Res. 2021, 27, 443–450. [Google Scholar] [CrossRef]
- Suliman, S.; Yagi, S.; Elbashir, A.A.; Mohammed, I.; Hussein, A.; Ak, G.; Zengin, G.; Orlando, G.; Ferrante, C. Phenolic profile, enzyme inhibition and antioxidant activities and bioinformatics analysis of leaf and stem bark of Ficus sycomorus L. Process Biochem. 2021, 101, 169–178. [Google Scholar] [CrossRef]
- Pucciarini, L.; Ianni, F.; Petesse, V.; Pellati, F.; Brighenti, V.; Volpi, C.; Gargaro, M.; Natalini, B.; Clementi, C.; Sardella, R. Onion (Allium cepa L.) Skin: A Rich Resource of Biomolecules for the Sustainable Production of Colored Biofunctional Textiles. Molecules 2019, 24, 634. [Google Scholar] [CrossRef] [PubMed]
- Puri, C.; Pucciarini, L.; Tiecco, M.; Brighenti, V.; Volpi, C.; Gargaro, M.; Germani, R.; Pellati, F.; Sardella, R.; Clementi, C. Use of a Zwitterionic Surfactant to Improve the Biofunctional Properties of Wool Dyed with an Onion (Allium cepa L.) Skin Extract. Antioxidants 2020, 9, 1055. [Google Scholar] [CrossRef] [PubMed]
- Christ, B.; Müller, K. Zur serienmäßigen Bestimmung des Gehaltes an Flavonol-Derivaten in Drogen. Arch. Pharm. 1960, 293, 1033–1042. [Google Scholar] [CrossRef] [PubMed]
- Mekonnen, M.M.; Hoekstra, A.Y. A Global Assessment of the Water Footprint of Farm Animal Products. Ecosystems 2012, 15, 401–415. [Google Scholar] [CrossRef]
- Salwinski, A. Method for Determining Affinity between Ligands and a Target. Patent number WO2018055053A1 29 March 2018. Available online: https://worldwide.espacenet.com/patent/search/family/057286738/publication/EP3516395A1?q=pn%3DEP3516395A1%3F (accessed on 14 September 2024).
- Laosirisathian, N.; Saenjum, C.; Sirithunyalug, J.; Eitssayeam, S.; Sirithunyalug, B.; Chaiyana, W. The Chemical Composition, Antioxidant and Anti-Tyrosinase Activities, and Irritation Properties of Sripanya Punica granatum Peel Extract. Cosmetics 2020, 7, 7. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Sood, P.; Citovsky, V. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol. Plant Pathol. 2010, 11, 705–719. [Google Scholar] [CrossRef]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health benefits of polyphenols: A concise review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef]
- Williams, R.J.; Spencer, J.P.; Rice-Evans, C. Flavonoids: Antioxidants or signalling molecules? Free Radic. Biol. Med. 2004, 36, 838–849. [Google Scholar] [CrossRef]
- Piccolella, S.; Crescente, G.; Candela, L.; Pacifico, S. Nutraceutical polyphenols: New analytical challenges and opportunities. J. Pharm. Biomed. Anal. 2019, 175, 112774. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, X.; Sang, S.; McClements, D.J.; Chen, L.; Long, J.; Jiao, A.; Jin, Z.; Qiu, C. Polyphenols as Plant-Based Nutraceuticals: Health Effects, Encapsulation, Nano-Delivery, and Application. Foods 2022, 11, 2189. [Google Scholar] [CrossRef] [PubMed]
- Rudrapal, M. Polyphenols: Food, Nutraceutical, and Nanotherapeutic Applications; Wiley: New York, NY, USA, 2023. [Google Scholar]
- André, C.M.; Oufir, M.; Hoffmann, L.; Hausman, J.-F.; Rogez, H.; Larondelle, Y.; Evers, D. Influence of environment and genotype on polyphenol compounds and in vitro antioxidant capacity of native Andean potatoes (Solanum tuberosum L.). J. Food Compos. Anal. 2009, 22, 517–524. [Google Scholar] [CrossRef]
- Shao, Y.; Tang, F.; Huang, Y.; Xu, F.; Chen, Y.; Tong, C.; Chen, H.; Bao, J. Analysis of Genotype × Environment Interactions for Polyphenols and Antioxidant Capacity of Rice by Association Mapping. J. Agric. Food Chem. 2014, 62, 5361–5368. [Google Scholar] [CrossRef]
- Socaci, S.A.; Fărcaş, A.C.; Diaconeasa, Z.M.; Vodnar, D.C.; Rusu, B.; Tofană, M. Influence of the extraction solvent on phenolic content, antioxidant, antimicrobial and antimutagenic activities of brewers’ spent grain. J. Cereal Sci. 2018, 80, 180–187. [Google Scholar] [CrossRef]
- Thouri, A.; Chahdoura, H.; El Arem, A.; Omri Hichri, A.; Ben Hassin, R.; Achour, L. Effect of solvents extraction on phytochemical components and biological activities of Tunisian date seeds (var. Korkobbi and Arechti). BMC Complement. Altern. Med. 2017, 17, 248. [Google Scholar] [CrossRef]
- Rezaei, M.; Ghasemi Pirbalouti, A. Phytochemical, antioxidant and antibacterial properties of extracts from two spice herbs under different extraction solvents. J. Food Meas. Charact. 2019, 13, 2470–2480. [Google Scholar] [CrossRef]
- Sulaiman, S.F.; Sajak, A.A.B.; Ooi, K.L.; Supriatno; Seow, E.M. Effect of solvents in extracting polyphenols and antioxidants of selected raw vegetables. J. Food Compos. Anal. 2011, 24, 506–515. [Google Scholar] [CrossRef]
- Boeing, J.S.; Barizão, É.O.; e Silva, B.C.; Montanher, P.F.; de Cinque Almeida, V.; Visentainer, J.V. Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: Application of principal component analysis. Chem. Cent. J. 2014, 8, 48. [Google Scholar] [CrossRef]
- Liu, Z.; Bruins, M.E.; de Bruijn, W.J.C.; Vincken, J.-P. A comparison of the phenolic composition of old and young tea leaves reveals a decrease in flavanols and phenolic acids and an increase in flavonols upon tea leaf maturation. J. Food Compos. Anal. 2020, 86, 103385. [Google Scholar] [CrossRef]
- Chang, X.; Lu, Y.; Lin, Z.; Qiu, J.; Guo, X.; Pan, J.; Abbasi, A.M. Impact of Leaf Development Stages on Polyphenolics Profile and Antioxidant Activity in Clausena lansium (Lour.) Skeels. Biomed. Res. Int. 2018, 2018, 7093691. [Google Scholar] [CrossRef] [PubMed]
- Abiven, S.; Heim, A.; Schmidt, M. Lignin content and chemical characteristics in maize and wheat vary between plant organs and growth stages: Consequences for assessing lignin dynamics in soil. Plant Soil 2011, 343, 369–378. [Google Scholar] [CrossRef]
- Shraim, A.M.; Ahmed, T.A.; Rahman, M.M.; Hijji, Y.M. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT 2021, 150, 111932. [Google Scholar] [CrossRef]
- Anwar, K.; Rahmanto, B.; Triyasmono, L.; Rizki, M.; Halwany, W.; Lestari, F. The Influence of Leaf Age on Total Phenolic, Flavonoids, and Free Radical Scavenging Capacity of Aquilaria beccariana. Res. J. Pharm. Biol. Chem. Sci. 2017, 18, 129–133. [Google Scholar]
- Sun, Z.; Chen, D.; Zhu, L.; Zhao, Y.; Lin, Z.; Li, X.; Dai, W. A comprehensive study of the differences in protein expression and chemical constituents in tea leaves (Camellia sinensis var. sinensis) with different maturity using a combined proteomics and metabolomics method. Food Res. Int. 2022, 157, 111397. [Google Scholar] [PubMed]
- Frankel, E.N.; Meyer, A.S. The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. J. Sci. Food Agric. 2000, 80, 1925–1941. [Google Scholar] [CrossRef]
- Apak, R.; Özyürek, M.; Güçlü, K.; Çapanoğlu, E. Antioxidant Activity/Capacity Measurement. 2. Hydrogen Atom Transfer (HAT)-Based, Mixed-Mode (Electron Transfer (ET)/HAT), and Lipid Peroxidation Assays. J. Agric. Food Chem. 2016, 64, 1028–1045. [Google Scholar] [CrossRef]
- Apak, R.; Özyürek, M.; Güçlü, K.; Çapanoğlu, E. Antioxidant Activity/Capacity Measurement. 1. Classification, Physicochemical Principles, Mechanisms, and Electron Transfer (ET)-Based Assays. J. Agric. Food Chem. 2016, 64, 997–1027. [Google Scholar] [CrossRef]
- Zhang, X.; Lv, H.; Li, Z.; Jiang, K.; Lee, M.R. HPLC/QTOF-MS/MS application to investigate phenolic constituents from Ficus pandurata H. aerial roots. Biomed. Chromatogr. 2015, 29, 860–868. [Google Scholar] [CrossRef]
- Kıvrak, Ş.; Kıvrak, İ.; Karababa, E. Analytical evaluation of phenolic compounds and minerals of Opuntia robusta J.C. Wendl. and Opuntia ficus-barbarica A. Berger. Int. J. Food Prop. 2018, 21, 229–241. [Google Scholar] [CrossRef]
- Si, Y.-X.; Yin, S.-J.; Oh, S.; Wang, Z.-J.; Ye, S.; Yan, L.; Yang, J.-M.; Park, Y.-D.; Lee, J.; Qian, G.-Y. An Integrated Study of Tyrosinase Inhibition by Rutin: Progress using a Computational Simulation. J. Biomol. Struct. Dyn. 2012, 29, 999–1012. [Google Scholar] [CrossRef] [PubMed]
- El-Nashar, H.A.S.; El-Din, M.I.G.; Hritcu, L.; Eldahshan, O.A. Insights on the Inhibitory Power of Flavonoids on Tyrosinase Activity: A Survey from 2016 to 2021. Molecules 2021, 26, 7546. [Google Scholar] [CrossRef] [PubMed]
- Truong, X.T.; Park, S.-H.; Lee, Y.-G.; Jeong, H.Y.; Moon, J.-H.; Jeon, T.-I. Protocatechuic Acid from Pear Inhibits Melanogenesis in Melanoma Cells. Int. J. Mol. Sci. 2017, 18, 1809. [Google Scholar] [CrossRef] [PubMed]
Yield% | TPC (mg GAE/g) | |
---|---|---|
MeOH | 6.41 ± 0.40 a | 93.71 ± 5.15 a |
EtOH | 4.44 ± 0.42 b | 31.08 ± 2.81 b |
EtOH-80 | 9.06 ± 0.24 c | 43.50 ± 3.04 c |
EtOH-70 | 10.6 ± 0.28 c | 40.39± 0.12 c |
EtOH-60 | 10.6 ± 0.57 c | 37.65± 3.77 b |
Harvest | Yield% | TPC (mg GAE/g) | TFC (mg QE/g) | TCC (mg CE/g) |
---|---|---|---|---|
H1 | 6.41 ± 0.40 a | 93.71 ± 5.15 a | 35.67 ± 1.76 a | 89.60 ± 0.41 a |
H2 | 7.02 ± 0.33 a | 113.50 ± 3.55 b | 43.27 ± 0.23 b | 95.39 ± 0.54 b |
H3 | 5.26 ± 0.42 b | 75.69 ± 0.96 c | 35.26 ± 0.59 a | 101.67 ± 0.47 c |
Harvest | DPPH (mg TE/g) | FRAP (mg TE/g) | ABTS (mg TE/g) |
---|---|---|---|
H1 | 546.26 ± 11.64 a | 1.96 ± 0.05 a | 463.36 ± 7.82 a |
H2 | 721.65 ± 16.22 b | 2.64 ± 0.01 b | 579.84 ± 6.84 b |
H3 | 675.43 ± 9.81 c | 1.87 ± 0.01 a | 573.02 ± 6.22 b |
Peak n° | Rt min. | [M-H]−(m/z) | Formula | Expected Mass | Score | Error (In ppm) | Compound |
---|---|---|---|---|---|---|---|
1 | 4.08 | 193.0694 | C8H10N4O2 | 194.0804 | 98.60 | 0.19 | Caffeine |
2 | 4.43 | 137.0256 | C7H6O3 | 130.029 | 91.52 | 8.58 | p-Hydroxybenzoic acid |
3 | 6.41 | 191.0212 | C6H8O7 | 192.0825 | 88.92 | 7.95 | Citric Acid |
4 | 9.55 | 169.0157 | C7H6O5 | 170.0215 | 89.36 | 8.49 | Gallic Acid |
5 | 16.42 | 153.0208 | C7H6O4 | 154.0281 | 88.75 | 9.55 | Protocatechuic Acid |
6 | 18.56 | 353.0867 | C16H18O9 | 354.094 | 96.13 | −3.05 | 5-Caffeoylquinic acid |
7 | 18.89 | 197.048 | C9H10O5 | 198.054 | 93.58 | 6.13 | Syringic Acid |
8 | 19.76 | 193.0525 | C10H10O4 | 194.0597 | 84.19 | 9.47 | Ferulic Acid |
9 | 20.68 | 289.0721 | C15H14O6 | 290.075 | 97.95 | 1.53 | Catechin |
10 | 20.81 | 337.0919 | C16H18O8 | 338.0993 | 96.65 | −2.49 | 5-O-(4-Coumaroyl)quinic acid |
11 | 20.82 | 755.1986 | C33H40O20 | 756.206 | 74.21 | −7.05 | Quercetin-3-O-rutinoside-rhamnoside |
12 | 23.67 | 447.0899 | C21H20O11 | 448.0973 | 85.55 | −7.76 | Quercetin 3-O-rhamnoside |
13 | 24.39 | 609.15 | C27H30O16 | 610.5 | 66.33 | −9.06 | Rutin |
14 | 24.60 | 167.0364 | C8H8O4 | 168.0437 | 89.48 | 8.58 | Homogentisic acid |
15 | 24.62 | 167.0354 | C8H8O4 | 168.0437 | 89.48 | 8.58 | Vanillic Acid |
16 | 25.01 | 163.0415 | C9H8O3 | 164.0488 | 89.36 | 8.85 | p-Coumaric Acid |
17 | 25.51 | 301.0352 | C15H10O7 | 302.0424 | 97.84 | −0.78 | Morin |
18 | 26.68 | 151.0416 | C8H8O3 | 152.048 | 85.14 | 8.7 | Vanillin |
19 | 33.54 | 339.073 | C15H16O9 | 340.0787 | 97.27 | −2.22 | Esculin |
20 | 34.18 | 315.0511 [HCOO−] | C15H10O5 | 270.09 | 95.77 | 0.31 | Apigenin |
21 | 34.95 | 285.0408 | C15H10O6 | 286.0482 | 97.91 | 1.73 | Kaempferol |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abualzulof, G.W.A.; Scandar, S.; Varfaj, I.; Dalla Costa, V.; Sardella, R.; Filippini, R.; Piovan, A.; Marcotullio, M.C. The Effect of Maturity Stage on Polyphenolic Composition, Antioxidant and Anti-Tyrosinase Activities of Ficus rubiginosa Desf. ex Vent. Extracts. Antioxidants 2024, 13, 1129. https://doi.org/10.3390/antiox13091129
Abualzulof GWA, Scandar S, Varfaj I, Dalla Costa V, Sardella R, Filippini R, Piovan A, Marcotullio MC. The Effect of Maturity Stage on Polyphenolic Composition, Antioxidant and Anti-Tyrosinase Activities of Ficus rubiginosa Desf. ex Vent. Extracts. Antioxidants. 2024; 13(9):1129. https://doi.org/10.3390/antiox13091129
Chicago/Turabian StyleAbualzulof, Ghaid W. A., Samir Scandar, Ina Varfaj, Vanessa Dalla Costa, Roccaldo Sardella, Raffaella Filippini, Anna Piovan, and Maria Carla Marcotullio. 2024. "The Effect of Maturity Stage on Polyphenolic Composition, Antioxidant and Anti-Tyrosinase Activities of Ficus rubiginosa Desf. ex Vent. Extracts" Antioxidants 13, no. 9: 1129. https://doi.org/10.3390/antiox13091129
APA StyleAbualzulof, G. W. A., Scandar, S., Varfaj, I., Dalla Costa, V., Sardella, R., Filippini, R., Piovan, A., & Marcotullio, M. C. (2024). The Effect of Maturity Stage on Polyphenolic Composition, Antioxidant and Anti-Tyrosinase Activities of Ficus rubiginosa Desf. ex Vent. Extracts. Antioxidants, 13(9), 1129. https://doi.org/10.3390/antiox13091129