Polyphenolic Screening and the Antioxidant Activity of Grape Pomace Extracts of Romanian White and Red Grape Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Materials and Reagents
2.3. Sample Preparation
2.3.1. Preparation of Grape Pomace Extract by Ultrasonication
2.3.2. Samples Preparation for High-Performance Liquid Chromatography
2.4. Phytochemical Analyses
2.4.1. DPPH Radical Scavenging Assay
2.4.2. Total Polyphenols Content
2.4.3. Total Flavonoids Content
2.4.4. Total Anthocyanins Content
2.4.5. Total Condensed Tannins
2.4.6. High-Performance Liquid Chromatography
2.5. Statistical Analysis
3. Results and Discussion
3.1. Phytochemical Parameters Determined by UV-Vis Spectrometry
3.2. Polyphenols Content Determined by High-Performance Liquid Chromatography
3.3. Discrimination of the White and Red Grape Pomaces
3.3.1. Characterization of White and Red Grape Pomaces
- IC50 values: Tâmâioasă Românească, Fetească Albă, Fetească Neagră, and Negru de Dăgășani, respectively;
- TPC: the subset of the white grape varieties (Tâmâioasă Românească and Fetească Albă) differs significantly from the subset of the red varieties (Negru de Dăgășani and Fetească Neagră), respectively;
- TFC and TCT: the subset (Tâmâioasă Românească, Fetească Albă, and Fetească Neagră) is different from the subset of the red variety Negru de Dăgășani;
- TAC: there are three different subsets: Tâmâioasă Românească-Fetească Albă, Fetească Neagră, and Negru de Dăgășani, respectively.
3.3.2. Pearson Analysis
3.3.3. Regression Analysis
3.3.4. Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA)
- Cluster 1: Fetească Albă and Fetească Neagră (two extracts);
- Cluster 2: Tămâioasă Românească and Negru de Drăgășani (two extracts).
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Organisation of Vine and Wine (OIV). Available online: https://www.oiv.int/public/medias/7909/oiv-state-of-the-world-vitivinicultural-sector-in-2020.pdf (accessed on 10 August 2024).
- Lugo, S.D.R.; Kimita, K.; Nishino, N. Characteristics of decision process towards circular food economy: A review. Clean. Logist. Supply Chain 2023, 7, 100104. [Google Scholar] [CrossRef]
- Lavelli, V. Circular food supply chains–Impact on value addition and safety. Trends Food Sci. Technol. 2021, 114, 323–332. [Google Scholar] [CrossRef]
- Beres, C.; Costa, G.N.S.; Cabezundo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards integral utilization of grape pomace from winemaking process: A review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef]
- Lavelli, V.; Kerr, W.L.; García-Lomillo, J.; González-San José, M.L. Applications of recovered bioactive compounds in food products. In Handbook of Grape Processing By-Products: Sustainable Solutions; Galanakis, C.M., Ed.; Academic Press: New York, NY, USA, 2017; pp. 233–266. [Google Scholar]
- Genisheva, Z.; Soares, M.; Oliveira, J.M.; Carvalho, J. Wine Production Wastes, Valorization, and Perspectives. In Advances and Challenges in Hazardous Waste Management; Saleh, H.M., Hassan, A.I., Aglan, R.F., Eds.; IntechOpen: London, UK, 2024. [Google Scholar]
- Cotoras, M.; Vivanco, H.; Melo, R.; Aguirre, M.; Silva, E.; Mendoza, L. In Vitro and in Vivo Evaluation of the Antioxidant and Prooxidant Activity of Phenolic Compounds Obtained from Grape (Vitis vinifera) Pomace. Molecules 2014, 19, 21154–21167. [Google Scholar] [CrossRef]
- Ky, I.; Crozier, A.; Cros, G.; Teissedre, P.-I. Polyphenols composition of wine and grape sub-products and potential effects on chronic diseases. J. Nutr. Health Aging 2014, 2, 165–177. [Google Scholar] [CrossRef]
- Ky, I.; Lorrain, B.; Kolbas, N.; Crozier, A.; Teissedre, P.-L. Wine by-products: Phenolic Characterization and Antioxidant Activity Evaluation of Grapes and Grape Pomaces from Six Different French Grape Varieties. Molecules 2014, 19, 482–506. [Google Scholar] [CrossRef]
- Pereira, P.; Palma, C.; Ferreira-Pêgo, C.; Amaral, O.; Amaral, A.; Rijo, P.; Gregório, J.; Palma, L.; Nicolai, M. Grape pomace: A potential ingredient for the human diet. Foods 2020, 9, 1772. [Google Scholar] [CrossRef]
- Radulescu, C.; Buruleanu, L.C.; Nicolescu, C.M.; Olteanu, R.L.; Bumbac, M.; Holban, G.C.; Simal-Gandara, J. Phytochemical Profiles, Antioxidant and Antibacterial Activities of Grape (Vitis vinifera L.) Seeds and Skin from Organic and Conventional Vineyards. Plants 2020, 9, 1470. [Google Scholar] [CrossRef]
- Topalovic, A.; Knezevic, M.; Bajagic, B.; Ivanovic, L.; Milasevic, I.; Djurovic, D.; Mugosa, B.; Podolski-Renic, A.; Pesic, M. Grape (Vitis vinifera L.): Health benefits and effects of growing conditions on quality parameters. In Biodiversity and Biomedicine. Our Future; Academic Press: Cambridge, MA, USA, 2020; pp. 385–401. [Google Scholar]
- Torre, E.; Iviglia, G.; Cassinelli, C.; Morra, M.; Russo, N. Polyphenols from grape pomace induce osteogenic differentiation in mesenchymal stem cells. Int. J. Mol. Med. 2020, 45, 1721–1734. [Google Scholar] [CrossRef]
- Xia, L.; Xu, C.; Huang, K.; Lu, J.; Zhang, Y. Evaluation of phenolic compounds, antioxidant and antiproliferative activities of 31 grape cultivars with different genotypes. J. Food Biochem. 2019, 43, e12626. [Google Scholar] [CrossRef]
- Yang, J.; Xiao, Y.Y. Grape Phytochemicals and Associated Health Benefits. Crit. Rev. Food Sci. Nutr. 2013, 53, 1202–1225. [Google Scholar] [CrossRef] [PubMed]
- Sinrod, A.J.G.; Shah, I.M.; Surek, E.; Barile, D. Uncovering the promising role of grape pomace as a modulator of the gut microbiome: An in-depth review. Heliyon 2023, 9, e20499. [Google Scholar] [CrossRef] [PubMed]
- Kato-Schwaetz, C.G.; Gomez Correa, R.C.; de Souza Lima, D.; De Sa-Nakanishi, A.B.; de Almeida Goncalves, G.; Seixas, F.A.V.; Haminiuk, C.W.I.; Barros, L.; Ferreira, I.C.F.R.; Bracht, A.; et al. Potential anti-diabetic properties of Merlot grape pomace extract: An in vitro, in silico and in vivo study of α-amylase and α-glucosidase inhibition. Food Res. Int. 2020, 137, 109462. [Google Scholar] [CrossRef] [PubMed]
- Machado, T.O.X.; Portugal, I.; Kodel, H.A.C.; Droppa-Almeida, D.; Dos Santos Lima, M.; Fathi, F.; Oliveira, M.B.P.P.; de Albuquerque-Junior, R.L.C.; Dariva, C.; Souto, E.B. Therapeutic potential of grape pomace extracts: A review of scientific evidence. Food Biosci. 2024, 60, 104210. [Google Scholar] [CrossRef]
- Goncalves, G.A.; Soares, A.A.; Correa, R.C.G.; Barros, L.; HaMinuk, C.W.I.; Peralta, R.M.; Ferreira, I.C.F.R.; Bracht, A. Merlot grape pomace hydroalcoholic extract improves the oxidative and inflammatory states of rats with adjuvant-induced arthritis. J. Funct. Foods 2017, 33, 408–418. [Google Scholar] [CrossRef]
- Milinčić, D.D.; Stanisavljević, N.S.; Kostić, A.Ž.; Bajić, S.S.; Kojić, M.O.; Gašić, U.M.; Barać, M.B.; Stanojević, S.P.; Tešić, Ž.L.; Pešić, M.B. Phenolic compounds and biopotential of grape pomace extracts from Prokupac red grape variety. LWT 2021, 138, 110739. [Google Scholar] [CrossRef]
- Elejalde, E.; Villarán, M.A.; Lopez-de-Armentia, I.; Ramón, D.; Murillo, R.; Alonso, R.M. Study of Unpicked Grapes Valorization: A Natural Source of Polyphenolic Compounds and Evaluation of Their Antioxidant Capacity. Resources 2022, 11, 33. [Google Scholar] [CrossRef]
- Radulescu, C.; Buruleanu, L.C.; Olteanu, R.L.; Nicolescu, C.M.; Bumbac, M.; Gorghiu, L.M.; Nechifor (Tudorache), M.D. Grape by-products: Potential sources of phenolic compounds for novel functional foods. In Functional Food-Upgrading Natural and Synthetic Sources; Barros, A.N., Ed.; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Ferrer-Gallego, R.; Silva, P. The Wine Industry By-Products: Applications for Food Industry and Health Benefits. Antioxidants 2022, 11, 2025. [Google Scholar] [CrossRef]
- Nicolescu, C.M.; Bumbac, M.; Radulescu, C.; Buruleanu, L.C.; Olteanu, R.L.; Gorghiu, L.M.; Teodorescu, G.; Holban, G.C. Romanian Organic and Conventional Red Grapes Vineyards as Potential Sources of High Value-Added Products. In Circular Economy Approach. In Grapes and Wine; Morata, A., Loira, I., González, C., Eds.; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Pedrali, D.; Barbarito, S.; Lavelli, V. Encapsulation of grape seed phenolics from winemaking byproducts in hydrogel microbeads–Impact of food matrix and processing on the inhibitory activity towards α-glucosidase. LWT 2020, 133, 109952. [Google Scholar] [CrossRef]
- Tremlova, B.; Havlova, L.; Benes, P.; Zemancova, J.; Buchtova, H.; Tesikova, K.; Dordevic, S.; Dordevic, D. Vegetarian “Sausage Ferrer s” with the Addition of Grape Flour. Appl. Sci. 2022, 12, 2189. [Google Scholar] [CrossRef]
- Iuga, M.; Mironeasa, S. Potential of grape byproducts as functional ingredients in baked goods and pasta. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2473–2505. [Google Scholar] [CrossRef] [PubMed]
- García-Lomillo, J.; González-Sanjosé, M.L.; Del Pino-García, R.; Rivero-Pérez, M.D.; Muñiz-Rodríguez, P. Antioxidant and antimicrobial properties of wine byproducts and their potential uses in the food industry. J. Agric. Food Chem. 2014, 62, 12595–12602. [Google Scholar] [CrossRef] [PubMed]
- Gerardi, C.; D’Amico, L.; Migoni, D.; Santino, A.; Salomone, A.; Carluccio, M.A.; Giovinazzo, G. Strategies for reuse of skins separated from grape pomace as ingredient of functional beverages. Front. Bioeng. Biotechnol. 2020, 8, 645. [Google Scholar] [CrossRef]
- de la Cerda-Carrasco, A.; López-Solís, R.; Nuñez-Kalasic, H.; Peña-Neira, Á.; Obreque-Slier, E. Phenolic composition and antioxidant capacity of pomaces from four grape varieties (Vitis vinifera L.). J. Sci. Food Agric. 2015, 95, 1521–1527. [Google Scholar] [CrossRef] [PubMed]
- Cotea, V.D.; Barbu, N.; Grigorescu, C.; Cotea, V.V. Podgoriile și Vinurile României, 2nd ed.; Tipo Moldova: Iasi, Romania, 2010. [Google Scholar]
- Goldammer, T. Grape Grower’s Handbook. A Guide to Viticulture for Wine Production, 3rd ed.; Apex Publishers: Haymarket, VA, USA, 2018. [Google Scholar]
- REVINO Gourmet. Drumul Vinului in Podgoria Dealu Mare–Oenoturism. Available online: https://revino.ro/podgoria-dealu-mare-urlati-ceptura-mizil-tohani-pietroasele-sahateni-drumul-vinului-a362.html (accessed on 3 August 2023).
- Jemrić, T. A Guide to Harvesting and Maintaining the Quality of Table Grapes. Available online: https://seerural.org/wp-content/uploads/2024/03/A-guide-to-harvesting-and-maintaining-the-quality-of-table-grapes.pdf (accessed on 2 August 2024).
- Lacombe, T.; Audeguin, L.; Boselli, M.; Bucchetti, B.; Cabello, F.; Chatelet, P.; Crespan, M.; D’Onofrio, C.; Eiras Dias, J.; Ercisli, S.; et al. Grapevine European towards a Comprehensive List, European Project GrapeGen 06-Grapevine Genetic Resources; Version 18 Pomaceh 2011, Annex 1 A: List of the Grape Varieties Registered in the Member States of the European Union, Annex 3 A: Official National Catalogs of Grape Varieties for Member States of the European Union, 2011. Available online: http://www.eu-vitis.de/docs/eucatgrape/ANNEX_1A_V3-4.pdf (accessed on 10 August 2024).
- Priewe, J. Vinul de la Strugure în Pahar, Tot ce Trebuie să știm Despre Vin; Casa Publishing House: Oradea, Romania, 2015. [Google Scholar]
- Nicolescu, C.M.; Bumbac, M.; Radulescu, C.; Buruleanu, L.C.; Olteanu, R.L.; Stanescu, S.G.; Gorghiu, L.M.; Serban, S.B.; Buiu, O. Phytochemical statistical mapping of red grapes varieties cultivated in Romanian organic and conventional vineyards. Plants 2023, 12, 4179. [Google Scholar] [CrossRef]
- Radulescu, C.; Nicolescu, M.C.; Olteanu, R.L.; Bumbac, M.; Buruleanu, L.C.; Gorghiu, L.M.; Holban, G.C. Dry Skin Emollient Cream with Skin/Seed Extract (Vitis vinifera L., Fetească Neagră Variety). Patent. RO 135101 B1, 29 November 2022. [Google Scholar]
- Radulescu, C.; Olteanu, R.L.; Nicolescu, C.M.; Bumbac, M.; Buruleanu, L.; Holban, C.G. Vibrational Spectroscopy Combined with Chemometrics as Tool for Discriminating Organic vs. Conventional Culture Systems for Red Grape Extracts. Foods 2021, 10, 1856. [Google Scholar] [CrossRef]
- Nicolescu, C.M.; Bumbac, M.; Olteanu, R.L.; Alecu, G.C.; Boboacă-Mihaescu, D.N.; Necula, C.; Radulescu, C. Influence of extraction method on chemical composition from red grapes skin extract. J. Sci. Arts 2019, 19, 201–208. [Google Scholar]
- Radulescu, C.; Olteanu, R.L.; Sihi, C.; Florescu, M.; Lazurca, D.; Dulama, I.D.; Stirbescu, R.M.; Teodorescu, S. Chemometric Assessment of Spectroscopic Techniques and Antioxidant Activity for Hippophae rhamnoides L. Extracts Obtained by Different Isolation Methods. Anal. Lett. 2019, 52, 2393–2415. [Google Scholar] [CrossRef]
- Shimamura, T.; Sumikura, Y.; Yamazaki, T.; Tada, A.; Kashiwagi, T.; Ishikawa, H.; Matsui, T.; Sugimoto, N.; Akiyama, H.; Ukeda, H. Applicability of the DPPH assay for evaluating the antioxidant capacity of food additives-inter-laboratory evaluation study. Anal. Sci. 2014, 30, 717–721. [Google Scholar] [CrossRef]
- Sebaugh, J.L. Guidelines for accurate EC50/IC50 estimation. Pharm. Statist. 2011, 10, 128–134. [Google Scholar] [CrossRef]
- ISO 14502-1:2005E; Determination of Substances Characteristic of Green and Black Tea/Part 1: Content of Total Polyphenols in Tea-Colorimetric Method Using Folin-Ciocalteu Reagent. ISO: Geneva, Switzerland, 2005.
- Kamtekar, S.; Keer, V.; Patil, V. Estimation of Phenolic content, Flavonoid content, Antioxidant and Alpha-amylase Inhibitory Activity of Marketed Polyherbal Formulation. J. Appl. Pharm. Sci. 2014, 4, 061–065. [Google Scholar]
- Giusti, M.M.; Wrolstad, R.E. Characterization and measurement of anthocyanins by UV-visible spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 00(1), F1.2.1–F1.2.13. [Google Scholar] [CrossRef]
- Fuleki, T.; Francis, F.J. Quantitative Methods for Anthocyanins. 4. Determination of Individual Anthocyanins in Cranberry and Cranberry Products. J. Food Sci. 1968, 33, 471–478. [Google Scholar] [CrossRef]
- Jurd, L.; Asen, S. The formation of metal and “co-pigment” complexes of cyanidin 3-glucoside. Phytochemistry 1966, 5, 1263–1271. [Google Scholar] [CrossRef]
- Broadhurst, R.B.; Jones, W.T. Analysis of Condensed Tannins Using Acidified Vanilin. J. Sci. Food Agric. 1978, 29, 788–794. [Google Scholar] [CrossRef]
- Rebaya, A.; Belghith, S.I.; Baghdikian, B.; Leddet, V.M.; Mabrouki, F.; Olivier, E.; Cherif, J.K.; Ayadi, M.T. Total Phenolic, Total Flavonoid, Tannin Content, and Antioxidant Capacity of Halimium halimifolium (Cistaceae). J. Appl. Pharm. Sci. 2014, 5, 052–057. [Google Scholar]
- Negro, C.; Aprile, A.; Luvisi, A.; De Bellis, L.; Miceli, A. Antioxidant Activity and Polyphenols Characterization of Four Monovarietal Grape Pomaces from Salento (Apulia, Italy). Antioxidants 2021, 10, 1406. [Google Scholar] [CrossRef]
- Luchian, C.E.; Cotea, V.V.; Vlase, L.; Toiu, A.M.; Colibaba, L.C.; Raschip, I.E.; Nadaş, G.; Gheldiu, A.M.; Tuchilus, C.; Rotaru, L. Antioxidant and antimicrobial effects of grape pomace extracts. BIO Web Conf. 2019, 15, 04006. [Google Scholar] [CrossRef]
- Frum, A.; Georgescu, C.; Gligor, F.G.; Lengyel, E.; Stegarus, D.I.; Dobrea, C.M.; Tita, O. Identification and quantification of phenolic compounds from red grape pomace. Sci. Study Res. Chem. C 2018, 19, 45–52. [Google Scholar]
- Balea, S.S.; Parvu, A.E.; Pop, N.; Marin, F.Z.; Parvu, M. Polyphenolic Compounds, Antioxidant, and Cardioprotective Effects of Pomace Extracts from Fetească Neagră Cultivar. Oxid. Med. Cell. Longev. 2018, 2018, 8194721. [Google Scholar] [CrossRef]
- Monteiro, G.C.; Minatel, I.O.; Pimentel, A., Jr.; Gomez-Gomez, H.A.; Corrêa de Camargo, J.P.; Diamante, M.S.; Pereira Basílio, L.S.; Tecchio, M.A.; Pereira Lima, G.P. Bioactive compounds and antioxidant capacity of grape pomace flours. LWT 2020, 135, 110053. [Google Scholar] [CrossRef]
- Xu, Y.; Burton, S.; Kim, C.; Sismour, E. Phenolic compounds, antioxidant, and antibacterial properties of pomace extracts from four Virginia-grown grape varieties. Food Sci. Nutr. 2015, 4, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Lingua, M.S.; Fabani, M.P.; Wunderlin, D.A.; Baroni, M.V. From grape to wine: Changes in phenolic composition and its influence on antioxidant activity. Food Chem. 2016, 208, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Onache, P.A.; Florea, A.; Geana, E.I.; Ciucure, C.T.; Ionete, R.E.; Sumedrea, D.I.; Tita, O. Assessment of Bioactive Phenolic Compounds in Musts and the Corresponding Wines of White and Red Grape Varieties. Appl. Sci. 2023, 13, 5722. [Google Scholar] [CrossRef]
Grape Variety | TPC [mg GAE/g DW] | TFC [mg QE/g DW] | TAC [μg MAP/mL] | TCT [mg CE/g DW] | IC50 [μg GAE/mL] |
---|---|---|---|---|---|
FA | 18.472 ± 1.935 a | 49.833 ± 3.326 ab | 0.223 ± 0.048 a | 13.777 ± 1.710 a | 24.168 ± 0.993 a |
TR | 17.161 ± 1.346 a | 46.875 ± 2.637 a | 0.584 ± 0.221 a | 11.671 ± 0.350 a | 26.350 ± 0.374 b |
FN | 23.872 ± 1.172 b | 50.979 ± 1.094 b | 10.771 ± 3.982 b | 12.251 ± 0.723 a | 19.103 ± 0.256 c |
ND | 26.654 ± 3.356 c | 62.312 ± 4.670 c | 51.822 ± 4.668 c | 33.575 ± 5.684 b | 15.598 ± 0.421 d |
Parameter/Grape Variety | Tâmâioasă Românească | Fetească Albă | Fetească Neagră | Negru de Dăgășani |
---|---|---|---|---|
IC50 | √ | √ | √ | √ |
TPC | ||||
TFC | √ | |||
TAC | √ | √ | ||
TCT | √ |
Parameter/ Compound | IC50 | TPC | TFC | TAC | TCT | Catechin | Vanillic | Caffeic | Myricetin | Resveratrol | Kaempferol |
---|---|---|---|---|---|---|---|---|---|---|---|
IC50 | 1 | ||||||||||
TPC | −0.960 ** | 1 | |||||||||
TFC | −0.862 ** | 0.858 ** | 1 | ||||||||
TAC | −0.868 ** | 0.893 ** | 0.919 ** | 1 | |||||||
TCT | −0.759 ** | 0.744 ** | 0.913 ** | 0.941 ** | 1 | ||||||
Catechin | −0.341 | 0.318 | 0.524 ** | 0.698* | 0.685 ** | 1 | |||||
Vanillic acid | −0.966 ** | 0.882 ** | 0.706 ** | 0.798 ** | 0.626 ** | 0.309 | 1 | ||||
Caffeic acid | 0.293 | −0.227 | −0.107 | 0.046 | 0.046 | 0.731 ** | −0.228 | 1 | |||
Myricetin | −0.973 ** | 0.886 ** | 0.754 ** | 0.859 ** | 0.700 ** | 0.415 * | 0.993 ** | −0.148 | 1 | ||
Resveratrol | −0.974 ** | 0.884 ** | 0.791 ** | 0.901 ** | 0.755 ** | 0.480 * | 0.978 ** | −0.110 | 0.996 ** | 1 | |
Kaempferol | 0.519 | −0.523 ** | −0.302 | −0.478 | −0.278 | −0.548 ** | −0.673 ** | −0.464 * | −0.685 ** | −0.666 ** | 1 |
Factor | Component 1 | Component 2 |
---|---|---|
Eigenvalue | 7.93 | 2.01 |
Cumulative variance (%) | 72.14 | 90.44 |
IC50 | −0.999 | 0.026 |
TPC | 0.995 | 0.004 |
TFC | 0.877 | 0.327 |
TAC | 0.901 | 0.353 |
TCT | 0.804 | 0.363 |
Catechin | 0.372 | 0.91 |
Vanillic acid | 0.966 | −0.004 |
Caffeic acid | −0.275 | 0.948 |
Myricetin | 0.977 | 0.095 |
Resveratrol | 0.982 | 0.149 |
Kaempferol | −0.518 | −0.526 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radulescu, C.; Olteanu, R.L.; Buruleanu, C.L.; , M.N.; Dulama, I.D.; Stirbescu, R.M.; Bucurica, I.A.; Stanescu, S.G.; Banica, A.L. Polyphenolic Screening and the Antioxidant Activity of Grape Pomace Extracts of Romanian White and Red Grape Varieties. Antioxidants 2024, 13, 1133. https://doi.org/10.3390/antiox13091133
Radulescu C, Olteanu RL, Buruleanu CL, MN, Dulama ID, Stirbescu RM, Bucurica IA, Stanescu SG, Banica AL. Polyphenolic Screening and the Antioxidant Activity of Grape Pomace Extracts of Romanian White and Red Grape Varieties. Antioxidants. 2024; 13(9):1133. https://doi.org/10.3390/antiox13091133
Chicago/Turabian StyleRadulescu, Cristiana, Radu Lucian Olteanu, Claudia Lavinia Buruleanu, Mihaela Nechifor (Tudorache), Ioana Daniela Dulama, Raluca Maria Stirbescu, Ioan Alin Bucurica, Sorina Geanina Stanescu, and Andreea Laura Banica. 2024. "Polyphenolic Screening and the Antioxidant Activity of Grape Pomace Extracts of Romanian White and Red Grape Varieties" Antioxidants 13, no. 9: 1133. https://doi.org/10.3390/antiox13091133
APA StyleRadulescu, C., Olteanu, R. L., Buruleanu, C. L., , M. N., Dulama, I. D., Stirbescu, R. M., Bucurica, I. A., Stanescu, S. G., & Banica, A. L. (2024). Polyphenolic Screening and the Antioxidant Activity of Grape Pomace Extracts of Romanian White and Red Grape Varieties. Antioxidants, 13(9), 1133. https://doi.org/10.3390/antiox13091133