Recent Advances in the Extraction and Characterization of Bioactive Compounds from Corn By-Products
Abstract
:1. Introduction
2. Bioactive Compounds in Maize
2.1. Maize Kernels
2.2. Maize Cob
2.3. Stover
2.4. Silk
Part | Variety | Group | Compounds | References |
---|---|---|---|---|
Silks | Purple and yellow | Phenolic acids | 5-O-Caffeoylquinic acid, 3-O-Caffeoylquinic acid, 4-O-Caffeoylquinic acid, p-Coumaroylquinic acid, Maysin and Methoxymaysin derivative | [45] |
Unspecified | Flavonoids | Quercetin, rutin, kaempferol | [46] | |
Unspecified | Isoorientin-2-2-O-α-L-rhamnoside, 3′-methoxymaysin | [47] | ||
Unspecified | 2″-O-α-L-rhamnosyl-6-C-quinovosylluteolin, 2″-O-α-L-rhamnosyl6-C-fucosylluteolin, and 2″-O-α-L-rhamnosyl-6-C-fucosyl-3′-methoxyluteolin, 2″-O-α-L-rhamnosyl-6-C-3″-deoxyglucosyl-3′ methoxyluteolin, 2″-O-α-Lrhamnosyl-6-C-(6-deoxyxylo-hexos-4-ulosyl)-luteolin, 2″-O-α -L-rhamnosyl6-C-(6-deoxy-xylo-hexos-4-ulosyl)-luteolin-3′-methylether, kaempferol | [38,48] | ||
Sweet corn | kaempferol-3-O-glucoside, luteolin 7-O-neohesperidoside, Isoquercitrin, 3′-methoxy maysin, apigenin C-hexose 2″-O-deoxyhexoside, apigenin 6-C-deoxyhexose 8-C-pentoside, luteolin O-deoxyhexose C-glucuronide and maysin | [49] | ||
Grains | purple | Phenolic acids | Chlorogenic acid, caffeic acid, ferulic acid | [17] |
Flavonoids | Anthocyanins, quercetin, and catechin | |||
Carotenoids | lutein, cyclosadol, β-cryptoxanthin, zeaxanthin, α- and β-carotene, α and β-cryptoxanthin | [50] | ||
purple | Anthocyanins | pelargonidin-3-glucoside, cyanidin-3-glucoside, and peonidin-3-glucoside, cyanidin-3-(6-malonylglucoside), pelargonidin-3-(6-malonylglucoside) and penodin-3-(6-malonylglucoside) | [24] | |
Pioneer | Phenolic acids | Ferulic acid and p-Coumaric acid | [11] | |
Purple | Phenolic acids | Ferulic acid and p-Coumaric acid | [4] | |
Blue | Anthocyanins | cyanidin 3-glucoside, cyanidin 3-O-(6″-succinyl-glucoside), pelargonidin 3-glucoside, pelargonidin 3-O-(6″-malonyl-glucoside), cyanidin 3-O-(6″-caffeoyl-glucoside) and cyanidin 3-O-(600-malonyl-glucoside) | [5] | |
Phenolic acids | caffeic acid 4-O-hexoside, caffeic acid, 5-O-caffeoylquinic acid and p-coumaric acid | |||
Isoflavone | Daidzin | |||
Flavone | apigenin-O-hexoside | |||
White | Phenolic acids | Gallic acid, Ferulic acid, Protocatechuic acid, p-Coumaric acid, | [51] | |
Blue | Flavonoids | Catechin | ||
Phenolic acids | Ferulic acid, p-coumaric acid | |||
Stem | Dent corn | Phenolic acid derivatives | Methyl (E)-p-cumarate, methyl (Z)-p-cumarate, methyl ferulate, and 1,3-O-diferuloyl glycerol | [34] |
Cob | Red | Phenolic acids | Caffeic acid 4-O-hexoside, 5-O-caffeoylquinic acid, p-Coumaric acid | [8] |
Flavonoids | Apigenin-O-hexoside, Luteolin-O-rutinoside, Apigenin-O-pentosyl hexoside, Apigenin 6-C-pentosyl-8-C-hexoside, Procyanidin dimer. | |||
Hydroxycumarics | Scopoletin | |||
Purple | Anthocyanins | cyanidin-3-glucoside, pelargonidin-3-glucoside, peonidin-3-glucoside, cyanidin-3-(6-malon)-glucoside, pelargonidin-3-(6-malon)-glucoside, peonidin-3-(6-malon)-glucoside. | [9,24] | |
Cacahuacintle maize | Anthocyanins | cyanidin-3-glucoside, pelargonidin-3-glucoside, peonidin-3-glucoside, cyanidin-3-(6″malonyl) glucoside, pelargonidin-3-(6″malonyl) glucoside and peonidin-3-(6″malonyl) glucoside | [10] | |
Pioneer | Phenolic acids | Ferulic acid and p-Coumaric acid | [11] | |
Cob leaves | Cacahuacintle maize | Anthocyanins | cyanidin-3-glucoside, pelargonidin-3-glucoside, peonidin-3-glucoside, cyanidin-3-(6″malonyl)-glucoside, pelargonidin-3-(6″malonyl)-glucoside and peonidin-3-(6″malonyl)-glucoside | [10] |
Stover | Pioneer | Phenolic acids | Ferulic acid and p-Coumaric acid | [11] |
Tassel | Unspecified | Phenolic acids | Gallic acid, Caffeic acid, Ferulic acid, Syringic acid, Ellagic acid, p-Coumaric acid | [52] |
Flavonoid | Rutin, Catechin, Taxifolin | |||
Flavanone | Naringenin | |||
Flavonol | Kaempferol | |||
Other | Methyl gallate, Pyrocatechol |
3. Biological Activities of Maize Components
3.1. Antioxidant Capacity (In Vitro)
3.2. Anti-Cancer Activity
3.3. Anti-Inflammatory Activity
3.4. Other Effects
4. Extraction, Separation, Identification, and Quantification of Bioactive Compounds from Maize
4.1. Extraction
Parts | Solvents | Reference |
---|---|---|
Stubble | Ethanol 80% | [11] |
Corn kernels | Ethanol 80% | [98] |
Yellow corn | Ethanol 80% | [99] |
Grains | Ethanol 80% | [100] |
Seed and cob | 100% Methanol | [24] |
Tassel | Ethanol 60% | [52] |
Cob | Ethanol in different proportions | [8] |
Grains | Methanol acidified with 1 N HCl (85:15, v/v) | [101] |
Kernels | Methanol, Water, and Formic Acid (80:19:1) | [102] |
Cobs | Water | [103] |
Kernels | Methanol 80% | [104] |
Grains | Ethanol 80% | [105] |
Extraction Method | Advantages | Disadvantages |
---|---|---|
UAE | Low solvent consumption High extraction fields Short extraction time High reproducibility Low energy consumption | Filtration required Effects of cavitation Difficulty in scaling |
MAE | Fast extraction Low solvent consumption High reproducibility Low energy consumption | High equipment cost Filtration required Many parameters to optimize |
SFE | Fast extraction Possibility to reuse CO2 No filtration required | High equipment cost |
EAE | High selectivity Biodegradable High extraction fields | Filtration required Difficulty in scaling High cost of enzymes |
FAE | Low prices Biodegradable High extraction fields Low energy consumption Low substrate costs Low cost of process | Contamination Difficulty in scaling The parameters are difficult to control Filtration required |
4.2. Separation of Bioactive Compounds
4.3. Identification and Quantification
5. Perspectives and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matsuoka, Y. Origin Matters: Lessons from the Search for the Wild Ancestor of Maize. Breed. Sci. 2005, 55, 383–390. [Google Scholar] [CrossRef]
- FAO. El Maíz en la Nutricion Humana; FAO: Roma, Italy, 1993. [Google Scholar]
- Rouf Shah, T.; Prasad, K.; Kumar, P. Maize—A potential source of human nutrition and health: A review. Cogent Food Agric. 2016, 2, 1166995. [Google Scholar] [CrossRef]
- Rodríguez-Salinas, P.A.; Zavala-García, F.; Urías-Orona, V.; Muy-Rangel, D.; Heredia, J.B.; Niño-Medina, G. Chromatic, Nutritional and Nutraceutical Properties of Pigmented Native Maize (Zea mays L.) Genotypes from the Northeast of Mexico. Arab. J. Sci. Eng. 2020, 45, 95–112. [Google Scholar] [CrossRef]
- Damián-Medina, K.; Salinas-Moreno, Y.; Milenkovic, D.; Figueroa-Yáñez, L.; Marino-Marmolejo, E.; Higuera-Ciapara, I.; Vallejo-Cardona, A.; Lugo-Cervantes, E. In silico analysis of antidiabetic potential of phenolic compounds from blue corn (Zea mays L.) and black bean (Phaseolus vulgaris L.). Heliyon 2020, 6, e03632. [Google Scholar] [CrossRef]
- Duan, D.; Dong, X.; Wang, Q.; Zhang, Y.; Ruan, R.; Wang, Y.; Lei, H. Production of renewable phenols from corn cob using catalytic pyrolysis over self-derived activated carbons prepared with torrefaction pretreatment and chemical activation. Colloids Surf. A Physicochem. Eng. Asp. 2021, 623, 126507. [Google Scholar] [CrossRef]
- Ismail, S.A.; Nour, S.A.; Hassan, A.A. Valorization of corn cobs for xylanase production by Aspergillus flavus AW1 and its application in the production of antioxidant oligosaccharides and removal of food stain. Biocatal. Agric. Biotechnol. 2022, 41, 102311. [Google Scholar] [CrossRef]
- Hernández, M.; Ventura, J.; Castro, C.; Boone, V.; Rojas, R.; Ascacio-Valdés, J.; Martínez-Ávila, G. UPLC-ESI-QTOF-MS2-Based Identification and Antioxidant Activity Assessment of Phenolic Compounds from Red Corn Cob (Zea mays L.). Molecules 2018, 23, 1425. [Google Scholar] [CrossRef]
- Lao, F.; Giusti, M.M. Extraction of purple corn (Zea mays L.) cob pigments and phenolic compounds using food-friendly solvents. J. Cereal Sci. 2018, 80, 87–93. [Google Scholar] [CrossRef]
- Fernandez-Aulis, F.; Hernandez-Vazquez, L.; Aguilar-Osorio, G.; Arrieta-Baez, D.; Navarro-Ocana, A. Extraction and Identification of Anthocyanins in Corn Cob and Corn Husk from Cacahuacintle Maize. J. Food Sci. 2019, 84, 954–962. [Google Scholar] [CrossRef]
- Vazquez-Olivo, G.; López-Martínez, L.X.; Contreras-Angulo, L.; Heredia, J.B. Antioxidant Capacity of Lignin and Phenolic Compounds from Corn Stover. Waste Biomass Valorization 2019, 10, 95–102. [Google Scholar] [CrossRef]
- Ruan, Z.; Wang, X.; Liu, Y.; Liao, W. Chapter 3—Corn. In Integrated Processing Technologies for Food and Agricultural By-Products; Pan, Z., Zhang, R., Zicari, S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 59–72. [Google Scholar]
- Lao, F.; Sigurdson, G.T.; Giusti, M.M. Health Benefits of Purple Corn (Zea mays L.) Phenolic Compounds. Compr. Rev. Food Sci. Food Saf. 2017, 16, 234–246. [Google Scholar] [CrossRef]
- Dia, V.P.; Wang, Z.; West, M.; Singh, V.; West, L.; de Mejia, E.G. Processing Method and Corn Cultivar Affected Anthocyanin Concentration from Dried Distillers Grains with Solubles. J. Agric. Food Chem. 2015, 63, 3205–3218. [Google Scholar] [CrossRef]
- Anirban, A.; Hong, H.T.; O’Hare, T.J. Profiling and Quantification of Anthocyanins in Purple-Pericarp Sweetcorn and Purple-Pericarp Maize. Molecules 2023, 28, 2665. [Google Scholar] [CrossRef]
- Carrera, E.J.; Cejudo-Bastante, M.J.; Hurtado, N.; Heredia, F.J.; González-Miret, M.L. Revalorization of Colombian purple corn Zea mays L. by-products using two-step column chromatography. Food Res. Int. 2023, 169, 112931. [Google Scholar] [CrossRef]
- Ramos-Escudero, F.; Muñoz, A.M.; Alvarado-Ortíz, C.; Alvarado, Á.; Yáñez, J.A. Purple corn (Zea mays L.) phenolic compounds profile and its assessment as an agent against oxidative stress in isolated mouse organs. J. Med. Food 2012, 15, 206–215. [Google Scholar] [CrossRef]
- Cuevas Montilla, E.; Hillebrand, S.; Antezana, A.; Winterhalter, P. Soluble and Bound Phenolic Compounds in Different Bolivian Purple Corn (Zea mays L.) Cultivars. J. Agric. Food Chem. 2011, 59, 7068–7074. [Google Scholar] [CrossRef]
- Urias-Lugo, D.A.; Heredia, J.B.; Muy-Rangel, M.D.; Valdez-Torres, J.B.; Serna-Saldívar, S.O.; Gutiérrez-Uribe, J.A. Anthocyanins and Phenolic Acids of Hybrid and Native Blue Maize (Zea mays L.) Extracts and Their Antiproliferative Activity in Mammary (MCF7), Liver (HepG2), Colon (Caco2 and HT29) and Prostate (PC3) Cancer Cells. Plant Foods Hum. Nutr. 2015, 70, 193–199. [Google Scholar] [CrossRef]
- Paulsmeyer, M.; Chatham, L.; Becker, T.; West, M.; West, L.; Juvik, J. Survey of Anthocyanin Composition and Concentration in Diverse Maize Germplasms. J. Agric. Food Chem. 2017, 65, 4341–4350. [Google Scholar] [CrossRef]
- Chatham, L.A.; West, L.; Berhow, M.A.; Vermillion, K.E.; Juvik, J.A. Unique Flavanol-Anthocyanin Condensed Forms in Apache Red Purple Corn. J. Agric. Food Chem. 2018, 66, 10844–10854. [Google Scholar] [CrossRef]
- Chaudhary, D.P.; Kumar, S.; Yadav, O.P. Nutritive Value of Maize: Improvements, Applications and Constraints. In Maize: Nutrition Dynamics and Novel Uses; Chaudhary, D.P., Kumar, S., Langyan, S., Eds.; Springer: New Delhi, India, 2014; pp. 3–17. [Google Scholar]
- Nawaz, H.; Shad, M.; Batool, Z. Inter-varietal Variation in Biochemical, Phytochemical and Antioxidant Composition of Maize (Zea mays L.) Grains. Food Sci. Technol. Res. 2013, 19, 1133–1140. [Google Scholar] [CrossRef]
- Yang, Z.; Zhai, W. Identification and antioxidant activity of anthocyanins extracted from the seed and cob of purple corn (Zea mays L.). Innov. Food Sci. Emerg. Technol. 2010, 11, 169–176. [Google Scholar] [CrossRef]
- Thiraphatthanavong, P.; Wattanathorn, J.; Muchimapura, S.; Wipawee, T.M.; Wannanon, P.; Terdthai, T.U.; Suriharn, B.; Lertrat, K. Preventive effect of Zea mays L. (purple waxy corn) on experimental diabetic cataract. BioMed. Res. Int. 2014, 2014, 507435. [Google Scholar] [CrossRef]
- Gullón, P.; Eibes, G.; Lorenzo, J.M.; Pérez-Rodríguez, N.; Lú-Chau, T.A.; Gullón, B. Green sustainable process to revalorize purple corn cobs within a biorefinery frame: Co-production of bioactive extracts. Sci. Total Environ. 2020, 709, 136236. [Google Scholar] [CrossRef]
- Ashour, A.; El-Sharkawy, S.; Amer, M.; Marzouk, A.; Zaki, A.; Kishikawa, A.; Ohzono, M.; Kondo, R.; Shimizu, K. Production of Citric Acid from Corn cobs with Its Biological Evaluation. J. Cosmet. Dermatol. Sci. Appl. 2014, 4, 46133. [Google Scholar] [CrossRef]
- De Nisi, P.; Borlini, G.; Parizad, P.A.; Scarafoni, A.; Sandroni, P.; Cassani, E.; Adani, F.; Pilu, R. Biorefinery Approach Applied to the Valorization of Purple Corn Cobs. ACS Sustain. Chem. Eng. 2021, 9, 3781–3791. [Google Scholar] [CrossRef]
- Lu, X.; Gu, X.; Shi, Y. A review on lignin antioxidants: Their sources, isolations, antioxidant activities and various applications. Int. J. Biol. Macromol. 2022, 210, 716–741. [Google Scholar] [CrossRef]
- Zheng, P.; Fang, L.; Xu, Y.; Dong, J.-J.; Ni, Y.; Sun, Z.-H. Succinic acid production from corn stover by simultaneous saccharification and fermentation using Actinobacillus succinogenes. Bioresour. Technol. 2010, 101, 7889–7894. [Google Scholar] [CrossRef]
- Deng, Y.; Mao, Y.; Zhang, X. Metabolic engineering of a laboratory-evolved Thermobifida fusca muC strain for malic acid production on cellulose and minimal treated lignocellulosic biomass. Biotechnol. Prog. 2016, 32, 14–20. [Google Scholar] [CrossRef]
- Wang, X.; Salvachúa, D.; Sànchez i Nogué, V.; Michener, W.E.; Bratis, A.D.; Dorgan, J.R.; Beckham, G.T. Propionic acid production from corn stover hydrolysate by Propionibacterium acidipropionici. Biotechnol. Biofuels 2017, 10, 200. [Google Scholar] [CrossRef]
- Hong, E.; Kim, J.; Rhie, S.; Ha, S.-J.; Kim, J.; Ryu, Y. Optimization of dilute sulfuric acid pretreatment of corn stover for enhanced xylose recovery and xylitol production. Biotechnol. Bioprocess Eng. 2016, 21, 612–619. [Google Scholar] [CrossRef]
- Jung, Y.-J.; Park, J.-H.; Seo, K.-H.; Shrestha, S.; Lee, D.-S.; Kim, Y.-C.; Kang, H.-C.; Kim, J.; Baek, N.-I. Phenolic compounds from the stems of Zea mays and their pharmacological activity. J. Korean Soc. Appl. Biol. Chem. 2014, 57, 379–385. [Google Scholar] [CrossRef]
- Jung, Y.J.; Park, J.H.; Cho, J.G.; Seo, K.H.; Lee, D.S.; Kim, Y.C.; Kang, H.C.; Song, M.C.; Baek, N.I. Lignan and flavonoids from the stems of Zea mays and their anti-inflammatory and neuroprotective activities. Arch. Pharm. Res. 2015, 38, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Okokon, J.E.; Nyong, M.E.; Essien, G.E.; Nyong, E. Nephroprotective activity of husk extract and fractions of Zea mays against alloxan-induced oxidative stress in diabetic rats. J. Basic Pharmacol. Toxicol. 2017, 1, 1–10. [Google Scholar]
- Maksimović, Z.; Malenčić, Đ.; Kovačević, N. Polyphenol contents and antioxidant activity of Maydis stigma extracts. Bioresour. Technol. 2005, 96, 873–877. [Google Scholar] [CrossRef] [PubMed]
- Hasanudin, K.; Hashim, P.; Mustafa, S. Corn silk (Stigma maydis) in healthcare: A phytochemical and pharmacological review. Molecules 2012, 17, 9697–9715. [Google Scholar] [CrossRef]
- Limmatvapirat, C.; Nateesathittarn, C.; Dechasathian, K.; Moohummad, T.; Chinajitphan, P.; Limmatvapirat, S. Phytochemical analysis of baby corn silk extracts. J. Ayurveda Integr. Med. 2020, 11, 344–351. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Y.; Liu, H. Corn silk extract inhibit the formation of Nε-carboxymethyllysine by scavenging glyoxal/methyl glyoxal in a casein glucose-fatty acid model system. Food Chem. 2020, 309, 125708. [Google Scholar] [CrossRef]
- Zhao, W.; Yin, Y.; Yu, Z.; Liu, J.; Chen, F. Comparison of anti-diabetic effects of polysaccharides from corn silk on normal and hyperglycemia rats. Int. J. Biol. Macromol. 2012, 50, 1133–1137. [Google Scholar] [CrossRef]
- Yang, J.; Li, X.; Xue, Y.; Wang, N.; Liu, W. Anti-hepatoma activity and mechanism of corn silk polysaccharides in H22 tumor-bearing mice. Int. J. Biol. Macromol. 2014, 64, 276–280. [Google Scholar] [CrossRef]
- Adedapo, A.; Babarinsa, O.; Ogunshe, A.; Oyagbemi, A.; Omobowale, T.; Adedapo, A. Evaluation of some biological activities of the extracts of corn silk and leaves. Trop. Vet. 2013, 31, 12–32. [Google Scholar]
- Kılıç, C.; Can, Z.; Gürgen, A.; Yildiz, S.; Turna, H. Antioxidant Properties of Some Herbal Teas (Green tea, Senna, Corn Silk, Rosemary) Brewed at Different Temperatures. Int. J. Second. Metab. 2017, 4, 148–154. [Google Scholar] [CrossRef]
- Žilić, S.; Janković, M.; Basić, Z.; Vančetović, J.; Maksimović, V. Antioxidant activity, phenolic profile, chlorophyll and mineral matter content of corn silk (Zea mays L.): Comparison with medicinal herbs. J. Cereal Sci. 2016, 69, 363–370. [Google Scholar] [CrossRef]
- Ismael, R.H.; Ahmed, S.A.; Mahmoud, S.S. Detection of rutin, kaepferol, and quercetin based crude from corn silk and studying their effects on the inhibition of pure urease enzyme and urease of Klebsiella species. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2676–2685. [Google Scholar] [CrossRef]
- Liu, J.; Wang, C.; Wang, Z.; Zhang, C.; Lu, S.; Liu, J. The antioxidant and free-radical scavenging activities of extract and fractions from corn silk (Zea mays L.) and related flavone glycosides. Food Chem. 2011, 126, 261–269. [Google Scholar] [CrossRef]
- Ren, S.-C.; Liu, Z.; Ding, X.-L. Isolation and identification of two novel flavone glycosides from corn silk (Stigma maydis). J. Med. Plant Res. 2009, 3, 1009–1015. [Google Scholar] [CrossRef]
- Fougère, L.; Zubrzycki, S.; Elfakir, C.; Destandau, E. Characterization of Corn Silk Extract Using HPLC/HRMS/MS Analyses and Bioinformatic Data Processing. Plants 2023, 12, 721. [Google Scholar] [CrossRef]
- Bacchetti, T.; Masciangelo, S.; Micheletti, A.; Ferretti, G. Carotenoids, Phenolic Compounds and Antioxidant Capacity of Five Local Italian Corn (Zea mays L.) Kernels. J. Nutr. Food Sci. 2013, 3, 6. [Google Scholar] [CrossRef]
- Del Pozo-Insfran, D.; Brenes, C.H.; Serna Saldivar, S.O.; Talcott, S.T. Polyphenolic and antioxidant content of white and blue corn (Zea mays L.) products. Food Res. Int. 2006, 39, 696–703. [Google Scholar] [CrossRef]
- Elsayed, N.; Marrez, D.A.; Ali, M.A.; El-Maksoud, A.A.A.; Cheng, W.; Abedelmaksoud, T.G. Phenolic Profiling and In-Vitro Bioactivities of Corn (Zea mays L.) Tassel Extracts by Combining Enzyme-Assisted Extraction. Foods 2022, 11, 2145. [Google Scholar] [CrossRef]
- Martino, H.S.D.; Dias, M.M.d.S.; Noratto, G.; Talcott, S.; Mertens-Talcott, S.U. Anti-lipidaemic and anti-inflammatory effect of açai (Euterpe oleracea Martius) polyphenols on 3T3-L1 adipocytes. J. Funct. Foods 2016, 23, 432–443. [Google Scholar] [CrossRef]
- He, J.; Giusti, M.M. Anthocyanins: Natural Colorants with Health-Promoting Properties. Annu. Rev. Food Sci. Technol. 2010, 1, 163–187. [Google Scholar] [CrossRef] [PubMed]
- Ghasemzadeh, A.; Ghasemzadeh, N. Flavonoids and phenolic acids: Role and biochemical activity in plants and human. J. Med. Plants Res. 2011, 5, 6697–6703. [Google Scholar] [CrossRef]
- Deepika; Maurya, P.K. Health Benefits of Quercetin in Age-Related Diseases. Molecules 2022, 27, 2498. [Google Scholar] [CrossRef] [PubMed]
- Semwal, R.; Joshi, S.K.; Semwal, R.B.; Semwal, D.K. Health benefits and limitations of rutin—A natural flavonoid with high nutraceutical value. Phytochem. Lett. 2021, 46, 119–128. [Google Scholar] [CrossRef]
- Dong, X.; Huang, R. Ferulic acid: An extraordinarily neuroprotective phenolic acid with anti-depressive properties. Phytomedicine 2022, 105, 154355. [Google Scholar] [CrossRef]
- Yang, M.; Abdullah; Ahmad, N.; Hussain, M.; Lu, X.; Xu, J.; Zhong, H.; Guan, R. A review of recent advances on cyanidin-3-glucoside: The biotransformation, absorption, bioactivity and applications of nano-encapsulation. Food Funct. 2023, 14, 6320–6345. [Google Scholar] [CrossRef]
- Aldaba-Muruato, L.R.; Ventura-Juárez, J.; Perez-Hernandez, A.M.; Hernández-Morales, A.; Muñoz-Ortega, M.H.; Martínez-Hernández, S.L.; Alvarado-Sánchez, B.; Macías-Pérez, J.R. Therapeutic perspectives of p-coumaric acid: Anti-necrotic, anti-cholestatic and anti-amoebic activities. World Acad. Sci. J. 2021, 3, 47. [Google Scholar] [CrossRef]
- Birková, A.; Hubková, B.; Bolerázska, B.; Mareková, M.; Čižmárová, B. Caffeic acid: A brief overview of its presence, metabolism, and bioactivity. Bioact. Compd. Health Dis. 2020, 3, 74–81. [Google Scholar] [CrossRef]
- Musial, C.; Kuban-Jankowska, A.; Gorska-Ponikowska, M. Beneficial Properties of Green Tea Catechins. Int. J. Mol. Sci. 2020, 21, 1744. [Google Scholar] [CrossRef]
- Cho, J.-S.; Lim, J.H.; Park, K.J.; Choi, J.H.; Ok, G.S. Prediction of pelargonidin-3-glucoside in strawberries according to the postharvest distribution period of two ripening stages using VIS-NIR and SWIR hyperspectral imaging technology. LWT 2021, 141, 110875. [Google Scholar] [CrossRef]
- Periferakis, A.; Periferakis, K.; Badarau, I.A.; Petran, E.M.; Popa, D.C.; Caruntu, A.; Costache, R.S.; Scheau, C.; Caruntu, C.; Costache, D.O. Kaempferol: Antimicrobial Properties, Sources, Clinical, and Traditional Applications. Int. J. Mol. Sci. 2022, 23, 15054. [Google Scholar] [CrossRef] [PubMed]
- Cevallos-Casals, B.A.; Cisneros-Zevallos, L. Stoichiometric and Kinetic Studies of Phenolic Antioxidants from Andean Purple Corn and Red-Fleshed Sweetpotato. J. Agric. Food Chem. 2003, 51, 3313–3319. [Google Scholar] [CrossRef]
- Wang, G.-Q.; Xu, T.; Bu, X.-M.; Liu, B.-Y. Anti-inflammation Effects of Corn Silk in a Rat Model of Carrageenin-Induced Pleurisy. Inflammation 2012, 35, 822–827. [Google Scholar] [CrossRef] [PubMed]
- Mora-Rochin, S.; Gutiérrez-Uribe, J.A.; Serna-Saldivar, S.O.; Sánchez-Peña, P.; Reyes-Moreno, C.; Milán-Carrillo, J. Phenolic content and antioxidant activity of tortillas produced from pigmented maize processed by conventional nixtamalization or extrusion cooking. J. Cereal Sci. 2010, 52, 502–508. [Google Scholar] [CrossRef]
- Yun, J.W.; Lee, W.S.; Kim, M.J.; Lu, J.N.; Kang, M.H.; Kim, H.G.; Kim, D.C.; Choi, E.J.; Choi, J.Y.; Kim, H.G.; et al. Characterization of a profile of the anthocyanins isolated from Vitis coignetiae Pulliat and their anti-invasive activity on HT-29 human colon cancer cells. Food Chem. Toxicol. 2010, 48, 903–909. [Google Scholar] [CrossRef]
- Ongkowijoyo, P.; Luna-Vital, D.A.; Gonzalez de Mejia, E. Extraction techniques and analysis of anthocyanins from food sources by mass spectrometry: An update. Food Chem. 2018, 250, 113–126. [Google Scholar] [CrossRef]
- Long, N.; Suzuki, S.; Sato, S.; Naiki-Ito, A.; Sakatani, K.; Shirai, T.; Takahashi, S. Purple corn color inhibition of prostate carcinogenesis by targeting cell growth pathways. Cancer Sci. 2013, 104, 298–303. [Google Scholar] [CrossRef]
- Jing, P.; Bomser, J.A.; Schwartz, S.J.; He, J.; Magnuson, B.A.; Giusti, M.M. Structure−Function Relationships of Anthocyanins from Various Anthocyanin-Rich Extracts on the Inhibition of Colon Cancer Cell Growth. J. Agric. Food Chem. 2008, 56, 9391–9398. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, C.; Guigas, C.; Ma, Y.; Corrales, M.; Tauscher, B.; Hu, X. Composition, antimicrobial activity, and antiproliferative capacity of anthocyanin extracts of purple corn (Zea mays L.) from China. Eur. Food Res. Technol. 2009, 228, 759–765. [Google Scholar] [CrossRef]
- Hagiwara, A.; Miyashita, K.; Nakanishi, T.; Sano, M.; Tamano, S.; Kadota, T.; Koda, T.; Nakamura, M.; Imaida, K.; Ito, N.; et al. Pronounced inhibition by a natural anthocyanin, purple corn color, of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-associated colorectal carcinogenesis in male F344 rats pretreated with 1,2-dimethylhydrazine. Cancer Lett. 2001, 171, 17–25. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, B.; Wang, H.; Wang, F.; Song, Y.; Liu, S.; Xi, S. Maize Purple Plant Pigment Protects Against Fluoride-Induced Oxidative Damage of Liver and Kidney in Rats. Int. J. Environ. Res. Public Health 2014, 11, 1020–1033. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Díaz, S.; Ortiz-Valerio, M.d.C.; Castaño-Tostado, E.; Figueroa-Cárdenas, J.d.D.; Reynoso-Camacho, R.; Ramos-Gómez, M.; Campos-Vega, R.; Loarca-Piña, G. Antioxidant Capacity and Antimutagenic Activity of Anthocyanin and Carotenoid Extracts from Nixtamalized Pigmented Creole Maize Races (Zea mays L.). Plant Foods Hum. Nutr. 2012, 67, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Reynoso-Camacho, R.; Guerrero-Villanueva, G.; de Dios Figueroa, J.; Gallegos-Corona, M.A.; Mendoza, S.; Loarca-Piña, G.; Ramos-Gomez, M. Anticarcinogenic Effect of Corn Tortilla Against 1,2-Dimethylhydrazine (DMH)-Induced Colon Carcinogenesis in Sprague–Dawley Rats. Plant Foods Hum. Nutr. 2015, 70, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Agrizzi Verediano, T.; Stampini Duarte Martino, H.; Kolba, N.; Fu, Y.; Cristina Dias Paes, M.; Tako, E. Black corn (Zea mays L.) soluble extract showed anti-inflammatory effects and improved the intestinal barrier integrity in vivo (Gallus gallus). Food Res. Int. 2022, 157, 111227. [Google Scholar] [CrossRef] [PubMed]
- Koraneeyakijkulchai, I.; Phumsuay, R.; Thiyajai, P.; Tuntipopipat, S.; Muangnoi, C. Anti-Inflammatory Activity and Mechanism of Sweet Corn Extract on Il-1β-Induced Inflammation in a Human Retinal Pigment Epithelial Cell Line (ARPE-19). Int. J. Mol. Sci. 2023, 24, 2462. [Google Scholar] [CrossRef]
- Pinheiro, A.C.S.; Pais, A.A.; Tardivo, A.C.B.; Alves, M.J.Q.F. Efeito do extrato aquoso de cabelo de milho (Zea mays L.) sobre a excreção renal de água e eletrólitos e pressão arterial em ratos Wistar anestesiados. Rev. Bras. Plantas Med. 2011, 13, 375–381. [Google Scholar] [CrossRef]
- Guo, J.; Liu, T.; Han, L.; Liu, Y. The effects of corn silk on glycaemic metabolism. Nutr. Metab. 2009, 6, 47. [Google Scholar] [CrossRef]
- Sepehri, G.; Derakhshanfar, A.; Yazdi Zadeh, F. Protective effects of corn silk extract administration on gentamicin-induced nephrotoxicity in rat. Comp. Clin. Pathol. 2011, 20, 89–94. [Google Scholar] [CrossRef]
- Yokohira, M.; Yamakawa, K.; Saoo, K.; Matsuda, Y.; Hosokawa, K.; Hashimoto, N.; Kuno, T.; Imaida, K. Antioxidant Effects of Flavonoids Used as Food Additives (Purple Corn Color, Enzymatically Modified Isoquercitrin, and Isoquercitrin) on Liver Carcinogenesis in a Rat Medium-Term Bioassay. J. Food Sci. 2008, 73, C561–C568. [Google Scholar] [CrossRef]
- Chen, Y.; Xing, M.; Chen, T.; Tian, S.; Li, B. Effects and mechanisms of plant bioactive compounds in preventing fungal spoilage and mycotoxin contamination in postharvest fruits: A review. Food Chem. 2023, 415, 135787. [Google Scholar] [CrossRef]
- Stoev, S.D. Natural feed additives and bioactive supplements versus chemical additives as a safe and practical approach to combat foodborne mycotoxicoses. Front. Nutr. 2024, 11, 1335779. [Google Scholar] [CrossRef] [PubMed]
- Khan, U.; Aye-Ayire Sedjoah, R.-C.; Shao, Y.; Abdalmegeed, D.; Wu, Z.; Xin, Z. Bioassay-guided purification and identification of antimicrobial compound from corn silk extract and postharvest application against Fusarium verticillioides on cherry tomato. Turk. J. Agric. For. 2024, 48, 139–153. [Google Scholar] [CrossRef]
- Hernández, A.; Ruiz-Moyano, S.; Galván, A.I.; Merchán, A.V.; Pérez Nevado, F.; Aranda, E.; Serradilla, M.J.; Córdoba, M.d.G.; Martín, A. Antifungal activity of phenolic sweet orange peel extract for controlling fungi responsible for post-harvest fruit decay. Fungal Biol. 2021, 125, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Lorán, S.; Carramiñana, J.J.; Juan, T.; Ariño, A.; Herrera, M. Inhibition of Aspergillus parasiticus Growth and Aflatoxins Production by Natural Essential Oils and Phenolic Acids. Toxins 2022, 14, 384. [Google Scholar] [CrossRef]
- Ullah, H.; Wilfred, C.D.; Shaharun, M.S. Comparative assessment of various extraction approaches for the isolation of essential oil from polygonum minus using ionic liquids. J. King Saud Univ.-Sci. 2019, 31, 230–239. [Google Scholar] [CrossRef]
- Siyuan, S.; Tong, L.; Liu, R. Corn phytochemicals and their health benefits. Food Sci. Hum. Wellness 2018, 7, 185–195. [Google Scholar] [CrossRef]
- Lapčík, L.; Řepka, D.; Lapčíková, B.; Sumczynski, D.; Gautam, S.; Li, P.; Valenta, T. A Physicochemical Study of the Antioxidant Activity of Corn Silk Extracts. Foods 2023, 12, 2159. [Google Scholar] [CrossRef] [PubMed]
- Khushe, K.J.; Wazed, M.A.; Islam, M.R.; Awal, M.S.; Mozumder, N.H.M.R. Extraction and Evaluation of Bioactive Compounds from Immature and Mature Corn Silk. J. Food Qual. 2024, 2024, 9552151. [Google Scholar] [CrossRef]
- García-Ortíz, J.D.; Ascacio-Valdés, J.A.; Nery-Flores, S.D.; Sáenz-Galindo, A.; Flores-Gallegos, A.C.; Rodríguez-Herrera, R. Microwave-ultrasound hybrid technology assisted extraction of pigments with antioxidant potential from red corn. Appl. Food Res. 2023, 3, 100350. [Google Scholar] [CrossRef]
- Kumar, R.; Agliata, J.; Wan, C.; Flint-Garcia, S.; Salazar-Vidal, M.N.; Mustapha, A.; Cheng, J.; Somavat, P. Evaluation of dry milling characteristics and polyphenolic contents of fourteen conventionally bred colored corn varieties for value-added coproducts recovery. Ind. Crops Prod. 2024, 215, 118600. [Google Scholar] [CrossRef]
- Guillén Sánchez, J.S.; Betim Cazarin, C.B.; Canesin, M.R.; Reyes, F.G.; Iglesias, A.H.; Cristianini, M. Extraction of bioactive compounds from Peruvian purple corn cob by high isostatic pressure. Sci. Agropecu. 2023, 14, 49–57. [Google Scholar] [CrossRef]
- Yang, T.; Guang Hu, J.; Yu, Y.; Li, G.; Guo, X.; Li, T.; Liu, R.H. Comparison of phenolics, flavonoids, and cellular antioxidant activities in ear sections of sweet corn (Zea mays L. saccharata Sturt). J. Food Process. Preserv. 2019, 43, e13855. [Google Scholar] [CrossRef]
- Hu, Q.-p.; Xu, J.-g. Profiles of Carotenoids, Anthocyanins, Phenolics, and Antioxidant Activity of Selected Color Waxy Corn Grains during Maturation. J. Agric. Food Chem. 2011, 59, 2026–2033. [Google Scholar] [CrossRef] [PubMed]
- Mohsen, S.M.; Ammar, A.S.M. Total phenolic contents and antioxidant activity of corn tassel extracts. Food Chem. 2009, 112, 595–598. [Google Scholar] [CrossRef]
- Zavala-López, M.; García-Lara, S. An improved microscale method for extraction of phenolic acids from maize. Plant Methods 2017, 13, 81. [Google Scholar] [CrossRef]
- Ramírez-Esparza, U.; Ochoa-Reyes, E.; Baeza-Jiménez, R.; Buenrostro-Figueroa, J.J. Efecto de la fermentación en medio sólido sobre el contenido de fenoles totales y la capacidad antioxidante del maíz. CienciaUAT 2023, 18, 136–144. [Google Scholar] [CrossRef]
- Mendoza-López, M.L.; Alvarado-Díaz, C.S.; Pérez-Vega, S.B.; Leal-Ramos, M.Y.; Gutiérrez-Méndez, N. Compositional and free radical scavenging properties of Zea mays female inflorescences (maize silks) from Mexican maize landraces. CyTA-J. Food 2018, 16, 96–104. [Google Scholar] [CrossRef]
- Suriano, S.; Balconi, C.; Valoti, P.; Redaelli, R. Comparison of total polyphenols, profile anthocyanins, color analysis, carotenoids and tocols in pigmented maize. LWT 2021, 144, 111257. [Google Scholar] [CrossRef]
- Hong, H.T.; Netzel, M.E.; O’Hare, T.J. Optimisation of extraction procedure and development of LC–DAD–MS methodology for anthocyanin analysis in anthocyanin-pigmented corn kernels. Food Chem. 2020, 319, 126515. [Google Scholar] [CrossRef]
- Ndego, A.; Ezedom, T.; Egbune, E.O.; Tonukari, N. Biochemical characterization of solid state fermented maize cob (Zea mays) using Rhizopus oligosporus and its application in poultry feed production. Int. J. Recycl. Org. Waste Agric. 2023, 12, 235–246. [Google Scholar] [CrossRef]
- Chen, G.; Chen, B.; Song, D. Co-microbiological regulation of phenolic release through solid-state fermentation of corn kernels (Zea mays L.) to improve their antioxidant activity. LWT 2021, 142, 111003. [Google Scholar] [CrossRef]
- Xu, L.-N.; Guo, S.; Zhang, S. Effects of solid-state fermentation with three higher fungi on the total phenol contents and antioxidant properties of diverse cereal grains. FEMS Microbiol. Lett. 2018, 365, fny163. [Google Scholar] [CrossRef]
- Rabanal-Atalaya, M.; Medina-Hoyos, A. Análisis de antocianinas en el maíz morado (Zea mays L.) del Perú y sus propiedades antioxidantes. Terra Latinoam. 2021, 39, e808. [Google Scholar] [CrossRef]
- Alves Magro, A.E.; de Castro, R.J.S. Effects of solid-state fermentation and extraction solvents on the antioxidant properties of lentils. Biocatal. Agric. Biotechnol. 2020, 28, 101753. [Google Scholar] [CrossRef]
- Huynh, N.T.; Van Camp, J.; Smagghe, G.; Raes, K. Improved Release and Metabolism of Flavonoids by Steered Fermentation Processes: A Review. Int. J. Mol. Sci. 2014, 15, 19369–19388. [Google Scholar] [CrossRef]
- Martins, S.; Mussatto, S.I.; Martínez-Avila, G.; Montañez-Saenz, J.; Aguilar, C.N.; Teixeira, J.A. Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnol. Adv. 2011, 29, 365–373. [Google Scholar] [CrossRef]
- Buenrostro-Figueroa, J.J.; Velázquez, M.; Flores-Ortega, O.; Ascacio-Valdés, J.A.; Huerta-Ochoa, S.; Aguilar, C.N.; Prado-Barragán, L.A. Solid state fermentation of fig (Ficus carica L.) by-products using fungi to obtain phenolic compounds with antioxidant activity and qualitative evaluation of phenolics obtained. Process Biochem. 2017, 62, 16–23. [Google Scholar] [CrossRef]
- Mushtaq, M.; Sultana, B.; Akram, S.; Adnan, A.; Apenten, R.K.; Nigam, P.S.-N. Enzyme-assisted Extraction of Polyphenols from Pomegranate (Punica granatum) Peel. Res. Rev. J. Microbiol. Biotechnol. 2016, 5, 27–34. [Google Scholar]
- Topakas, E.; Kalogeris, E.; Kekos, D.; Macris, B.J.; Christakopoulos, P. Production of Phenolics from Corn Cobs by Coupling Enzymic Treatment and Solid State Fermentation. Eng. Life Sci. 2004, 4, 283–286. [Google Scholar] [CrossRef]
- Chandra, P.; Arora, D.S. Production of antioxidant bioactive phenolic compounds by solid-state fermentation on agro-residues using various fungi isolated from soil. Asian J. Biotechnol. 2016, 8, 8–15. [Google Scholar] [CrossRef]
- Acosta-Estrada, B.A.; Villela-Castrejón, J.; Perez-Carrillo, E.; Gómez-Sánchez, C.E.; Gutiérrez-Uribe, J.A. Effects of solid-state fungi fermentation on phenolic content, antioxidant properties and fiber composition of lime cooked maize by-product (nejayote). J. Cereal Sci. 2019, 90, 102837. [Google Scholar] [CrossRef]
- Mahalaxmi, Y.; Sathish, T.; Subba Rao, C.; Prakasham, R.S. Corn husk as a novel substrate for the production of rifamycin B by isolated Amycolatopsis sp. RSP 3 under SSF. Process Biochem. 2010, 45, 47–53. [Google Scholar] [CrossRef]
- Wang, X.; Wang, G.; Yu, X.; Chen, H.; Sun, Y.; Chen, G. Pretreatment of corn stover by solid acid for d-lactic acid fermentation. Bioresour. Technol. 2017, 239, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Jiménez, A.K.; Rangel-Hernández, J.; Morales-Sánchez, E.; Loarca-Piña, G.; Gaytán-Martínez, M. Changes on the phytochemicals profile of instant corn flours obtained by traditional nixtamalization and ohmic heating process. Food Chem. 2019, 276, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Saikaew, K.; Lertrat, K.; Meenune, M.; Tangwongchai, R. Effect of high-pressure processing on colour, phytochemical contents and antioxidant activities of purple waxy corn (Zea mays L. var. ceratina) kernels. Food Chem. 2018, 243, 328–337. [Google Scholar] [CrossRef]
- Nawaz, H.; Aslam, M.; Muntaha, S. Effect of Solvent Polarity and Extraction Method on Phytochemical Composition and Antioxidant Potential of Corn Silk. Free Radic. Antioxid. 2019, 9, 5–11. [Google Scholar] [CrossRef]
- Abdel-Aal, E.-S.M.; Hucl, P.; Rabalski, I. Compositional and antioxidant properties of anthocyanin-rich products prepared from purple wheat. Food Chem. 2018, 254, 13–19. [Google Scholar] [CrossRef]
- Burlini, I.; Grandini, A.; Tacchini, M.; Maresca, I.; Guerrini, A.; Sacchetti, G. Different Strategies to Obtain Corn (Zea mays L.) Germ Extracts with Enhanced Antioxidant Properties. Nat. Prod. Commun. 2020, 15, 1934578X20903562. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Rincón-Fontán, M.; Vecino, X.; Cruz, J.M.; Moldes, A.B. Extraction, separation and characterization of lipopeptides and phospholipids from corn steep water. Sep. Purif. Technol. 2020, 248, 117076. [Google Scholar] [CrossRef]
- Díaz-Montes, E.; Castro-Muñoz, R. Analyzing the phenolic enriched fractions from Nixtamalization wastewater (Nejayote) fractionated in a three-step membrane process. Curr. Res. Food Sci. 2022, 5, 1–10. [Google Scholar] [CrossRef]
- Halabalaki, M.; Vougogiannopoulou, K.; Mikros, E.; Skaltsounis, A.L. Recent advances and new strategies in the NMR-based identification of natural products. Curr. Opin. Biotechnol. 2014, 25, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Inbaraj, B.S.; Kaur, S.; Rasane, P.; Nanda, V. Phytochemical Analysis and Characterization of Corn Silk (Zea mays, G5417). Agronomy 2022, 12, 777. [Google Scholar] [CrossRef]
- Bunzel, M.; Ralph, J.; Brüning, P.; Steinhart, H. Structural Identification of Dehydrotriferulic and Dehydrotetraferulic Acids Isolated from Insoluble Maize Bran Fiber. J. Agric. Food Chem. 2006, 54, 6409–6418. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, M.D.; Monsierra, L.; Mansilla, P.S.; Pérez, G.T.; de Pascual-Teresa, S. Phenolic Characterization of a Purple Maize (Zea mays cv. “Moragro”) by HPLC–QTOF-MS and Study of Its Bioaccessibility Using a Simulated In Vitro Digestion/Caco-2 Culture Model. J. Agric. Food Chem. 2024, 72, 6327–6338. [Google Scholar] [CrossRef]
- Barba, F.J.; Rajha, H.N.; Debs, E.; Abi-Khattar, A.-M.; Khabbaz, S.; Dar, B.N.; Simirgiotis, M.J.; Castagnini, J.M.; Maroun, R.G.; Louka, N. Optimization of Polyphenols’ Recovery from Purple Corn Cobs Assisted by Infrared Technology and Use of Extracted Anthocyanins as a Natural Colorant in Pickled Turnip. Molecules 2022, 27, 5222. [Google Scholar] [CrossRef]
- Chen, X.; Zhai, R.; Li, Y.; Yuan, X.; Liu, Z.-H.; Jin, M. Understanding the structural characteristics of water-soluble phenolic compounds from four pretreatments of corn stover and their inhibitory effects on enzymatic hydrolysis and fermentation. Biotechnol. Biofuels 2020, 13, 44. [Google Scholar] [CrossRef]
Phenolic Compound | Parts | Effects | Reference |
---|---|---|---|
Quercetin | Silks | Antioxidative, anti-inflammatory, anti-proliferative, anti-carcinogenic, anti-diabetic, and anti-viral | [56] |
Rutin | Tassel, silks | Anti-diabetic, antioxidant, anti-carcinogenic, anti-allergic, anti-inflammatory | [57] |
Ferulic acid | Grains, leaves, tassel | antioxidant, anti-inflammatory, anti-diabetic, anti-depressive | [58] |
Cyanidin-3-glucoside | Grains, cob, leaves | anti-inflammatory, anti-cancer, anti-diabetic, anti-toxicity, cardiovascular, and nervous protective capacities | [59] |
p-Coumaric acid | Grains, cob, stover, tassel | antioxidant, anti-inflammatory, analgesic and anti-antimicrobial properties | [60] |
Caffeic acid | Grains, cob, stover, tassel | anti-inflammatory, anti-cancer, anti-diabetic, anti-neurodegenerative diseases | [61] |
Catechin | Grains, tassel | anti-inflammatory, anti-cancer and antioxidant | [62] |
Pelargonidin-3-glucoside | Grains, cob, leaves | antioxidant, and anti-inflammatory | [63] |
Kaempferol-3-O-glucoside | Silks, grains, tassel | Anti-carcinogenic and anti-inflammatory | [64] |
Part of the Corn | Solvent | TPC | DPPH | TAC | Reference |
---|---|---|---|---|---|
Silks | Acetone–water (70:30 v/v) | 2093.9–10,160.8 mg CGAE/100 g | 1.49–192.9 mg CGE/100 g | [45] | |
Ethanol 70% v/v | 59.20–65.20% | [90] | |||
Methanol 80% | 20.82 mg GAE/g DM | 75.65% | 42.53 GCG/kg DM | [91] | |
Ethanol 95% v/v | 164.1 μg GAE/g | EC50 14.24 μg/mL | |||
Grains | Ethanol 30% with citric acid 1% | 0.33 mg GAE/g | 17.72 mg TE/100 g DM | [92] | |
Methanol 80% acidified with 1% HCl | 9.06 g GAE/kg | EC50 66.3 μg/mL | 2.76 CGE/kg | [17] | |
Ethanol 25% acidified with 2% formic acid | 11.67 g GAE/kg | 66.77 μmol TE/g | [93] | ||
Methanol | – | EC50 48.5 μg/mL | 55.8 mg CGE/100 g | [24] | |
Cob | Ethanol 20% acidified with 1 N HCl | 90 mg GAE/g DM | 30 mg CGE/g DM | [94] | |
Methanol | EC50 40.1 μg/mL | 92.3 mg CGE/100 g | [24] | ||
Stubble | Ethanol 80% | 933.82 mg GAE/100 g | 11.75 mmol TE/g | [11] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Esparza, U.; Agustín-Chávez, M.C.; Ochoa-Reyes, E.; Alvarado-González, S.M.; López-Martínez, L.X.; Ascacio-Valdés, J.A.; Martínez-Ávila, G.C.G.; Prado-Barragán, L.A.; Buenrostro-Figueroa, J.J. Recent Advances in the Extraction and Characterization of Bioactive Compounds from Corn By-Products. Antioxidants 2024, 13, 1142. https://doi.org/10.3390/antiox13091142
Ramírez-Esparza U, Agustín-Chávez MC, Ochoa-Reyes E, Alvarado-González SM, López-Martínez LX, Ascacio-Valdés JA, Martínez-Ávila GCG, Prado-Barragán LA, Buenrostro-Figueroa JJ. Recent Advances in the Extraction and Characterization of Bioactive Compounds from Corn By-Products. Antioxidants. 2024; 13(9):1142. https://doi.org/10.3390/antiox13091142
Chicago/Turabian StyleRamírez-Esparza, Ulises, María Cristina Agustín-Chávez, Emilio Ochoa-Reyes, Sandra M. Alvarado-González, Leticia X. López-Martínez, Juan A. Ascacio-Valdés, Guillermo C. G. Martínez-Ávila, Lilia Arely Prado-Barragán, and José Juan Buenrostro-Figueroa. 2024. "Recent Advances in the Extraction and Characterization of Bioactive Compounds from Corn By-Products" Antioxidants 13, no. 9: 1142. https://doi.org/10.3390/antiox13091142
APA StyleRamírez-Esparza, U., Agustín-Chávez, M. C., Ochoa-Reyes, E., Alvarado-González, S. M., López-Martínez, L. X., Ascacio-Valdés, J. A., Martínez-Ávila, G. C. G., Prado-Barragán, L. A., & Buenrostro-Figueroa, J. J. (2024). Recent Advances in the Extraction and Characterization of Bioactive Compounds from Corn By-Products. Antioxidants, 13(9), 1142. https://doi.org/10.3390/antiox13091142