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Abstract: Maize comes in a variety of colors, including white, yellow, red, blue, and purple, which is
due to the presence of phytochemicals such as carotenoids, anthocyanins, flavonoids, phytosterols,
and some hydroxycinnamic acid derivatives. In Mexico, maize is primarily grown for human
consumption; however, maize residues comprise 51–58% of the total maize plant weight (stalks,
leaves, ears, and husks) and are mainly used as livestock feed. These residues contain numerous
bioactive compounds that interest the industry for their potential health benefits in preventing or
treating degenerative diseases. This review explores the current knowledge and highlights key
aspects related to the extraction methods and different techniques for identifying the bioactive
compounds found in maize by-products.

Keywords: corn colors; phenolic compounds; extraction; biological activities

1. Introduction

Since ancient times, crops have been cultivated worldwide, and countries around
the world rely on them for daily sustenance, making the cultivation of maize (Zea mays
L.) of utmost importance in America [1]. In Mexico, maize is primarily grown for human
consumption, representing a crucial source of energy and protein, especially in rural areas
and regions with a low socioeconomic status. Millions of Mexicans consume maize daily in
various presentations, whether in regional dishes or as tortillas, which is the most important
Mexican maize product.

The maize plant consists of the grain, stem, cob, silks, tassel, and leaves (Figure 1).
The maize kernel comprises about 42–49% of the plant’s dry weight [2]. In addition, maize
varieties exhibit a range of colors, from white to yellow, red, blue, and purple. These
colors are attributed to the presence of phytochemicals such as carotenoids, anthocyanins,
flavonoids, phytosterols, and some hydroxycinnamic acid derivatives [3–5].

The cob is used as animal feed and for producing bioethanol, oil, biogas, and biocar-
bon [6], and as a substrate for enzyme production [7]. Similar to the corn kernel, the cob is
rich in phenolic acids, anthocyanins, and flavonoids [8–11].
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which can be used either green or dry. It is used as livestock feed, and can also be pro-
cessed to produce biofuels and valuable chemicals like glucan, xylan, and organic acids 
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This review addresses the general aspects related to the extraction methods and the 
different techniques for the identification of the bioactive compounds identified in maize 
by-products, as well as some biological activities that highlight the importance of using 
corn residues as a valuable source for obtaining these compounds. 
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presence of these compounds contributes to their classification as health-protective foods. 
[13]. Anthocyanins are a type of natural, water-soluble compounds that belong to the 
group of phenolic compounds known as flavonoids. They consist of glycosides and acyl-
glycosides, which form polyhydroxylated and polymethoxylated heterosides derived 
from flavylium or 2-phenylbenzopyrilium ions [14].  

Studies on various maize varieties have identified six major and seventeen minor an-
thocyanins, including cyanidin-3-glucoside (Cy-3-glu), pelargonidin-3-glucoside (Pg-3-
glu), and peonidin-3-glucoside (Pn-3-glu) [5,10,13,15]. Moreover, some varieties, espe-
cially purple maize, also contain other flavonoids, such as rutin, hirsutrin, morin, 
kaempferol, quercetin, naringenin, hesperitin, and their derivatives, which are worth not-
ing [13,16]. 

Several studies have reported the presence of eight phenolic acids present in various 
types of maize. These include vanillic acid, syringic acid, 2,4,6-trihydroxybenzoic acid, p-
coumaric acid (also known as p-hydroxycinnamic acid), caffeic acid, ferulic acid, chloro-
genic acid, and p-hydroxyphenyl acetic acid, and their derivatives. These compounds are 
typically found in conjugated or bound forms in pigmented maize [11,13,17]. Cuevas 
Montilla et al. [18] reported that dark maize varieties have higher contents of p-coumaric 

Figure 1. Parts of maize plant.

After maize harvest, the leftover material is called stover, which includes the cob, and
it comprises about 51–58% of the plant’s total biomass. Stover consists of stems and leaves,
which can be used either green or dry. It is used as livestock feed, and can also be processed
to produce biofuels and valuable chemicals like glucan, xylan, and organic acids [12].

This review addresses the general aspects related to the extraction methods and the
different techniques for the identification of the bioactive compounds identified in maize
by-products, as well as some biological activities that highlight the importance of using
corn residues as a valuable source for obtaining these compounds.

2. Bioactive Compounds in Maize

The difference between pigmented maize, which can range from red to purple, and
conventional maize, usually yellow or white, lies in the presence of anthocyanins. The pres-
ence of these compounds contributes to their classification as health-protective foods [13].
Anthocyanins are a type of natural, water-soluble compounds that belong to the group of
phenolic compounds known as flavonoids. They consist of glycosides and acylglycosides,
which form polyhydroxylated and polymethoxylated heterosides derived from flavylium
or 2-phenylbenzopyrilium ions [14].

Studies on various maize varieties have identified six major and seventeen minor
anthocyanins, including cyanidin-3-glucoside (Cy-3-glu), pelargonidin-3-glucoside (Pg-3-
glu), and peonidin-3-glucoside (Pn-3-glu) [5,10,13,15]. Moreover, some varieties, especially
purple maize, also contain other flavonoids, such as rutin, hirsutrin, morin, kaempferol,
quercetin, naringenin, hesperitin, and their derivatives, which are worth noting [13,16].

Several studies have reported the presence of eight phenolic acids present in various
types of maize. These include vanillic acid, syringic acid, 2,4,6-trihydroxybenzoic acid,
p-coumaric acid (also known as p-hydroxycinnamic acid), caffeic acid, ferulic acid, chloro-
genic acid, and p-hydroxyphenyl acetic acid, and their derivatives. These compounds
are typically found in conjugated or bound forms in pigmented maize [11,13,17]. Cuevas
Montilla et al. [18] reported that dark maize varieties have higher contents of p-coumaric
acid and ferulic acids compared to Bolivian yellow ones. In Mexican purple maize, the
content of phenolic acids varies among cultivars, with ferulic acid being the most abundant,
followed by diferulic and p-coumaric acids [19]. Table 1 presents a summary of several
studies that have identified different phenolic compounds in diverse maize varieties.
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2.1. Maize Kernels

In maize kernels, anthocyanins are mainly found in the aleurone and the pericarp.
Paulsmeyer et al. [20] reported a greater diversity of anthocyanins in the aleurone layer,
although at lower concentrations than those found in the pericarp. However, the variety
of pigments in the pericarp and germplasm remains less explored. The pericarp contains
flobafenes, which appear as small pigmented lines. These pigments are flavan-4-ols and
polymerize to form flavone red pigments, displaying colors ranging from orange to brick
red [21]. Maize kernels also contain carotenoids such as lutein, zeaxanthin, β-carotene,
β-cryptoxanthin, and α-carotene, particularly in varieties from white to yellow maize [22].
Several studies have demonstrated the antioxidant and anti-diabetic activities of the com-
pounds found in maize kernels [17,23–25].

2.2. Maize Cob

The maize cob, often considered a by-product in maize processing, is currently under-
utilized. However, it contains an important amount of bioactive compounds, including
anthocyanins and phenolic acids, as detailed in Table 1.

In addition, the maize cob is rich in hemicellulose, suggesting its potential as a source
of bioactive oligosaccharides. The unique characteristics of purple maize cob make it an
appealing option for extracting compounds that could be used in functional food, cosmetics,
and the biomedical industry [26]. In China, anthocyanins extracted from purple maize cob
are used as natural colorants in beverages, jellies, and candies [24]. Additionally, maize
cob has been reported as a substrate for citric acid production [27]. Natural dyes have also
been obtained from pigmented maize cobs [28].

2.3. Stover

Maize stover consists of the stem, leaf, and husk surrounding the maize. It contains
phenolic compounds bound to lignin; lignin has also been reported as a natural antioxi-
dant [29]. Vazquez-Olivo et al. [11] found that maize stover contains total phenols, lignin,
as well as specific phenolic acids such as p-coumaric and ferulic acids. Other studies
have explored the use of glucose- and xylose-rich stover as a substrate in the fermentation
process for producing various organic compounds. These include succinic acid [30], malic
acid [31], propionic acid [32], and xylitol [33]. Additionally, phenolic compounds present in
maize stover have exhibited biological activities such as anti-inflammatory, neuroprotective,
antioxidant, and hepatoprotective properties [34–36].

2.4. Silk

Maize silk is a by-product that is considered a valuable source of natural bioac-
tive compounds, such as carotenoids, anthocyanins, phenols, alkaloids, saponins, and
flavonoids [37–40]. These compounds are known for their health-promoting effects, which
include antioxidant properties, antimicrobial activity, inhibition of lipid peroxidation, anal-
gesic effects, and preventive effects against degenerative diseases [25,41–44].

Table 1. Phenolic compounds obtained from the maize plant.

Part Variety Group Compounds References

Silks

Purple and yellow Phenolic acids

5-O-Caffeoylquinic acid, 3-O-Caffeoylquinic
acid, 4-O-Caffeoylquinic acid,

p-Coumaroylquinic acid, Maysin and
Methoxymaysin derivative

[45]

Unspecified

Flavonoids

Quercetin, rutin, kaempferol [46]

Unspecified Isoorientin-2-2-O-α-L-rhamnoside,
3′-methoxymaysin [47]
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Table 1. Cont.

Part Variety Group Compounds References

Silks

Unspecified

Flavonoids

2′′-O-α-L-rhamnosyl-6-C-quinovosylluteolin,
2′′-O-α-L-rhamnosyl6-C-fucosylluteolin, and

2′′-O-α-L-rhamnosyl-6-C-fucosyl-3′-
methoxyluteolin,

2′′-O-α-L-rhamnosyl-6-C-3′′-deoxyglucosyl-
3′ methoxyluteolin,

2′′-O-α-Lrhamnosyl-6-C-(6-deoxyxylo-hexos-
4-ulosyl)-luteolin, 2′′-O-α

-L-rhamnosyl6-C-(6-deoxy-xylo-hexos-4-
ulosyl)-luteolin-3′-methylether, kaempferol

[38,48]

Sweet corn

kaempferol-3-O-glucoside, luteolin
7-O-neohesperidoside, Isoquercitrin,

3′-methoxy maysin, apigenin C-hexose
2′′-O-deoxyhexoside, apigenin

6-C-deoxyhexose 8-C-pentoside, luteolin
O-deoxyhexose C-glucuronide and maysin

[49]

Grains

purple
Phenolic acids Chlorogenic acid, caffeic acid, ferulic acid

[17]
Flavonoids Anthocyanins, quercetin, and catechin

Carotenoids
lutein, cyclosadol, β-cryptoxanthin,

zeaxanthin, α- and β-carotene, α and
β-cryptoxanthin

[50]

purple Anthocyanins

pelargonidin-3-glucoside,
cyanidin-3-glucoside, and

peonidin-3-glucoside,
cyanidin-3-(6-malonylglucoside),

pelargonidin-3-(6-malonylglucoside) and
penodin-3-(6-malonylglucoside)

[24]

Pioneer Phenolic acids Ferulic acid and p-Coumaric acid [11]

Purple Phenolic acids Ferulic acid and p-Coumaric acid [4]

Blue

Anthocyanins

cyanidin 3-glucoside, cyanidin
3-O-(6′′-succinyl-glucoside), pelargonidin

3-glucoside, pelargonidin
3-O-(6′′-malonyl-glucoside), cyanidin

3-O-(6′′-caffeoyl-glucoside) and cyanidin
3-O-(600-malonyl-glucoside) [5]

Phenolic acids caffeic acid 4-O-hexoside, caffeic acid,
5-O-caffeoylquinic acid and p-coumaric acid

Isoflavone Daidzin

Flavone apigenin-O-hexoside

White Phenolic acids Gallic acid, Ferulic acid, Protocatechuic acid,
p-Coumaric acid,

[51]Blue Flavonoids Catechin

Phenolic acids Ferulic acid, p-coumaric acid

Stem Dent corn Phenolic acid
derivatives

Methyl (E)-p-cumarate, methyl
(Z)-p-cumarate, methyl ferulate, and

1,3-O-diferuloyl glycerol
[34]
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Table 1. Cont.

Part Variety Group Compounds References

Cob

Red

Phenolic acids Caffeic acid 4-O-hexoside, 5-O-caffeoylquinic
acid, p-Coumaric acid

[8]
Flavonoids

Apigenin-O-hexoside, Luteolin-O-rutinoside,
Apigenin-O-pentosyl hexoside, Apigenin

6-C-pentosyl-8-C-hexoside,
Procyanidin dimer.

Hydroxycumarics Scopoletin

Purple Anthocyanins

cyanidin-3-glucoside,
pelargonidin-3-glucoside,

peonidin-3-glucoside,
cyanidin-3-(6-malon)-glucoside,

pelargonidin-3-(6-malon)-glucoside,
peonidin-3-(6-malon)-glucoside.

[9,24]

Cacahuacintle maize Anthocyanins

cyanidin-3-glucoside,
pelargonidin-3-glucoside,

peonidin-3-glucoside,
cyanidin-3-(6′′malonyl) glucoside,

pelargonidin-3-(6′′malonyl) glucoside and
peonidin-3-(6′′malonyl) glucoside

[10]

Pioneer Phenolic acids Ferulic acid and p-Coumaric acid [11]

Cob leaves Cacahuacintle maize Anthocyanins

cyanidin-3-glucoside,
pelargonidin-3-glucoside,

peonidin-3-glucoside,
cyanidin-3-(6′′malonyl)-glucoside,

pelargonidin-3-(6′′malonyl)-glucoside and
peonidin-3-(6′′malonyl)-glucoside

[10]

Stover Pioneer Phenolic acids Ferulic acid and p-Coumaric acid [11]

Tassel

Unspecified Phenolic acids Gallic acid, Caffeic acid, Ferulic acid, Syringic
acid, Ellagic acid, p-Coumaric acid [52]

Flavonoid Rutin, Catechin, Taxifolin

Flavanone Naringenin

Flavonol Kaempferol

Other Methyl gallate, Pyrocatechol

3. Biological Activities of Maize Components

Throughout history, plants and crops containing phenolic compounds have been
important in traditional medicine and used by different cultures to treat illnesses and
maintain good health. One notable example is the maize kernel. The bioactive compounds
found in maize kernels differ depending on the type of maize. Purple maize is rich in
anthocyanins, which offer significant health benefits (Table 2). These benefits include
antioxidant properties, anti-inflammatory effects [53], cardiovascular protection [54], and
anti-diabetic benefits [55].

Table 2. Bioactivity of phenolic compounds found in maize.

Phenolic Compound Parts Effects Reference

Quercetin Silks Antioxidative, anti-inflammatory, anti-proliferative,
anti-carcinogenic, anti-diabetic, and anti-viral [56]

Rutin Tassel, silks Anti-diabetic, antioxidant, anti-carcinogenic,
anti-allergic, anti-inflammatory [57]
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Table 2. Cont.

Phenolic Compound Parts Effects Reference

Ferulic acid Grains, leaves, tassel antioxidant, anti-inflammatory, anti-diabetic,
anti-depressive [58]

Cyanidin-3-glucoside Grains, cob, leaves
anti-inflammatory, anti-cancer, anti-diabetic,

anti-toxicity, cardiovascular, and nervous
protective capacities

[59]

p-Coumaric acid Grains, cob, stover, tassel antioxidant, anti-inflammatory, analgesic and
anti-antimicrobial properties [60]

Caffeic acid Grains, cob, stover, tassel anti-inflammatory, anti-cancer, anti-diabetic,
anti-neurodegenerative diseases [61]

Catechin Grains, tassel anti-inflammatory, anti-cancer and antioxidant [62]
Pelargonidin-3-glucoside Grains, cob, leaves antioxidant, and anti-inflammatory [63]

Kaempferol-3-O-glucoside Silks, grains, tassel Anti-carcinogenic and anti-inflammatory [64]

3.1. Antioxidant Capacity (In Vitro)

Regarding antioxidant capacity tested in terms of DPPH, ABTS, FRAP, and ORAC, the
antioxidant capacity of maize is highly correlated with its contents of various bioactive com-
pounds, including anthocyanins, flavonoids, phenolic acids, polyphenols, and carotenoids.
Notably, the phenolic compounds in purple maize have shown higher antioxidant capaci-
ties compared to those obtained from other sources, such as cranberry juice [65,66]. Some
studies are shown in Table 2.

Additionally, research has shown that the antioxidant levels of Mexican blue and
American blue maize remain high even after undergoing industrial processing such as
nixtamalization and cooking. Although there is a significant decrease in the anthocyanin
content (37 to 75%) and a corresponding reduction in the antioxidant capacity (28–55%),
the antioxidant levels remain relatively high [51]. The observed decrease in anthocyanin
content and the concomitant antioxidant capacity may be attributed to the degradation of
the bioactive compounds during the industrialization process, which involves alkaline and
high-temperature processes [67].

3.2. Anti-Cancer Activity

The health benefits of purple maize have been extensively studied using different
methods, including in vitro cellular analysis and in vivo animal studies. Anthocyanins
also have anti-cancer properties [55] and can inhibit the spread of human colon cancer
cells [68] due to their ability to neutralize superoxide radicals [69]. The anti-cancer activity
of purple maize has been linked to a combination of anthocyanins, such as cyanidin-3-
glucoside, pelargonidin-3-glucoside, and peonidin-3-glucoside. These compounds have
been observed to slow the progression of prostate cancer [70] and have effects against HT-29
human colon cancer cells [71,72]. Hagiwara et al. [73] found that extracts from purple maize
inhibited the development of colorectal cancer in male rats. Zhang et al. [74] reported
protective effects on the liver and kidney of rats. Additionally, Mendoza-Díaz et al. [75]
observed antimutagenic activity using the Ames test. Similarly, Reynoso-Camacho et al. [76]
found that consuming tortillas made from white, yellow, red, and blue maize provided
protection against adenocarcinomas in rats. Specifically, rats that consumed white and
blue maize tortillas developed 77.5% fewer tumors, while those consuming red and yellow
tortillas showed a 55% reduction in tumor incidence. These studies indicate that, despite
the industrialization process, including alkalinization and exposure to high temperatures,
maize retains significant anticarcinogenic activity.

3.3. Anti-Inflammatory Activity

Another effect of the phenolic compounds present in corn is the ability to provide
an anti-inflammatory response. Several studies describe this effect as a great benefit to
health. Agrizzi Verediano et al. [77], using an in vivo model (Gallus gallus) to analyze



Antioxidants 2024, 13, 1142 7 of 16

the soluble extracts of black corn, showed that these extracts exhibit anti-inflammatory
properties due to the decrease in proinflammatory cytokines triggered by the nuclear factor
kappa-B (NF-κB) pathway. In other studies, Koraneeyakijkulchai et al. [78] demonstrated
that a sweet corn extract can inhibit inflammation in age-related macular degeneration by
suppressing the NF-κB signaling pathway.

3.4. Other Effects

The residues from processing maize kernels contain bioactive compounds. Vazquez-
Olivo et al. [11] found that yellow maize cob, leaf, husk, and stover have antioxidant
properties, particularly the husk, which has a high polyphenolic content. Rouf Shah
et al. [3] noted that maize silks have been traditionally used in countries like India, China,
Spain, France, and Greece to treat kidney stones, urinary tract infections, jaundice, and
fluid retention. These therapeutic properties are attributed to the bioactive compounds
identified in Table 1 and their antioxidant capacity. There are documented uses of maize silk
extracts, and studies in rats suggested protective effects against several diseases, including
diuresis and kaliuresis [79], hyperglycemia [80], diabetes [41], nephlotoxicity [81], and
inflammatory processes [66]. Additionally, the anthocyanins in purple maize can act as
chemopreventive agents, potentially preventing the development of preneoplastic liver
lesions [82].

Another effect of the phenolic compounds from corn is antifungal action, which can
prevent fungal growth and spore development, as well as avoid the presence of mycotoxins
or aflatoxins in corn-derived products [83,84]. Khan et al. [85] obtained corn silk extracts,
which showed a favorable antimicrobial effect against several bacteria (Staphylococcus
aureus, Candida albicans, Mycobacterium smegmatis, and Escherichia coli) and presented an
inhibitory effect against Fusarium verticillioides present in cherry tomatoes. Several studies
reported specific antifungal activity for several phenolic compounds, such as ferulic acid
and p-coumaric acid (present in different parts of corn), demonstrating favorable effects
in inhibiting the growth of Monilinia ructicola, Botrytis cinerea, and Alternaria alternata
when using a minimum inhibitory concentration (1.78–3.63 mM) [86]. Lorán et al. [87]
demonstrated in their study that various phenolic acids (caffeic, ferulic, and p-coumaric)
can inhibit aflatoxin production by Aspergillus parasiticus at a concentration of 20 mM.

4. Extraction, Separation, Identification, and Quantification of Bioactive Compounds
from Maize
4.1. Extraction

It is essential to carefully optimize the extraction processes for the bioactive com-
pounds from maize to maximize their yields and minimize the changes in the functional
properties of the extracted compounds [88]. Maize contains a wide range of phytochemical
compounds, including phenolic compounds, carotenoids, and phytosterols. The concentra-
tions of these compounds vary among the different maize varieties [89]. These compounds
can be extracted in either free or bound forms depending on the extracting solvents and
techniques (Tables 3 and 4).

Table 3. Phenolic content and antioxidant capacity in different parts of maize.

Part of the Corn Solvent TPC DPPH TAC Reference

Silks

Acetone–water (70:30 v/v) 2093.9–10,160.8 mg
CGAE/100 g

1.49–192.9 mg
CGE/100 g [45]

Ethanol 70% v/v 59.20–65.20% [90]
Methanol 80% 20.82 mg GAE/g DM 75.65% 42.53 GCG/kg DM [91]

Ethanol 95% v/v 164.1 µg GAE/g EC50 14.24 µg/mL
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Table 3. Cont.

Part of the Corn Solvent TPC DPPH TAC Reference

Grains

Ethanol 30% with citric
acid 1% 0.33 mg GAE/g 17.72 mg TE/100 g DM [92]

Methanol 80% acidified with
1% HCl 9.06 g GAE/kg EC50 66.3 µg/mL 2.76 CGE/kg [17]

Ethanol 25% acidified with
2% formic acid 11.67 g GAE/kg 66.77 µmol TE/g [93]

Methanol – EC50 48.5 µg/mL 55.8 mg CGE/100 g [24]

Cob
Ethanol 20% acidified with

1 N HCl 90 mg GAE/g DM 30 mg CGE/g DM [94]

Methanol EC50 40.1 µg/mL 92.3 mg CGE/100 g [24]

Stubble Ethanol 80% 933.82 mg GAE/100 g 11.75 mmol TE/g [11]

TPC: Total phenolic content; TAC: total anthocyanin content; CGAE: chlorogenic acid equivalent; CGE: cyanidin
3-glucoside equivalent; GAE: gallic acid equivalent; TE: Trolox equivalent; DM: dry matter.

The extraction of phytochemicals has been accomplished using water, acetone, alco-
hols, ethyl acetate, and hexane individually or in combinations (Table 4). For instance, free
phenols were extracted using 80% acetone, while bound phenols were extracted by using
ethyl acetate after digestion with sodium hydroxide [95]. Hu and Xu [96] used methanol
99% and 1% HCl for carotenoid extraction from maize. Fernandez-Aulis et al. [10] compared
different solvents (methanol, ethanol, and acetone in different proportions) for anthocyanin
extraction, finding that methanol/water/lactic acid (80:20:1) and ethanol/water/lactic
acid (80:19:1) yielded comparable results, while acetone had the lowest yield. Mohsen and
Ammar [97] also examined different solvents for maize tassel extraction, determining that
ethanol and methanol were the most effective. In addition, Lao and Giusti [9] evaluated
various solvents and found that a mixture of ethanol and water (50:50) acidified with 0.01%
of 6 N HCl yielded the best extraction of phenolic compounds.

Table 4. Some solvents used for the extraction of phenolic compounds.

Parts Solvents Reference

Stubble Ethanol 80% [11]
Corn kernels Ethanol 80% [98]
Yellow corn Ethanol 80% [99]

Grains Ethanol 80% [100]
Seed and cob 100% Methanol [24]

Tassel Ethanol 60% [52]
Cob Ethanol in different proportions [8]

Grains Methanol acidified with 1 N HCl (85:15, v/v) [101]
Kernels Methanol, Water, and Formic Acid (80:19:1) [102]

Cobs Water [103]
Kernels Methanol 80% [104]
Grains Ethanol 80% [105]

The traditional solvent-based extraction methods have been widely used. However,
there have been reports of unconventional techniques being implemented. These include
ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), and super-
critical fluid extraction (SFE). Additionally, biotechnological approaches such as enzyme-
assisted extraction (EAE) and fermentation-assisted extraction (FAE) are gaining attention
for their potential to enhance the extraction processes [106]. Table 5 shows the advantages
and disadvantages of these unconventional techniques.

Biotechnological methods can be used to release and extract phenolic compounds
effectively. This can be accomplished by employing enzyme-assisted extraction (EAE),
which breaks down the cell walls, or through a fermentation process in either a liquid or
solid medium. During fermentation, microorganisms produce the necessary enzymes to
break down the cell walls and transform high-molecular-weight compounds into lower-
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molecular-weight ones, thus releasing phenolic compounds [107,108]. Solid-state fermen-
tation has been shown to enhance the extraction of polyphenols from various substrates,
including gobernadora (Larrea tridentata), tarbush (Flourensia cernua), Castilla Rose (Purshia
plicata), pomegranate peel (Punica granatum L.), and fig (Ficus carica L.) [109–111]. Topakas
et al. [112] achieved 0.85 g/kg of ferulic acid and 0.38 g/kg of coumaric acid by using
combined SSF and EAE from maize cob with Sporotrichum thermophile over a 48 h process.
In a separate study, Chandra and Arora [113] also utilized maize cob to obtain compounds
with antioxidant capacity using various Aspergillus strains, resulting in up to a 2.8-fold
increase in the antioxidant capacity of the maize cob compared to unfermented material.
Acosta-Estrada et al. [114] employed nejayote as a substrate for the growth of Aspergillus
oryzae, Pleurotus ostreatus (Perla and Blue), and Hericium erinaceus, leading to a significant
increase in the phenolic content, up to 327% using Pleurotus ostreatus Perla. Furthermore,
Mahalaxmi et al. [115], using SSF with Amycolatopsis sp. RSP 3, successfully obtained
rifamycin B from maize husk. Wang et al. [116] developed several methodologies for
obtaining D-lactic acid via SSF and EAE processes using maize stover, achieving a yield of
18 g/L with a purity of 99%.

Table 5. Advantages and disadvantages of unconventional techniques.

Extraction Method Advantages Disadvantages

UAE

Low solvent consumption
High extraction fields
Short extraction time
High reproducibility

Low energy consumption

Filtration required
Effects of cavitation
Difficulty in scaling

MAE

Fast extraction
Low solvent consumption

High reproducibility
Low energy consumption

High equipment cost
Filtration required

Many parameters to optimize

SFE
Fast extraction

Possibility to reuse CO2
No filtration required

High equipment cost

EAE
High selectivity
Biodegradable

High extraction fields

Filtration required
Difficulty in scaling

High cost of enzymes

FAE

Low prices
Biodegradable

High extraction fields
Low energy consumption

Low substrate costs
Low cost of process

Contamination
Difficulty in scaling

The parameters are difficult to control
Filtration required

Multiple studies have investigated the use of eco-friendly processes, known as green
processes, to extract bioactive compounds from natural sources. For instance, Gullón
et al. [26] utilized a hydrothermal method to extract phytochemicals from pigmented
maize cob, resulting in a high concentration of bioactive compounds with significant
antioxidant properties. Additionally, they identified 15 antioxidant phenolic compounds in
the extract. Another study demonstrated that applying ohmic heating to maize flours after
a nixtamalization process with low humidity increased the total phenol content compared
to the traditional nixtamalization method [117]. Furthermore, the use of high pressures
at 700 MPa was found to enhance the total phenol and anthocyanin content in waxy
purple maize [118]. The stability of anthocyanins decreases after extraction, and they often
remain strongly bound to their original matrix [102]. Because phytochemicals have diverse
polarities, it is practically impossible to extract all of them using a single method or solvent.
Therefore, selecting the right solvent becomes crucial, aligning with the polarity of the
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targeted compounds. Additionally, the extraction yield varies depending on factors such
as the extraction method used, sequential extraction, and the use of solvents with different
polarities [119]. Although anthocyanins are water-soluble, extracting them efficiently often
requires a combination with other solvents such as methanol, ethanol, or acetone [95,120].

4.2. Separation of Bioactive Compounds

For the separation of bioactive compounds, high-performance liquid chromatography
(HPLC) systems are commonly used, either alone or coupled to more advanced systems,
such as mass spectrometry (LC–MS). Yang et al. [95] separated phenolic compounds and
flavonoids using reversed-phase HPLC (RP-HPLC) with a C18 column, acidified water
mobile phase, and acetonitrile. In another study, Hu and Xu [96] used an RP-HPLC system
with a diode array detector, C18 column, and a mobile phase composed of acidified water
and acetonitrile for the separation of phenols. Carotenoids are separated using an HPLC
system equipped with a diode array detector and a C30 column, using methanol and
methyl tert-butyl ether as the mobile phase. High-performance thin-layer chromatography
plates [121], acid precipitation, Sephadex LH-20 chromatography, filtration [122], microfil-
tration, and ultrafiltration with membrane [123] techniques have also been used to separate
bioactive compounds from a mixed sample.

4.3. Identification and Quantification

The identification and quantification of the phenolic compounds are performed using
commercial reference standards, comparing their retention time and the UV spectrum
of the peak or compound of interest. The quantitative data are calculated from a linear
calibration curve, elaborated with the standard compound at different concentrations and
under the same working conditions of the samples.

There are more sophisticated identification and quantification methodologies, such
as Liquid Chromatography–High Resolution Mass Spectrophotometry (LC–HR-MS) and
Ultra-High-Performance Liquid Chromatography (UHPLC) coupled to a triple quadruple
QToF-MS (time-of-flight), which allow us to have the greatest monitoring of compounds
with exact mass measurements.

Another methodology used for the identification of the phenolic compounds in corn
is Fourier transform infrared spectroscopy (FT-IR) due to its speed, sensitivity, and easy
sample preparation. A methodology that has advanced in recent years is the identifica-
tion of compounds by nuclear magnetic resonance (NMR) due to the reduced analysis
time, high sensitivity, and minimum sample volume required [124]. Table 6 shows some
methodologies used for the identification of the bioactive compounds in maize.

Table 6. Methodologies commonly used for the identification of bioactive compounds in maize.

Part of the Maize Methodology Reference

Silk FT-IR [125]
Grains HPLC [18]

Maize bran fiber HPLC–MS, NMR [126]
Grains HPLC−QTOF-MS [127]

Silk NMR [85]
Cob HPLC [128]

Stover FT-IR [129]

5. Perspectives and Conclusions

This review highlights the importance of the integral utilization of corn residues to ob-
tain bioactive compounds, thus promoting agricultural sustainability and the development
of products of added value in the food and pharmaceutical industries. It is now known that
both maize and its by-products (cob, maize hairs, and stover) contain bioactive phenolic
compounds, such as phenolic acids, anthocyanins, and other flavonoids. These compounds
have demonstrated numerous health-protective properties (antioxidant properties, anti-



Antioxidants 2024, 13, 1142 11 of 16

inflammatory effects, cardiovascular protection, and anti-diabetic benefits), as evidenced
by both in vitro and in vivo studies. Most of the research has focused on extracting and
characterizing the phenolic compounds present in maize grains. Therefore, there is an
opportunity to conduct studies using the complete food matrix or individual phenolic
compounds isolated and purified directly from the different parts that comprise maize
to revalue these by-products. It has been reported that the phenolic compounds from
purple maize are more efficient, but no direct comparison studies were found regarding
the efficiency of the different bioactive compounds obtained from the different maize vari-
eties, either in extract form or after undergoing purification processes. There are limited
studies aimed at extracting bioactive compounds from maize residues (cob, stubble, and
maize silks) using biotechnological processes, such as solid-state fermentation, which has
proven to be an effective strategy for proposing alternatives for the use of agro-industrial
waste by utilizing microorganisms to add value to these materials in obtaining industrially
relevant molecules.
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