Anti-Inflammatory and Anticancer Effects of Anthocyanins in In Vitro and In Vivo Studies
Abstract
:1. Introduction
2. Study Design
Chemical Structure of Anthocyanins
- Anthocyanidins: Aglycones, which are the basic chemical structure of anthocyanins. They have a ion flavylium structure (2-phenylchromene), which is responsible for their color. It contains seven different chemical side groups, which can be composed of hydrogen atoms, hydroxyl groups, and methoxy groups. The most common anthocyanidins are cyanidin, delphinidin, pelargonidin, peonidin, petunidin, and malvidin.
- Sugar part: Anthocyanidins are linked to one or more sugars through glycosidic bonds. The most common sugars are glucose, galactose, and rhamnose. This combination increases the solubility of anthocyanins in water and the stability of the dye [47].
- Structural modifications: Anthocyanins can have various functional groups, such as hydroxyl (-OH) and methoxyl (-OCH3) groups, which influence their chemical properties and color [10]. These modifications can affect the intensity and range of the light absorption spectrum, which is responsible for the variety of colors they can take on.
3. Anthocyanins and Their Biological Activity
3.1. Cyanidin
3.2. Peonidin
3.3. Delphinidin
3.4. Petunidin
3.5. Malvidin
4. Anti-Inflammatory Properties of Anthocyanins
Plant/Source | Compounds | Cell Line/Model | Effect | In Vitro/In Vivo | Ref. |
---|---|---|---|---|---|
Petunidin chloride with a purity of 99%, | petunidin (anthocyanins) and lycopene (carotenoids) | hydrogen peroxide (H2O2)-induced heart myofibroblast cell (H9c2) line model | protected against the loss of the cell viability, increased: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) induced: expression of (mRNA), protein of NAD(P)H quinone reductase (NQO1) and heme oxygenase (HO-1) of the nuclear factor erythrocyte 2-related factor 2 (Nrf2) | In vitro | [106] |
Syzygium cumini | delphinidin 3,5-diglucoside (DDG),petunidin-3,5-diglucoside (PDG), malvidin 3,5-diglucoside (MDG) | lipopolysaccharide (LPS)-induced RAW264.7 macrophages | inhibition of nitric oxide release and pro-inflammatory mediators: mouse interleukin 6 (IL-6), mouse interleukin (IL-1β) and mouse tumor necrosis factor (TNF-α) | In vitro | [131] |
Solanum lycopersicum | approximately 11 to over 23 different kinds of anthocyanins, including 3 anthocyanidins (delphinidin, petunidin (petunidin-3-glucoside), and malvidin) | 661W a mouse photoreceptor cell line | inhibition of H2O2-induced cell death, inhibition of ROS production, suppression of apoptosis | In vitro | [132] |
Chrysobalanus icaco L. | delphinidin-3-glucoside, cyanidin 3-glucoside, petunidin 3-glucoside, delphinidin 3-(6″-acetoyl) galactoside, delphinidin 3-(6″-oxaloyl) arabinoside, peonidin 3-glucoside, petunidin 3-(6″-acetoyl) galactoside or petunidin 3-(6″-oxaloyl) arabinoside, peonidin 3-(6″-acetoyl) glucoside, or peonidin 3-(6″-oxaloyl) arabinoside | TNF-α induced non-malignant colonic fibroblasts CCD-18Co and HT-29 colorectal adenocarcinoma cells | decreased intracellular ROS production in CCD-18Co, decreased TNF-α, IL-1β, IL-6 expression | In vitro | [133] |
Purple carrots (Purple Haze) or potatoes (MacIntosh) | cyanidin-3-O-(2″-xylosyl-6″-(6‴-feruloyl-glucosyl)-galactoside and petunidin-3-O-(p-coumaroyl)-rutinoside-5-Oglucoside | Caco-2 BBe1/THP-1 co-culture cell model, gastrointestinal model | inhibited cellular inflammation, inhibited IL-8 and TNF-α secretion and expression of pro-inflammatory cytokines by blocking NF-κB, and MAPK mediated inflammatory cellular signaling cascades | In vitro | [134] |
Commercial | delphinidin and petunidin | rat cardiomyocytes line H9c2 | DFT calculation- the antioxidant activity from chemical mechanism | In vitro | [135] |
Bilberry (Vaccinium myrtillus L.) | delphinidin-3-galactoside chloride, delphinidin 3- glucoside chloride, cyanidin-3-galactoside, cyanidin-3-glucoside, petunidin-3-glucoside, and cyanidin-3-arabinoside | RAW 264.7 cell line | anti-inflammatory and antioxidant activity, inhibited oxidation of linoleic acid, suppressed nitric oxide (NO) generation, pro-inflammatory cytokines iNOS, COX-2, TNF-α, and IL-6 in LPS-induced cells | In vitro | [136] |
Anthocyanidins purified by HPLC (Irvine, CA, USA) | petunidin, delphinidin, cyanidin, pelargonidin, malvidin, and peonidin | human aortic smooth muscle cells (HASMCs) | inhibited PDGF-BB-induced phosphorylation of focal adhesion kinase (FAK), suppressed FAK activity by binding in an ATP, reduced HASMC migration, inhibited PDGF-BB-induced FAK phosphorylation, F-actin reduction, and FAK activity, protected against atherosclerosis | In vitro | [137] |
Plant source | cyanidin (Cy), peonidin (Pn), pelargonidin (Pg), malvidin (Mv), delphinidin (Dp), and petunidin (Pt) | referenced cell lines, ulcerative colitis | reduced expression levels of TNF-α and IL-1β, reduced serum levels of IL-12 and IFN-γ, down-regulated IFN-γ, and the inflammation-associated ROS-producing enzyme myeloperoxidase (MPO), NF-κB signaling pathway, prevented increase of IL-6, and nitric oxide synthase (iNOS) | In vitro | [138] |
Four varieties of beans: Negro 8025, Bayo Victoria, Pinto Durango, and Pinto Saltillo | delphinidin-3-glucoside, malvidin-3-glucoside, petunidin-3-glucoside, pelargonidin-3-glucoside, and cyanidin-3-glucoside | human intestinal cell model | antioxidant activities, inhibited lipid peroxidation, chelating capacities, deoxy-D-ribose degradation, decreased interleukin-8 (IL-8), modulated interleukin-10 (IL-10), inhibited tumor necrosis factor alpha (TNFα), NF-κβ, cyclooxygenase-2 (COX-2) | In vitro | [139] |
Red clover (Trifolium pratense) | delphinidin-3, 5-O-diglucoside, Cyanidin-3-O-galactoside, Cyanidin-3-O-glucoside, Petunidin-3-O-galactoside, Peonidin-3-O-galactoside, Malvidin-3-O-galactoside, Petunidin-3-O-rutinoside | mouse monocyte RAW 264.7 cells | anti-inflammatory and antioxidant effects, suppressed expression of genes: TNFα, interleukin (IL)1β, inducible nitric oxide synthase (iNOS), monocyte chemoattractant protein (MCP)1, and cyclooxygenase (COX)2, stimulated intracellular reactive oxygen species (ROS), increased NADPH oxidase 1 (NOX1) and phosphorylation of p47phox, nuclear factor erythroid 2-related factor 2 (NRF2), factor kappa B (NF-kB), reduced iNOS, COX2 | In vitro | [140] |
Red grape skin | delphinidin 3-glucoside, Cyanidin 3-glucoside, Petunidin 3-glucoside, Peonidin 3-glucoside, Malvidin 3-glucoside, Peonidin 3-(6″-acetyl)-glucoside, Malvidin 3-(6″-acetyl)-glucoside, Delphinidin 3-(6″-coumaroyl)-glucoside, Malvidin 3-(6″-caffeoyl)-glucoside, Petunidin 3-(6″-coumaroyl)-glucoside, Peonidin 3-(6″-coumaroyl)-glucoside, Malvidin 3-(6″-coumaroyl)-glucoside | R3/1 cell line | anti-inflammatory activity, decreased NF-kb reporter and IL-1α | In vitro | [141] |
Rabbiteye blueberry (Vaccinium ashei) | delphindin-3-galactoside, delphindin-3-glucoside, cyaniding-3-galactoside, petunidin-3-galactoside, cyaniding-3-glucoside, cyaniding-3-arabinoside, petunidin-3-glucoside, peonidin-3-galactoside, petunidin-3-arabinoside, peonidin-3-glucosidea, malvidin-3-galactoside, malvidin-3-glucoside, malvidin-3-arabinose | endothelial cell culture-HRCECs human retinal capillary endothelial cells | antioxidant and anti-inflammatory, decreased the reactive oxygen species ROS, increased the enzyme activity of catalase (CAT) and superoxide dismutase (SOD), inhibited: intercellular adhesion molecule-1 (ICAM-1), nuclear factor-kappa B (NF-κB), Akt pathway, Nox4 expression, nitric oxide (NO) levels, decreased vascular endothelial cell growth factor (VEGF) | In vitro | [142] |
Commercial | cyanidin-3-O-glucoside chloride, delphinidin -3-O-glucoside cholride, pelargonidin-3-O-glucoside chloride, malvidin-3-O-glucoside chloride, peonidin-3-O-glucoside chloride, and petunidin-3-O-glucoside chloride combined with lutein | Caco-2 cell model | suppression of pro-inflammatory mediators IL-8, NO, antioxidant effects, antagonistic interaction on lipid peroxidation in a phosphatidylcholine liposome membrane with lutein | In vitro | [143] |
Purple tomato (Solanum lycopersicum L.) line V118 and red tomato H5108 F1 | petunidin-3-O-caffeoyl-rutinoside-5-O-glucoside, petunidin-3-O-(p-coumaroyl)-rutinoside-5-O-glucoside, and malvidin-3-O-(p-coumaroyl)-rutinoside-5-O-glucoside | MCF-10A breast epithelial cells, simulated gastrointestinal digestion model | anti-inflammatory effect, reduced MDA and NO production, increased GPx, SOD, protection against oxidative stress | In vitro | [144] |
Extract from banana bract | malvidin, petunidin, delphinidin-3-O-galactoside, peonidin-3-O-beta-galactopyranoside, cyanidin 3-O-xylosyl-rutinoside, cyanidin 3-O-rutinoside, malvidin-3-rutinoside, pelargonidin-3-O-glucoside, delphinidin-3-O-rutinoside | LPS-stimulated murine macrophages– RAW 264.7 | anti-inflammatory properties, antioxidant activity, suppressed the NO, pro-inflammatory and PGE2 production, increased the endogenous antioxidants substances level, inhibited the nuclear translocation of NF-κB | In vitro | [145] |
Purple yam, Dioscorea alata L. | cyanidin-3,5-diglucoside, cyanidin-3-diglucoside-5-glycosides, delphinidin-3-glucose-5-rutinoside, delphinidin-3-glucoside, delphinidin-3,5-diglucoside | trinitrobenzenesulfonic acid (TNBS)-induced colitis mouse model | reduced MPO concentrations, tumor necrosis factor α, interferon γ, iNOS, decreased expression of proteins ZO-1, claudin-1, occludin, mucin-1, and mucin-2 | In vitro | [146] |
Commercial | cyanidin-3-glucoside, delphinidin-3-glucoside, malvidin-3-glucoside, peonidin-3-glucoside, pelargonidin-3-glucoside, petunidin-3-glucoside | human carcinogenic colon Caco-2 cells | antioxidant and anti-inflammatory effects, modulated the biomarkers: reactive oxygen species (ROS), reactive nitrogen species (RNS), pro-inflammatory cytokines and chemokines: IL-8, IL-6, IL-1β, PGE2; defensive enzymes: catalase, superoxide dismutase; intracellular signaling pathways NF-κB, mitogen-activated protein kinase | In vitro | [147] |
Gynura bicolor DC. | cyanidin, keracyanin, kuromanin, malvidin, pelargonidin, peonidin, and petunidin | human umbilical vein endothelial (HUVE) cells | antioxidative and anti-inflammatory potentials, decreased reactive oxygen species formation, preserved glutathione content and retained glutathione peroxide and catalase activities, down regulated interleukin-6, tumor necrosis factor-alpha and prostaglandin E2 production, reduced cyclooxygenase-2 activity | In vitro | [148] |
Red (RO) and yellow (YO) onion peel extracts | cyanidin-O-malonylhexoside, peonidin-O-hexoside, delphinidin-O-hexoside acetate, cyanidin-O-hexoside acetate, petunidin-O-hexoside | human adenocarcinoma cells from the MCF-7 and HT-29 cell line | suppressed NLRP3/caspase-1 signaling, decreased inflammatory cytokines, Notch-1 levels, boosted VEGF-mediated angiogenesis, reduced microbial infection, inflammation, and promoted tissue regeneration | In vitro | [149] |
Plant materials: two fruits (mahaleb cherry and blackcurrant) and two vegetables (black carrot and “Sun Black” tomato) | pelargonidin, cyanidin, delphinidin, peonidin, petunidin, and malvidin and their mono-, di-, or tri-glycosides | human microvascular endothelial cell line (HMEC-1) | antioxidant effects, cardiovascular protection, expression of endothelial adhesion molecules VCAM-1 and ICAM-1 | In vitro | [150] |
Northern highbush blueberry extract | delphinidin, cyanidin, petunidin, peonidin, and malvidin with variation existing in the number of hydroxyl groups, methylation, location of sugar molecules | colon epithelial cell lines, NCM 356 and CCD 841 CoN | decreased in nuclear and cytoplasmic generated reactive oxygen species (ROS), increased cell viability, inhibited IL-1b, NF-jB, COX-2 expression | In vitro | [151] |
Bilberry (Vaccinium myrtillus L.) | delphinidin, cyanidin, petunidin, peonidin and malvidin | HeLa-TLR4, THP-1, and human embryonic kidney (HEK)TLR2/HEK-TLR4 cell lines | anti-inflammatory effect, decreased tumor necrosis factor-α, interleukin (IL)-6, IL-1β expression, induced nitric oxide synthases, cyclooxygenases, nuclear factor kappa B, and Janus kinase-signal transducer and activator of transcription signaling pathways | In vitro | [152] |
Grape (Vitis vinifera L.)-16 grape varieties | the 3-O-monoglucosides of delphinidin, cyanidin, petunidin, peonidin, and malvidin | human epithelial gastric cells (AGS) | reduced IL-8, TNFα, alleviated inflammatory processes | In vitro | [153] |
Red wine extract | delphinidin, petunidin, peonidin, malvidin | murine macrophage cell line J774A.1 and Raw 264.7 | prevented the carcinogenesis process, modulated IL-1β secretion, NLRP3 inflammasome pathway, increased the synthesis of NLRP3 and pro-IL-1β proteins, inhibited express the adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD), inflammasome complexes | In vitro | [154] |
Black soybean | three major anthocyanins (cyanidin-3-O-glucoside, delphinidin-3-O-glucoside, and petunidin3-O-glucoside) ~ about 90% of the total peak area and six minor anthocyanins cyanidin3-O-glucoside, delphinidin-3-O-glucoside, and petunidin-3-O-glucoside | 3T3-L1 mouse embryo fibroblasts and RAW264.7 macrophage cells | anti-inflammatory, antidiabetic effect, decreased the production of reactive oxygen species and inflammatory mediators and cytokines (NO, MCP-1, PGE2, TNFα, and IL-6) and the release of free fatty acids, increased anti-inflammatory adiponectin secretion | In Vitro | [155] |
Vitis labrusca extract | 3-O-glucosides: peonidin, delphinidin, petunidin, and malvidin; 3-p-coumaroyl-glucosides: cyanidin, peonidin, petunidin and malvidin, and malvidin-3,5-diglucoside | Swiss mice | reduced carrageenan-induced mechanical and thermal hyperalgesia, paw edema, and neutrophil recruitment, anti-inflammatory properties | In vivo | [156] |
Vaccinium myrtillus-bilberry | delphidin-3-O-galactoside, delphidin-3-O-glucoside, delphidin-3-O-arabinoside, cyanidin-3-O- galactoside, cyanidin-3-O-glucoside, petunidin-3-O-galactoside, cyanidin-3-O-arabinoside, petunidin-3-O-glucoside, peonidin-3-O-galactoside, petunidin-3-O-arabinoside, peonidin-3-O-glucoside, malvidin-3-O-galactoside, malvidin-3-O-glucoside, malvidin-3-O-arabinoside | mouse model | anti-inflammatory properties, decreased lipid peroxidation and mucosal injury in the ileum, directly reduced ROS, decrease of Myeloperoxidase | In vivo | [157] |
Black soybean | glycosides of cyanidin, delphinidin, malvidin, pelargonidin, peonidin, and petunidin | rat model with Peyronie disease | anti-inflammatory and antifibrosis activities, decreased TGF-b1 expression, decrease activity of fibrin injections | In vivo | [158] |
Substance obtained commercially | Petunidin chloride (purity ≥ 98%) | adult male Sprague–Dawley (SD) rats | improved isolated heart function, reduced oxidative stress, up-regulated Bcl-2 protein expression, down-regulated NOX4 and Bax expression, reduced the level of cytoplasmic cytochrome c | In vivo | [108] |
Substance purified by HPLC | Petunidin, delphinidin, cyanidin, pelargonidin, malvidin, and peonidin | rat in vivo and rat aorta ex vivo | reduced (HASMC) human aortic smooth muscle cell migration, inhibited PDGF-BB-induced FAK phosphorylation, F-actin reduction, and FAK activity | In vivo | [137] |
Solanum lycopersicum L. | petunidin-3-O-caffeoyl-rutinoside-5-O-glucoside, petunidin-3-O-(p-coumaroyl)-rutinoside-5-O-glucoside and malvidin-3-O-(p-coumaroyl)-rutinoside-5-O-glucoside | carrageenan-induced paw edema rat | reduced MDA and NO production, increased GPx and SOD activities in edematous tissue, inhibited paw edema formation | In vivo | [144] |
Red onion (RO) and yellow (YO) onion peel extracts | cyanidin-O-malonylhexoside, peonidin-O-hexoside, delphinidin-O-hexoside acetate, cyanidin-O-hexoside acetate, petunidin-O-hexoside | rat | suppressed NLRP3/caspase-1 signaling, decreased inflammatory cytokines, Notch-1 levels, boosted VEGF-mediated angiogenesis, reduced microbial infection, inflammation, and promoted tissue regeneration | In vivo | [149] |
Bilberry anthocyanin extract | delphinidin-3-galactoside, delphinidin-3-glucoside, cyanidin-3-galactoside, delphinidin-3-arabinoside, cyanidin-3-glucoside, petunidin-3-galactoside, cyanidin-3-arabinoside, petunidin-3-glucoside, peonidin-3-galactoside, petunidin-3-arabinoside, peonidin-3-glucoside, malvidin-3-galactoside, malvidin-3-glucoside, malvidin-3-arabinoside | model of phototoxicity in pigmented rabbits | reduced changes in apoptotic proteins (Bax, Bcl-2, and caspase-3), increased the levels of superoxide dismutase, glutathione peroxidase, and catalase, decreased the malondialdehyde level, inhibited the levels of pro-inflammatory cytokines and angiogenic parameters (IL-1β and VEGF) | In vivo | [159] |
Commercial compounds | canidin, delphinidin, malvidin, pelargonidin and petunidin | the blood-–rain barrier in vivo and human U-87 MG cell line | anti-inflammatory, cardioprotective, anti-angiogenic, and anticarcinogenic properties, activation TGF-β Smad and non-Smad signaling pathways | In vivo | [160] |
Lycium ruthenicum Murray | petunidin 3-O-[rhamnopyranosyl-(trans-p-coumaroyl)]-5-O-[β-D-glucopyranoside] | dextran sodium sulfate-induced colitis in mice | anti-inflammatory effects, reduction of the expression of pro-inflammatory cytokines and related mRNA: TNF-α, IL-6, IL-1β, and IFNγ, and promotion of the intestinal barrier function by histological and immunofluorescence analysis, increased proteins such as ZO-1, occludin, and claudin-1, blocked pro-inflammatory cytokines | In vivo | [161] |
Portuguese blueberries (Vaccinium corymbosum L.) | malvidin, petunidin, peonidin, delphinidin, and cyanidin | 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis rat model | reduction in leukocyte infiltration, increased antioxidant defenses, downregulated nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), anti-inflammatory mechanism | In vivo | [162] |
Lycium ruthenicum Murray (LR) | delphinidin-3-glu, cyanidin-3-glu, petunidin-3-glu, peonidin-3-glu, malvidin-3-glu, delphinidin, cyanidin, petunidin, pelargonidin and malvidin | rat model involving gouty arthritis induced by monosodium urate | decreased tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-18 (IL-18), prostaglandin E2 (PE2), cyclooxygenase-1 (COX-1) enzymes, paw volume, reduced inflammation | In vivo | [162] |
Black soybean | delphinidin-3-O-glucoside, cyanidin-3-O-glucoside, petunidin-3-O-glucoside | adult male Sprague–Dawley rats–the chronic bacterial prostatitis (CBP) rat model | anti-inflammatory and antimicrobial effects, decreased bacterial growth, reduction of prostatic inflammation compared with the control group | In vivo | [163] |
5. Anticancer Effect of Anthocyanins
6. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Chaachouay, N.; Zidane, L. Plant-Derived Natural Products: A Source for Drug Discovery and Development. Drugs Drug Candidates 2024, 3, 184–207. [Google Scholar] [CrossRef]
- Riaz, M.; Khalid, R.; Afzal, M.; Anjum, F.; Fatima, H.; Zia, S.; Rasool, G.; Egbuna, C.; Mtewa, A.G.; Uche, C.Z.; et al. Phytobioactive compounds as therapeutic agents for human diseases: A review. Food Sci. Nutr. 2023, 11, 2500–2529. [Google Scholar] [CrossRef]
- Guo, M.; Lv, H.; Chen, H.; Dong, S.; Zhang, J.; Liu, W.; He, L.; Ma, Y.; Yu, H.; Chen, S.; et al. Strategies on biosynthesis and production of bioactive compounds in medicinal plants. Chin. Herb. Med. 2023, 16, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, T.; Merecz-Sadowska, A.; Picot, L.; Brčić Karačonji, I.; Wieczfinska, J.; Śliwiński, T.; Sitarek, P. Genetic Manipulation and Bioreactor Culture of Plants as a Tool for Industry and Its Applications. Molecules 2022, 27, 795. [Google Scholar] [CrossRef] [PubMed]
- Bernhoft, A.J.A.B. A brief review on bioactive compounds in plants. Bioact. Compd. Plants Benefits Risks Man Anim. 2010, 50, 11–17. [Google Scholar]
- Cheynier, V. Phenolic compounds: From plants to foods. Phytochem. Rev. 2012, 11, 153–177. [Google Scholar] [CrossRef]
- International Food Information Council (IFIC); Foundation US Food and Drug Administration (FDA). Food Ingredients and Colors; IFIC Foundation: Washington, DC, USA, 2004. [Google Scholar]
- Pichersky, E.; Raguso, R.A. Why do plants produce so many terpenoid compounds? New Phytol. 2018, 220, 692–702. [Google Scholar] [CrossRef]
- Marquart, L.C. Di e Farben der Bluthen, eine Chemisch-Physiologische Abhandlung; Kessinger Publishing: Bonn, Germany, 1835. [Google Scholar]
- Strack, D.; Wray, V. Anthocyanins. In Methods in Plant Biochemistry; Academic Press: Cambridge, MA, USA, 1989; Volume 1, pp. 325–356. [Google Scholar]
- Wrolstad, R.E.; Durst, R.W.; Lee, J. Tracking color and pigment changes in anthocyanin products. Trends Food Sci. Technol. 2005, 16, 423–428. [Google Scholar] [CrossRef]
- Wahyuningsih, S.; Wulandari, L.; Wartono, M.W.; Munawaroh, H.; Ramelan, A.H. The effect of pH and color stability of anthocyanin on food colorant. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; Volume 193, p. 012047. [Google Scholar]
- Miguel, M.G. Anthocyanins: Antioxidant and/or anti-inflammatory activities. J. Appl. Pharm. Sci. 2011, 1, 7–15. [Google Scholar]
- Tena, N.; Martín, J.; Asuero, A.G. State of the art of anthocyanins: Antioxidant activity, sources, bioavailability, and therapeutic effect in human health. Antioxidants 2020, 9, 451. [Google Scholar] [CrossRef]
- Kähkönen, M.P.; Heinonen, M. Antioxidant activity of anthocyanins and their aglycons. J. Agric. Food Chem. 2003, 51, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Bendokas, V.; Stanys, V.; Mažeikienė, I.; Trumbeckaite, S.; Baniene, R.; Liobikas, J. Anthocyanins: From the Field to the Antioxidants in the Body. Antioxidants 2020, 9, 819. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Du, B.; Li, J.; Yang, Y.; Zhu, F. An insight into anti-inflammatory activities and inflammation related diseases of anthocyanins: A review of both in vivo and in vitro investigations. Int. J. Mol. Sci. 2021, 22, 11076. [Google Scholar] [CrossRef] [PubMed]
- Palungwachira, P.; Tancharoen, S.; Phruksaniyom, C.; Klungsaeng, S.; Srichan, R.; Kikuchi, K.; Nararatwanchai, T. Antioxidant and anti-inflammatory properties of anthocyanins extracted from Oryza sativa L. in primary dermal fibroblasts. Oxidative Med. Cell. Longev. 2019, 1, 2089817. [Google Scholar] [CrossRef]
- Nikbakht, E.; Singh, I.; Vider, J.; Williams, L.T.; Vugic, L.; Gaiz, A.; Kundur, A.R.; Colson, N. Potential of anthocyanin as an anti-inflammatory agent: A human clinical trial on type 2 diabetic, diabetic at-risk and healthy adults. Inflamm. Res. 2021, 70, 275–284. [Google Scholar] [CrossRef]
- Wallace, T.C. Anthocyanins in cardiovascular disease. Adv. Nutr. 2011, 2, 1–7. [Google Scholar] [CrossRef]
- Mazza, G. Anthocyanins and heart health. Ann. Ist. Super. Di Sanita 2007, 43, 369. [Google Scholar]
- Pascual-Teresa, D.; Moreno, D.A.; García-Viguera, C. Flavanols and anthocyanins in cardiovascular health: A review of current evidence. Int. J. Mol. Sci. 2010, 11, 1679–1703. [Google Scholar] [CrossRef]
- Sancho, R.A.S.; Pastore, G.M. Evaluation of the effects of anthocyanins in type 2 diabetes. Food Res. Int. 2012, 46, 378–386. [Google Scholar] [CrossRef]
- Różańska, D.; Regulska-Ilow, B. The significance of anthocyanins in the prevention and treatment of type 2 diabetes. Adv. Clin. Exp. Med. 2018, 27, 135–142. [Google Scholar] [CrossRef]
- Ghosh, D.; Konishi, T. Anthocyanins and anthocyanin-rich extracts: Role in diabetes and eye function. Asia Pac. J. Clin. Nutr. 2007, 16, 200–208. [Google Scholar] [PubMed]
- Wang, L.S.; Stoner, G.D. Anthocyanins and their role in cancer prevention. Cancer Lett. 2008, 269, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Nomi, Y.; Iwasaki-Kurashige, K.; Matsumoto, H. Therapeutic effects of anthocyanins for vision and eye health. Molecules 2019, 24, 3311. [Google Scholar] [CrossRef]
- Khoo, H.E.; Ng, H.S.; Yap, W.S.; Goh, H.J.H.; Yim, H.S. Nutrients for prevention of macular degeneration and eye-related diseases. Antioxidants 2019, 8, 85. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Ali, T.; Kim, M.W.; Jo, M.H.; Chung, J.I.; Kim, M.O. Anthocyanins improve hippocampus-dependent memory function and prevent neurodegeneration via JNK/Akt/GSK3β signaling in LPS-treated adult mice. Mol. Neurobiol. 2019, 56, 671–687. [Google Scholar] [CrossRef]
- Andres-Lacueva, C.; Shukitt-Hale, B.; Galli, R.L.; Jauregui, O.; Lamuela-Raventos, R.M.; Joseph, J.A. Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutr. Neurosci. 2005, 8, 111–120. [Google Scholar] [CrossRef]
- Ali, T.; Kim, T.; Rehman, S.U.; Khan, M.S.; Amin, F.U.; Khan, M.; Ikram, M.; Kim, M.O. Natural dietary supplementation of anthocyanins via PI3K/Akt/Nrf2/HO-1 pathways mitigate oxidative stress, neurodegeneration, and memory impairment in a mouse model of Alzheimer’s disease. Mol. Neurobiol. 2018, 55, 6076–6093. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, H.; Zhang, G.; Meng, J.; Deng, K.; Zhou, W.; Wang, H.; Wang, Z.; Hu, N.; Suo, Y. Anthocyanins from Lycium ruthenicum Murr. ameliorated d-galactose-induced memory impairment, oxidative stress, and neuroinflammation in adult rats. J. Agric. Food Chem. 2019, 67, 3140–3149. [Google Scholar] [CrossRef]
- Varadinova, M.G.; Docheva-Drenska, D.I.; Boyadjieva, N.I. Effects of anthocyanins on learning and memory of ovariectomized rats. Menopause. 2009, 16, 345–349. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef]
- Daglia, M. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 2012, 23, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Farjadmand, F.; Karimpour-Razkenari, E.; Nabavi, S.M.; Ardekani, M.R.; Saeedi, M. Plant polyphenols: Natural and potent UV-protective agents for the prevention and treatment of skin disorders. Mini Rev. Med. Chem. 2021, 21, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Kostyuk, V.; Potapovich, A.; Suhan, T.; De Luca, C.; Pressi, G.; Dal Toso, R.; Korkina, L. Plant polyphenols against UV-C-induced cellular death. Planta Medica 2008, 74, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Zhang, X.; Chen, F.; Wang, M. Dietary polyphenols as photoprotective agents against UV radiation. J. Funct. Foods 2017, 30, 108–118. [Google Scholar] [CrossRef]
- Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef]
- Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-inflammatory effects of flavonoids. Food Chem. 2019, 299, 125124. [Google Scholar] [CrossRef]
- Ren, W.; Qiao, Z.; Wang, H.; Zhu, L.; Zhang, L. Flavonoids: Promising anticancer agents. Med. Res. Rev. 2003, 23, 519–534. [Google Scholar] [CrossRef]
- Cook, N.C.; Samman, S. Flavonoids—Chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem. 1996, 7, 66–76. [Google Scholar] [CrossRef]
- Testai, L.; Martelli, A.; Cristofaro, M.; Breschi, M.C.; Calderone, V. Cardioprotective effects of different flavonoids against myocardial ischaemia/reperfusion injury in Langendorff-perfused rat hearts. J. Pharm. Pharmacol. 2013, 65, 750–756. [Google Scholar] [CrossRef]
- Alappat, B.; Alappat, J. Anthocyanin pigments: Beyond aesthetics. Molecules 2020, 25, 5500. [Google Scholar] [CrossRef]
- Chanoca, A.; Kovinich, N.; Burkel, B.; Stecha, S.; Bohorquez-Restrepo, A.; Ueda, T.; Eliceiri, K.W.; Grotewold, E.; Otegui, M.S. Anthocyanin vacuolar inclusions form by a microautophagy mechanism. Plant Cell 2015, 27, 2545–2559. [Google Scholar] [CrossRef] [PubMed]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61. [Google Scholar] [CrossRef]
- Cabrita, L.; Fossen, T.; Andersen, Ø.M. Colour and stability of the six common anthocyanidin 3-glucosides in aqueous solutions. Food Chem. 2000, 68, 101–107. [Google Scholar] [CrossRef]
- Pervaiz, T.; Songtao, J.; Faghihi, F.; Haider, M.S.; Fang, J. Naturally occurring anthocyanin, structure, functions and biosynthetic pathway in fruit plants. J. Plant Biochem. Physiol. 2017, 5, 2. [Google Scholar] [CrossRef]
- Liang, A.; Leonard, W.; Beasley, J.T.; Fang, Z.; Zhang, P.; Ranadheera, C.S. Anthocyanins-gut microbiota-health axis: A review. Crit. Rev. Food Sci. Nutr. 2023, 64, 7563–7588. [Google Scholar] [CrossRef] [PubMed]
- Routray, W.; Orsat, V. Blueberries and their anthocyanins: Factors affecting biosynthesis and properties. Compr. Rev. Food Sci. Food Saf. 2011, 10, 303–320. [Google Scholar] [CrossRef]
- Teng, H.; Fang, T.; Lin, Q.; Song, H.; Liu, B.; Chen, L. Red raspberry and its anthocyanins: Bioactivity beyond antioxidant capacity. Trends Food Sci. Technol. 2017, 66, 153–165. [Google Scholar] [CrossRef]
- Veberic, R.; Jakopic, J.; Stampar, F.; Schmitzer, V. European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols. Food Chem. 2009, 114, 511–515. [Google Scholar] [CrossRef]
- Slimestad, R.; Solheim, H. Anthocyanins from black currants (Ribes nigrum L.). J. Agric. Food Chem. 2002, 50, 3228–3231. [Google Scholar] [CrossRef]
- Fan-Chiang, H.J.; Wrolstad, R.E. Anthocyanin pigment composition of blackberries. J. Food Sci. 2005, 70, C198–C202. [Google Scholar] [CrossRef]
- Wiczkowski, W.; Szawara-Nowak, D.; Topolska, J. Red cabbage anthocyanins: Profile, isolation, identification, and antioxidant activity. Food Res. Int. 2013, 51, 303–309. [Google Scholar] [CrossRef]
- Mazza, G.; Francis, F.J. Anthocyanins in grapes and grape products. Crit. Rev. Food Sci. Nutr. 1995, 35, 341–371. [Google Scholar] [CrossRef] [PubMed]
- Demirdöven, A.; Özdoğan, K.; Erdoğan-Tokatlı, K. Extraction of anthocyanins from red cabbage by ultrasonic and conventional methods: Optimization and evaluation. J. Food Biochem. 2015, 39, 491–500. [Google Scholar] [CrossRef]
- Ananga, A.; Georgiev, V.; Ochieng, J.; Phills, B.; Tsolova, V. Production of anthocyanins in grape cell cultures: A potential source of raw material for pharmaceutical, food, and cosmetic industries. Mediterr. Genet. Code-Grapevine Olive 2013, 1, 247–287. [Google Scholar]
- Baldi, A.; Romani, A.; Mulinacci, N.; Vincieri, F.F.; Casetta, B. HPLC/MS application to anthocyanins of Vitis vinifera L. J. Agric. Food Chem. 1995, 43, 2104–2109. [Google Scholar] [CrossRef]
- Katsube, N.; Iwashita, K.; Tsushida, T.; Yamaki, K.; Kobori, M. Induction of apoptosis in cancer cells by bilberry (Vaccinium myrtillus) and the anthocyanins. J. Agric. Food Chem. 2003, 51, 68–75. [Google Scholar] [CrossRef]
- Ruiz, D.; Egea, J.; Gil, M.I.; Tomás-Barberán, F.A. Characterization and quantitation of phenolic compounds in new apricot (Prunus armeniaca L.) varieties. J. Agric. Food Chem. 2005, 53, 9544–9552. [Google Scholar] [CrossRef]
- Kim, M.J.; Hyun, J.N.; Kim, J.A.; Park, J.C.; Kim, M.Y.; Kim, J.G.; Lee, S.J.; Chun, S.C.; Chung, I.M. Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. J. Agric. Food Chem. 2007, 55, 4802–4809. [Google Scholar] [CrossRef]
- Veigas, J.M.; Narayan, M.S.; Laxman, P.M.; Neelwarne, B. Chemical nature, stability and bioefficacies of anthocyanins from fruit peel of Syzygium cumini Skeels. Food Chem. 2007, 105, 619–627. [Google Scholar] [CrossRef]
- Lancaster, J.E.; Dougall, D.K. Regulation of skin color in apples. Crit. Rev. Plant Sci. 1992, 10, 487–502. [Google Scholar] [CrossRef]
- Usenik, V.; Štampar, F.; Veberič, R. Anthocyanins and fruit colour in plums (Prunus domestica L.) during ripening. Food Chem. 2009, 114, 529–534. [Google Scholar] [CrossRef]
- Wu, P.; Li, F.; Zhang, J.; Yang, B.; Ji, Z.; Chen, W. Phytochemical compositions of extract from peel of hawthorn fruit, and its antioxidant capacity, cell growth inhibition, and acetylcholinesterase inhibitory activity. BMC Complement. Altern. Med. 2017, 17, 151. [Google Scholar] [CrossRef] [PubMed]
- Acquaviva, R.; Russo, A.; Galvano, F.; Galvano, G.; Barcellona, M.L.; Li Volti, G.; Vanella, A. Cyanidin and cyanidin 3-O-β-D-glucoside as DNA cleavage protectors and antioxidants. Cell Biol. Toxicol. 2003, 19, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Nair, M.G.; Strasburg, G.M.; Chang, Y.C.; Booren, A.M.; Gray, J.I.; DeWitt, D.L. Antioxidant and antiinflammatory activities of anthocyanins and their aglycon, cyanidin, from tart cherries. J. Nat. Prod. 1999, 62, 294–296. [Google Scholar] [CrossRef]
- Amorini, A.M.; Fazzina, G.; Lazzarino, G.; Tavazzi, B.; Di Pierro, D.; Santucci, R.; Federica, S.; Fabio, G.; Galvano, G. Activity and mechanism of the antioxidant properties of cyanidin-3-O-β-glucopyranoside. Free. Radic. Res. 2001, 35, 953–966. [Google Scholar] [CrossRef]
- Feng, R.; Ni, H.M.; Wang, S.Y.; Tourkova, I.L.; Shurin, M.R.; Harada, H.; Yin, X.M. Cyanidin-3-rutinoside, a natural polyphenol antioxidant, selectively kills leukemic cells by induction of oxidative stress. J. Biol. Chem. 2007, 282, 13468–13476. [Google Scholar] [CrossRef]
- Wu, C.F.; Wu, C.Y.; Lin, C.F.; Liu, Y.W.; Lin, T.C.; Liao, H.J.; Chang, G.R. The anticancer effects of cyanidin 3-O-glucoside combined with 5-fluorouracil on lung large-cell carcinoma in nude mice. Biomed. Pharmacother. 2022, 151, 113128. [Google Scholar] [CrossRef]
- Rugină, D.; Hanganu, D.; Diaconeasa, Z.; Tăbăran, F.; Coman, C.; Leopold, L.; Bunea, A.; Pintea, A. Antiproliferative and Apoptotic Potential of Cyanidin-Based Anthocyanins on Melanoma Cells. Int. J. Mol. Sci. 2017, 18, 949. [Google Scholar] [CrossRef]
- Matboli, M.; Hasanin, A.H.; Hussein, R.; El-Nakeep, S.; Habib, E.K.; Ellackany, R.; Saleh, L.A. Cyanidin 3-glucoside modulated cell cycle progression in liver precancerous lesion, in vivo study. World J. Gastroenterol. 2021, 27, 1435. [Google Scholar] [CrossRef]
- Sorrenti, V.; Vanella, L.; Acquaviva, R.; Cardile, V.; Giofrè, S.; Di Giacomo, C. Cyanidin induces apoptosis and differentiation in prostate cancer cells. Int. J. Oncol. 2015, 47, 1303–1310. [Google Scholar] [CrossRef]
- Lee, D.Y.; Yun, S.M.; Song, M.Y.; Jung, K.; Kim, E.H. Cyanidin chloride induces apoptosis by inhibiting NF-κB signaling through activation of Nrf2 in colorectal cancer cells. Antioxidants 2020, 9, 285. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, D.; Hao, Y.; Liu, Q.; Wu, Y.; Liu, X.; Luo, J.; Zhou, T.; Sun, B.; Luo, X.; et al. Cyanidin curtails renal cell carcinoma tumorigenesis. Cell. Physiol. Biochem. 2018, 46, 2517–2531. [Google Scholar] [CrossRef] [PubMed]
- Morimitsu, Y.; Kubota, K.; Tashiro, T.; Hashizume, E.; Kamiya, T.; Osawa, T. Inhibitory effect of anthocyanins and colored rice on diabetic cataract formation in the rat lenses. In International Congress Series; Elsevier: Amsterdam, The Netherlands, 2002; Volume 1245, pp. 503–508. [Google Scholar] [CrossRef]
- Shan, X.; Lv, Z.Y.; Yin, M.J.; Chen, J.; Wang, J.; Wu, Q.N. The protective effect of Cyanidin-3-Glucoside on myocardial Ischemia-Reperfusion injury through ferroptosis. Oxidative Med. Cell. Longev. 2021, 1, 8880141. [Google Scholar] [CrossRef] [PubMed]
- Kammerer, D.; Carle, R.; Schieber, A. Detection of peonidin and pelargonidin glycosides in black carrots (Daucus carota ssp. sativus var. atrorubens Alef.) by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 2407–2412. [Google Scholar] [CrossRef] [PubMed]
- Tatsuzawa, F.; Toya, Y.; Watanabe, H.; Hirayama, Y.; Shinoda, K.; Hara, R.; Seki, H.; Ando, T. Acylated peonidin 3-rutinoside-5-glucosides from commercial petunia cultivars with pink flowers. Heterocycles 2004, 63, 509–517. [Google Scholar] [CrossRef]
- Wojdyło, A.; Samoticha, J.; Nowicka, P.; Chmielewska, J. Characterisation of (poly) phenolic constituents of two interspecific red hybrids of Rondo and Regent (Vitis vinifera) by LC–PDA–ESI-MS QTof. Food Chem. 2018, 239, 94–101. [Google Scholar] [CrossRef]
- Rajan, V.K.; Hasna, C.K.; Muraleedharan, K. The natural food colorant Peonidin from cranberries as a potential radical scavenger–A DFT based mechanistic analysis. Food Chem. 2018, 262, 184–190. [Google Scholar] [CrossRef]
- Chen, P.N.; Chu, S.C.; Chiou, H.L.; Chiang, C.L.; Yang, S.F.; Hsieh, Y.S. Cyanidin 3-Glucoside and Peonidin 3-Glucoside Inhibit Tumor Cell Growth and Induce Apoptosis in Vitro and Suppress Tumor Growth in Vivo. Nutr. Cancer 2005, 53, 232–243. [Google Scholar] [CrossRef]
- Ho, M.L.; Chen, P.N.; Chu, S.C.; Kuo, D.Y.; Kuo, W.H.; Chen, J.Y.; Hsieh, Y.S. Peonidin 3-Glucoside Inhibits Lung Cancer Metastasis by Downregulation of Proteinases Activities and MAPK Pathway. Nutr. Cancer 2010, 62, 505–516. [Google Scholar] [CrossRef]
- Nas, J.S.B.; Manalo, R.V.M.; Medina, P.M.B. Peonidin-3-glucoside extends the lifespan of Caenorhabditis elegans and enhances its tolerance to heat, UV, and oxidative stresses. ScienceAsia 2021, 47, 457–468. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, P.; Zhu, Y.; Lou, Q.; He, S. Antioxidant and prebiotic activity of five peonidin-based anthocyanins extracted from purple sweet potato (Ipomoea batatas (L.) Lam.). Sci. Rep. 2018, 8, 5018. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, F.; Tanaka, M.; Maeda, H.; Shimizu, K.; Sakata, Y. Characterization of cyanic flower color of Delphinium cultivars. J. Jpn. Soc. Hortic. Sci. 2000, 69, 428–434. [Google Scholar] [CrossRef]
- Lee, J.; Finn, C.E. Anthocyanins and other polyphenolics in American elderberry (Sambucus canadensis) and European elderberry (S. nigra) cultivars. J. Sci. Food Agric. 2007, 87, 2665–2675. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, S.; Tanzawa, F.; Kobayashi, H.; Suzuki, S.; Takata, R.; Saito, H. Leaf removal accelerated accumulation of delphinidin-based anthocyanins in ‘Muscat Bailey A’ [Vitis× labruscana (Bailey) and Vitis vinifera (Muscat Hamburg)] grape skin. J. Jpn. Soc. Hortic. Sci. 2014, 83, 17–22. [Google Scholar] [CrossRef]
- Krupa, T.; Tomala, K. Antioxidant capacity, anthocyanin content profile in ‘Bluecrop’blueberry fruit. J. Fruit. Ornam. Plant Res. 2007, 66, 129–141. [Google Scholar] [CrossRef]
- Estévez, L.; Mosquera, R.A. Molecular structure and antioxidant properties of delphinidin. J. Phys. Chem. A 2008, 112, 10614–10623. [Google Scholar] [CrossRef]
- Noda, Y.; Kaneyuki, T.; Mori, A.; Packer, L. Antioxidant activities of pomegranate fruit extract and its anthocyanidins: Delphinidin, cyanidin, and pelargonidin. J. Agric. Food Chem. 2002, 50, 166–171. [Google Scholar] [CrossRef]
- Li, H.; Zhang, C.; Deng, Z.; Zhang, B.; Li, H. Antioxidant activity of delphinidin and pelargonidin: Theory and practice. J. Food Biochem. 2022, 46, e14192. [Google Scholar] [CrossRef]
- Heysieattalab, S.; Sadeghi, L. Effects of delphinidin on pathophysiological signs of nucleus basalis of Meynert lesioned rats as animal model of Alzheimer disease. Neurochem. Res. 2020, 45, 1636–1646. [Google Scholar] [CrossRef]
- Yun, J.M.; Afaq, F.; Khan, N.; Mukhtar, H. Delphinidin, an anthocyanidin in pigmented fruits and vegetables, induces apoptosis and cell cycle arrest in human colon cancer HCT116 cells. Mol. Carcinog. Publ. Coop. Univ. Tex. MD Anderson Cancer Cent. 2009, 48, 260–270. [Google Scholar] [CrossRef]
- Lee, D.Y.; Park, Y.J.; Hwang, S.C.; Kim, K.D.; Moon, D.K.; Kim, D.H. Cytotoxic effects of delphinidin in human osteosarcoma cells. Acta Orthop. Et Traumatol. Turc. 2018, 52, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Oroudjev, E.; Wilson, L.; Ayoub, G. Delphinidin and cyanidin exhibit antiproliferative and apoptotic effects in MCF7 human breast cancer cells. Integr. Cancer Sci. Ther. 2015, 2, 82–86. [Google Scholar] [CrossRef]
- Dayoub, O.; Andriantsitohaina, R.; Clere, N. Pleiotropic beneficial effects of epigallocatechin gallate, quercetin and delphinidin on cardiovascular diseases associated with endothelial dysfunction. Cardiovasc. Hematol. Agents Med. Chem. Former. Curr. Med. Chem. -Cardiovasc. Hematol. Agents 2013, 11, 249–264. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Shi, Z.; Reheman, A.; Jin, J.W.; Li, C.; Wang, Y.; Andrews, M.C.; Chen, P.; Zhu, G.; Ling, W.; et al. Plant food delphinidin-3-glucoside significantly inhibits platelet activation and thrombosis: Novel protective roles against cardiovascular diseases. PLoS ONE 2012, 7, e37323. [Google Scholar] [CrossRef]
- Tsiogkas, S.G.; Mavropoulos, A.; Skyvalidas, D.N.; Patrikiou, E.; Ntavari, N.; Daponte, A.I.; Grammatikopoulou, M.G.; Dardiotis, E.; Roussaki-Schulze, A.V.; Sakkas, L.I.; et al. Delphinidin diminishes in vitro interferon-γ and interleukin-17 producing cells in patients with psoriatic disease. Immunol. Res. 2022, 70, 161–173. [Google Scholar] [CrossRef]
- Cremonini, E.; Iglesias, D.E.; Matsukuma, K.E.; Hester, S.N.; Wood, S.M.; Bartlett, M.; Fraga, C.G.; Oteiza, P.I. Supplementation with cyanidin and delphinidin mitigates high fat diet-induced endotoxemia and associated liver inflammation in mice. Food Funct. 2022, 13, 781–794. [Google Scholar] [CrossRef]
- Daveri, E.; Cremonini, E.; Mastaloudis, A.; Hester, S.N.; Wood, S.M.; Waterhouse, A.L.; Anderson, M.; Fraga, C.G.; Oteiza, P.I. Cyanidin and delphinidin modulate inflammation and altered redox signaling improving insulin resistance in high fat-fed mice. Redox Biol. 2018, 18, 16–24. [Google Scholar] [CrossRef]
- Tsuda, S.; Fukui, Y.; Nakamura, N.; Katsumoto, Y.; Yonekura-Sakakibara, K.; Fukuchi-Mizutani, M.; Ohira, K.; Ueyama, Y.; Ohkawa, H.; Holton, T.A.; et al. Flower color modification of Petunia hybrida commercial varieties by metabolic engineering. Plant Biotechnol. 2004, 21, 377–386. [Google Scholar] [CrossRef]
- Ando, T.; Saito, N.; Tatsuzawa, F.; Kakefuda, T.; Yamakage, K.; Ohtani, E.; Koshi-ishi, M.; Matsusake, Y.; Kokubun, H.; Watanabe, H.; et al. Floral anthocyanins in wild taxa of Petunia (Solanaceae). Biochem. Syst. Ecol. 1999, 27, 623–650. [Google Scholar] [CrossRef]
- Rajan, V.K.; Ragi, C.; Muraleedharan, K. A computational exploration into the structure, antioxidant capacity, toxicity and drug-like activity of the anthocyanidin “Petunidin”. Heliyon 2019, 5, e02115. [Google Scholar] [CrossRef]
- Zheng, S.; Deng, Z.; Chen, F.; Zheng, L.; Pan, Y.; Xing, Q.; Rong, T.; Li, H. Synergistic antioxidant effects of petunidin and lycopene in H9c2 cells submitted to hydrogen peroxide: Role of Akt/Nrf2 pathway. J. Food Sci. 2020, 85, 1752–1763. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Li, L.; Wang, X. Petunidin suppresses Hashimoto’s thyroiditis by regulating Th1/Th17 homeostasis and oxidative stress. Cell. Immunol. 2024, 403, 104858. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Yang, C.; Shao, L.; Zhu, H.; Wang, Y.; Huang, X.; Wang, S.; Hong, L. Targeting NOX 4 by petunidin improves anoxia/reoxygenation-induced myocardium injury. Eur. J. Pharmacol. 2020, 888, 173414. [Google Scholar] [CrossRef] [PubMed]
- Nagaoka, M.; Maeda, T.; Moriwaki, S.; Nomura, A.; Kato, Y.; Niida, S.; Kruger, M.C.; Suzuki, K. Petunidin, a b-ring 5′-O-methylated derivative of delphinidin, stimulates osteoblastogenesis and reduces srankl-induced bone loss. Int. J. Mol. Sci. 2019, 20, 2795. [Google Scholar] [CrossRef]
- Zhang, K.; Zhu, J.; Liu, P.; Guo, R.; Yan, Y.; Mi, J.; Lu, L.; Cao, Y.; Zeng, X. Petunidin-3-O-[rhamnopyranosyl-(trans-p-coumaroyl)]-5-O-(β-D-glucopyranoside), the main anthocyanin from the fruits of Lycium ruthenicum murray, enhances the lifespan of Caenorhabditis elegans by activating DAF-16 and improving the gut microbiota. Food Biosci. 2024, 61, 104642. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Akgun, B. Petunidin: Advances on Resources, Biosynthesis Pathway, Bioavailability, Bioactivity, and Pharmacology. In Handbook of Dietary Flavonoids; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–34. [Google Scholar]
- Mendoza, J.; Pina, F.; Basilio, N.; Guimaraes, M.; de Freitas, V.; Cruz, L. Extending the stability of red and blue colors of malvidin-3-glucoside-lipophilic derivatives in the presence of SDS micelles. Dye. Pigment. 2018, 151, 321–326. [Google Scholar] [CrossRef]
- Hurst, R.D.; Wells, R.W.; Hurst, S.M.; McGhie, T.K.; Cooney, J.M.; Jensen, D.J. Blueberry fruit polyphenolics suppress oxidative stress-induced skeletal muscle cell damage in vitro. Mol. Nutr. Food Res. 2010, 54, 353–363. [Google Scholar] [CrossRef]
- Escribano-Bailón, M.T.; Santos-Buelga, C.; Alonso, G.L.; Salinas, M.R. Anthocyanin composition of the fruit of Coriaria myrtifolia L. Phytochem. Anal. An. Int. J. Plant Chem. Biochem. Tech. 2002, 13, 354–357. [Google Scholar] [CrossRef]
- Li, Y.; Fanli, M.; Yinan, Z. Study of anthocyanins in fruit of different Vaccinium genotypes. In VIII International Symposium on Vaccinium Culture; ISHS: Leuven, Belgium, 2004; Volume 715, pp. 589–594. [Google Scholar]
- Huang, W.; Zhu, Y.; Li, C.; Sui, Z.; Min, W. Effect of blueberry anthocyanins malvidin and glycosides on the antioxidant properties in endothelial cells. Oxidative Med. Cell. Longev. 2016, 1, 1591803. [Google Scholar] [CrossRef]
- Bognar, E.; Sarszegi, Z.; Szabo, A.; Debreceni, B.; Kalman, N.; Tucsek, Z.; Sumegi, B.; Gallyas, F., Jr. Antioxidant and anti-inflammatory effects in RAW264. 7 macrophages of malvidin, a major red wine polyphenol. PLoS ONE 2013, 8, e65355. [Google Scholar] [CrossRef]
- Sood, R.; Choi, H.K.; Lee, H.J. Potential anti-cancer properties of malvidin and its glycosides: Evidence from in vitro and in vivo studies. J. Funct. Foods 2024, 116, 106191. [Google Scholar] [CrossRef]
- Cheng, Z.; Lin, J.; Gao, N.; Sun, X.; Meng, X.; Liu, R.; Liu, Y.; Wang, W.; Li, B.; Wang, Y. Blueberry malvidin-3-galactoside modulated gut microbial dysbiosis and microbial TCA cycle KEGG pathway disrupted in a liver cancer model induced by HepG2 cells. Food Sci. Human. Wellness 2020, 9, 245–255. [Google Scholar] [CrossRef]
- Kamrani, Y.Y.; Esmaeelian, B.; Jabbari, M.; Tabaraei, B.; Yazdanyar, A.; Ebrahimi, S.N. Anti-cancer effects of malvidin-3, 5-diglucoside from Alcea longipedicellata, on gastric cancer cell line (AGS). Planta Medica 2008, 74, PA174. [Google Scholar] [CrossRef]
- Baba, A.B.; Nivetha, R.; Chattopadhyay, I.; Nagini, S. Blueberry and malvidin inhibit cell cycle progression and induce mitochondrial-mediated apoptosis by abrogating the JAK/STAT-3 signalling pathway. Food Chem. Toxicol. 2017, 109, 534–543. [Google Scholar] [CrossRef]
- Nathan, C.; Ding, A. Nonresolving inflammation. Cell 2010, 140, 871–882. [Google Scholar] [CrossRef]
- Van Linthout, S.; Tschöpe, C. Inflammation–cause or consequence of heart failure or both? Curr. Heart Fail. Rep. 2017, 14, 251–265. [Google Scholar] [CrossRef]
- Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435. [Google Scholar] [CrossRef]
- Akira, S.; Uematsu, S.; Takeuchi, O. Pathogen recognition and innate immunity. Cell 2006, 124, 783–801. [Google Scholar] [CrossRef]
- Schmid-Schönbein, G.W. Analysis of inflammation. Annu. Rev. Biomed. Eng. 2006, 8, 93–151. [Google Scholar] [CrossRef]
- Stankov, S.V. Definition of inflammation, causes of inflammation and possible anti-inflammatory strategies. Open Inflamm. J. 2012, 5, 1–9. [Google Scholar] [CrossRef]
- Bowen-Forbes, C.S.; Zhang, Y.; Nair, M.G. Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits. J. Food Compos. Anal. 2010, 23, 554–560. [Google Scholar] [CrossRef]
- Cassidy, A.; Rogers, G.; Peterson, J.J.; Dwyer, J.T.; Lin, H.; Jacques, P.F. Higher dietary anthocyanin and flavonol intakes are associated with anti-inflammatory effects in a population of US adults. Am. J. Clin. Nutr. 2015, 102, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Ling, W.; Guo, H.; Song, F.; Ye, Q.; Zou, T.; Li, D.; Zhang, Y.; Li, G.; Xiao, Y.; et al. Anti-inflammatory effect of purified dietary anthocyanin in adults with hypercholesterolemia: A randomized controlled trial. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Abdin, M.; Hamed, Y.S.; Akhtar, H.M.S.; Chen, D.; Chen, G.; Wan, P.; Zeng, X. Antioxidant and anti-inflammatory activities of target anthocyanins di-glucosides isolated from Syzygium cumini pulp by high speed counter-current chromatography. J. Food Biochem. 2020, 44, e13209. [Google Scholar] [CrossRef]
- Ooe, E.; Ogawa, K.; Horiuchi, T.; Tada, H.; Murase, H.; Tsuruma, K.; Shimazawa, M.; Hara, H. Analysis and characterization of anthocyanins and carotenoids in Japanese blue tomato. Biosci. Biotechnol. Biochem. 2016, 80, 341–349. [Google Scholar] [CrossRef]
- Venancio, V.P.; Cipriano, P.A.; Kim, H.; Antunes, L.M.G.; Talcott, S.T.; Mertens-Talcott, S.U. Cocoplum (Chrysobalanus icaco L.) anthocyanins exert anti-inflammatory activity in human colon cancer and non-malignant colon cells. Food Funct. 2017, 8, 307–314. [Google Scholar] [CrossRef]
- Zhang, H.; Hassan, Y.I.; Renaud, J.; Liu, R.; Yang, C.; Sun, Y.; Tsao, R. Bioaccessibility, bioavailability, and anti-inflammatory effects of anthocyanins from purple root vegetables using mono-and co-culture cell models. Mol. Nutr. Food Res. 2017, 61, 1600928. [Google Scholar] [CrossRef]
- Chen, B.; Ma, Y.; Li, H.; Chen, X.; Zhang, C.; Wang, H.; Deng, Z. The antioxidant activity and active sites of delphinidin and petunidin measured by DFT, in vitro chemical-based and cell-based assays. J. Food Biochem. 2019, 43, e12968. [Google Scholar] [CrossRef]
- Bayazid, A.B.; Chun, E.M.; Al Mijan, M.; Park, S.H.; Moon, S.K.; Lim, B.O. Anthocyanins profiling of bilberry (Vaccinium myrtillus L.) extract that elucidates antioxidant and anti-inflammatory effects. Food Agric. Immunol. 2021, 32, 713–726. [Google Scholar] [CrossRef]
- Son, J.E.; Lee, E.; Jung, S.K.; Kim, J.E.; Oak, M.H.; Lee, K.W.; Lee, H.J. Anthocyanidins, novel FAK inhibitors, attenuate PDGF-BB-induced aortic smooth muscle cell migration and neointima formation. Cardiovasc. Res. 2014, 101, 503–512. [Google Scholar] [CrossRef]
- Li, S.; Wu, B.; Fu, W.; Reddivari, L. The anti-inflammatory effects of dietary anthocyanins against ulcerative colitis. Int. J. Mol. Sci. 2019, 20, 2588. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Jiménez, M.R.; Cervantes-Cardoza, V.; Gallegos-Infante, J.A.; González-Laredo, R.F.; Estrella, I.; García-Gasca, T.D.J.; Herrera-Carrera, E.; Díaz-Rivas, J.O.; Rocha-Guzmán, N.E. Phenolic composition changes of processed common beans: Their antioxidant and anti-inflammatory effects in intestinal cancer cells. Food Res. Int. 2015, 76, 79–85. [Google Scholar] [CrossRef]
- Lee, S.G.; Brownmiller, C.R.; Lee, S.O.; Kang, H.W. Anti-inflammatory and antioxidant effects of anthocyanins of Trifolium pratense (red clover) in lipopolysaccharide-stimulated RAW-267.4 macrophages. Nutrients 2020, 12, 1089. [Google Scholar] [CrossRef] [PubMed]
- Baron, G.; Ferrario, G.; Marinello, C.; Carini, M.; Morazzoni, P.; Aldini, G. Effect of extraction solvent and temperature on polyphenol profiles, antioxidant and anti-inflammatory effects of red grape skin by-product. Molecules 2021, 26, 5454. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Yan, Z.; Li, D.; Ma, Y.; Zhou, J.; Sui, Z. Antioxidant and anti-inflammatory effects of blueberry anthocyanins on high glucose-induced human retinal capillary endothelial cells. Oxidative Med. Cell. Longev. 2018, 1, 1862462. [Google Scholar] [CrossRef]
- Phan, M.A.T.; Bucknall, M.; Arcot, J. Effect of different anthocyanidin glucosides on lutein uptake by Caco-2 cells, and their combined activities on anti-oxidation and anti-inflammation in vitro and ex vivo. Molecules 2018, 23, 2035. [Google Scholar] [CrossRef]
- Li, H.; Deng, Z.; Liu, R.; Loewen, S.; Tsao, R. Bioaccessibility, in vitro antioxidant activities and in vivo anti-inflammatory activities of a purple tomato (Solanum lycopersicum L.). Food Chem. 2014, 159, 353–360. [Google Scholar] [CrossRef]
- Al-Masri, A.A.; Ameen, F. Anti-inflammatory effect of anthocyanin-rich extract from banana bract on lipopolysaccharide-stimulated raw 264.7 macrophages. J. Funct. Foods 2023, 107, 105628. [Google Scholar] [CrossRef]
- Chen, T.; Hu, S.; Zhang, H.; Guan, Q.; Yang, Y.; Wang, X. Anti-inflammatory effects of Dioscorea alata L. anthocyanins in a TNBS-induced colitis model. Food Funct. 2017, 8, 659–669. [Google Scholar] [CrossRef]
- Phan, M.A.T.; Bucknall, M.; Arcot, J. Interactive effects of β-carotene and anthocyanins on cellular uptake, antioxidant activity and anti-inflammatory activity in vitro and ex vivo. J. Funct. Foods 2018, 45, 129–137. [Google Scholar] [CrossRef]
- Chao, C.Y.; Liu, W.H.; Wu, J.J.; Yin, M.C. Phytochemical profile, antioxidative and anti-inflammatory potentials of Gynura bicolor DC. J. Sci. Food Agric. 2015, 95, 1088–1093. [Google Scholar] [CrossRef] [PubMed]
- Mounir, R.; Alshareef, W.A.; El Gebaly, E.A.; El-Haddad, A.E.; Ahmed, A.M.S.; Mohamed, O.G.; Enan, E.T.; Mosallam, S.; Tripathi, A.; Selim, H.M.R.M.; et al. Unlocking the Power of Onion Peel Extracts: Antimicrobial and Anti-Inflammatory Effects Improve Wound Healing through Repressing Notch-1/NLRP3/Caspase-1 Signaling. Pharmaceuticals 2023, 16, 1379. [Google Scholar] [CrossRef]
- Blando, F.; Calabriso, N.; Berland, H.; Maiorano, G.; Gerardi, C.; Carluccio, M.A.; Andersen, Ø.M. Radical scavenging and anti-inflammatory activities of representative anthocyanin groupings from pigment-rich fruits and vegetables. Int. J. Mol. Sci. 2018, 19, 169. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, K.; Deshpande, A.; Datta, R.; Ramakrishna, W. Anti-inflammatory effects of northern highbush blueberry extract on an in vitro inflammatory bowel disease model. Nutr. Cancer 2020, 72, 1178–1190. [Google Scholar] [CrossRef]
- Sharma, A.; Lee, H.J. Anti-inflammatory activity of bilberry (Vaccinium myrtillus L.). Curr. Issues Mol. Biol. 2022, 44, 4570–4583. [Google Scholar] [CrossRef] [PubMed]
- Colombo, F.; Di Lorenzo, C.; Regazzoni, L.; Fumagalli, M.; Sangiovanni, E.; de Sousa, L.P.; Bavaresco, L.; Tomasi, D.; Bosso, A.; Aldini, G.; et al. Phenolic profiles and anti-inflammatory activities of sixteen table grape (Vitis vinifera L.) varieties. Food Funct. 2019, 10, 1797–1807. [Google Scholar] [CrossRef] [PubMed]
- Chalons, P.; Amor, S.; Courtaut, F.; Cantos-Villar, E.; Richard, T.; Auger, C.; Chabert, P.; Schni-Kerth, V.; Aires, V.; Delmas, D. Study of potential anti-inflammatory effects of red wine extract and resveratrol through a modulation of interleukin-1-beta in macrophages. Nutrients 2018, 10, 1856. [Google Scholar] [CrossRef]
- Kim, J.N.; Han, S.N.; Kim, H.K. Anti-inflammatory and anti-diabetic effect of black soybean anthocyanins: Data from a dual cooperative cellular system. Molecules 2021, 26, 3363. [Google Scholar] [CrossRef]
- Silva, C.F.; Fattori, V.; Tonetti, C.R.; Ribeiro, M.A.; Matos, R.L.; Carra, J.B.; Meurer, E.C.; Hirooka, E.Y.; Rafael, J.A.; Georgetti, S.R.; et al. Hydroethanolic extract of grape peel from Vitis labrusca winemaking waste: Antinociceptive and anti-inflammatory activities. Food Technol. Biotechnol. 2022, 60, 21–28. [Google Scholar] [CrossRef]
- Jakesevic, M.; Xu, J.; Aaby, K.; Jeppsson, B.; Ahrné, S.; Molin, G. Effects of Bilberry (Vaccinium myrtillus) in Combination with Lactic Acid Bacteria on Intestinal Oxidative Stress Induced by Ischemia–Reperfusion in Mouse. J. Agric. Food Chem. 2013, 14, 3468–3478. [Google Scholar] [CrossRef]
- Sohn, D.W.; Bae, W.J.; Kim, H.S.; Kim, S.W.; Kim, S.W. The Anti-inflammatory and Antifibrosis Effects of Anthocyanin Extracted From Black Soybean on a Peyronie Disease Rat Model. Urolog 2014, 84, 1112–1116. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, L.; Lu, F.; Yang, X.; Deng, Q.; Ji, B.; Huang, F. Retinoprotective Effects of Bilberry Anthocyanins via Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Mechanisms in a Visible Light-Induced. Molecules 2015, 20, 22395–22410. [Google Scholar] [CrossRef] [PubMed]
- Ouanouki, A.; Lamy, S.; Annabi, B. Anthocyanidins inhibit epithelial–mesenchymal transition through a TGFβ/Smad2 signaling pathway in glioblastoma cells. Mol. Carcinog. 2017, 56, 1088–1099. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Yan, Y.; Wan, P.; Chen, D.; Ding, Y.; Ran, L.; Mi, J.; Lu, L.; Zhang, Z.; Li, X.; et al. Gut microbiota modulation and anti-inflammatory properties of anthocyanins from the fruits of Lycium ruthenicum Murray in dextran sodium sulfate-induced colitis in mice. Free. Radic. Biol. Med. 2019, 136, 96–108. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, S.; Zhou, W.U.; Meng, J.; Deng, K.; Zhou, H.; Hu, N.; Suo, Y. Anthocyanin composition of fruit extracts from Lycium ruthenicum and their protective effect for gouty arthritis. Ind. Crops Prod. 2019, 129, 414–423. [Google Scholar] [CrossRef]
- Bae, W.J.; Yoon, B.I.; Kim, S.; Choi, Y.S.; Kim, S.J.; Cho, H.J.; Ha, U.S.; Hong, S.-H.; Sohn, D.W.; Kim, S.W. The anti-inflammatory and anti-microbial effects of anthocyanin extracted from black soybean on chronic bacterial prostatitis rat model. J. Sex. Med. 2013, 10, 245. [Google Scholar]
- Weinberg, R.A. How cancer arises. Sci. Am. 1996, 275, 62–70. [Google Scholar] [CrossRef]
- Bailar, J.C.; Gornik, H.L. Cancer undefeated. N. Engl. J. Med. 1997, 336, 1569–1574. [Google Scholar] [CrossRef]
- Cairns, J. The cancer problem. Sci. Am. 1975, 233, 64–79. [Google Scholar] [CrossRef]
- Welcsh, P.L.; King, M.C. BRCA1 and BRCA2 and the genetics of breast and ovarian cancer. Human. Mol. Genet. 2001, 10, 705–713. [Google Scholar] [CrossRef]
- Venkitaraman, A.R. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 2002, 108, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, B.K.; Kricker, A. The epidemiology of UV induced skin cancer. J. Photochem. Photobiol. B Biol. 2001, 63, 8–18. [Google Scholar] [CrossRef] [PubMed]
- LaDou, J. The asbestos cancer epidemic. Environ. Health Perspect. 2004, 112, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Hecht, S.S. Tobacco smoke carcinogens and lung cancer. J. Natl. Cancer Inst. 1999, 91, 1194–1210. [Google Scholar] [CrossRef] [PubMed]
- Giovannucci, E.; Willett, W.C. Dietary factors and risk of colon cancer. Ann. Med. 1994, 26, 443–452. [Google Scholar] [CrossRef]
- Brown, J.C.; Winters-Stone, K.; Lee, A.; Schmitz, K.H. Cancer, physical activity, and exercise. Compr. Physiol. 2012, 2, 2775. [Google Scholar]
- Muñoz, N.; Castellsagué, X.; de González, A.B.; Gissmann, L. HPV in the etiology of human cancer. Vaccine 2006, 24, S1–S10. [Google Scholar] [CrossRef]
- Petry, K.U. HPV and cervical cancer. Scand. J. Clin. Lab. Investig. 2014, 74, 59–62. [Google Scholar] [CrossRef]
- Chen, J.; Xu, B.; Sun, J.; Jiang, X.; Bai, W. Anthocyanin supplement as a dietary strategy in cancer prevention and management: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2022, 62, 7242–7254. [Google Scholar] [CrossRef]
- Aqil, F.; Jeyabalan, J.; Kausar, H.; Munagala, R.; Singh, I.P.; Gupta, R. Ramesh, Lung cancer inhibitory activity of dietary berries and berry polyphenolics. J. Berry Res. 2016, 6, 105–114. [Google Scholar] [CrossRef]
- Lu, J.N.; Panchanathan, R.; Lee, W.S.; Kim, H.J.; Kim, D.H.; Choi, Y.H.; Kim, G.S.; Shin, S.C.; Hong, S.C. Anthocyanins from the fruit of vitis coignetiae pulliat inhibit tnf-augmented cancer proliferation, migration, and invasion in a549 cells. Asian Pac. J. Cancer Prev. APJCP 2017, 18, 2919–2923. [Google Scholar] [CrossRef]
- Kausar, H.; Jeyabalan, J.; Aqil, F.; Chabba, D.; Sidana, J.; Singh, I.P.; Gupta, R.C. Berry anthocyanidins synergistically suppress growth and invasive potential of human non-small-cell lung cancer cells. Cancer Lett. 2012, 325, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Lage, N.N.; Layosa, M.A.A.; Arbizu, S.; Chew, B.P.; Pedrosa, M.L.; Mertens-Talcott, S.; Talcott, S.; Noratto, G.D. Dark sweet cherry (Prunus avium) phenolics enriched in anthocyanins exhibit enhanced activity against the most aggressive breast cancer subtypes without toxicity to normal breast cells. J. Funct. Foods 2020, 64, 103710. [Google Scholar] [CrossRef]
- Mazzoni, L.; Giampieri, F.; Suarez, J.M.A.; Gasparrini, M.; Mezzetti, B.; Hernandez, T.Y.F.; Battino, M.A. Isolation of strawberry anthocyanin-rich fractions and their mechanisms of action against murine breast cancer cell lines. Food Funct. 2019, 10, 7103–7120. [Google Scholar] [CrossRef] [PubMed]
- Amatori, S.; Mazzoni, L.; Alvarez-Suarez, J.M.; Giampieri, F.; Gasparrini, M.; Forbes-Hernandez, T.Y.; Afrin, S.; Provenzano, A.E.; Persico, G.; Mezzetti, B.; et al. Polyphenol-rich strawberry extract (PRSE) shows in vitro and in vivo biological activity against invasive breast cancer cells. Sci. Rep. 2016, 6, 30917. [Google Scholar] [CrossRef] [PubMed]
- Longo, L.; Platini, F.; Scardino, A.; Alabiso, O.; Vasapollo, G.; Tessitore, L. Autophagy inhibition enhances anthocyanininduced apoptosis in hepatocellular carcinoma. Mol. Cancer Ther. 2008, 7, 2476–2485. [Google Scholar] [CrossRef]
- Lu, J.N.; Lee, W.S.; Nagappan, A.; Chang, S.H.; Choi, Y.H.; Kim, H.J.; Kim, G.S.; Ryu, C.H.; Shin, S.C.; Jung, J.M.; et al. Anthocyanins from the fruit of vitis coignetiae pulliat potentiate the cisplatin activity by inhibiting PI3K/Akt signaling pathways in human gastric cancer cells. J. Cancer Prev. 2015, 20, 50–56. [Google Scholar] [CrossRef]
- Huang, H.P.; Chang, Y.C.; Wu, C.H.; Hung, C.N.; Wang, C.J. Anthocyanin-rich mulberry extract inhibit the gastric cancer cell growth in vitro and xenograft mice by inducing signals of p38/ p53 and c-jun. Food Chem. 2011, 129, 1703–1709. [Google Scholar] [CrossRef]
- Eskra, J.N.; Schlicht, M.J.; Bosland, M.C. Effects of black raspberries and their ellagic acid and anthocyanin constituents on taxane chemotherapy of castration-resistant prostate cancer cells. Sci. Rep. 2019, 9, 4367. [Google Scholar] [CrossRef]
- Shin, D.Y.; Ryu, C.H.; Lee, W.S.; Kim, D.C.; Kim, S.H.; Hah, Y.-S.; Lee, S.J.; Shin, S.C.; Kang, H.S.; Choi, Y.H. Induction of Apoptosis and Inhibition of Invasion in Human Hepatoma Cells by Anthocyanins from Meoru. Ann. N. Y. Acad. Sci. 2009, 1171, 137–148. [Google Scholar] [CrossRef]
- Zu, X.Y.; Zhang, Z.Y.; Zhang, X.W.; Yoshioka, M.; Yang, Y.N.; Li, J. Anthocyanins extracted from Chinese blueberry (Vaccinium uliginosum L.) and its anticancer effects on DLD-1 and COLO205 cells. Chin. Med. J. 2010, 123, 2714–2719. [Google Scholar] [PubMed]
- Lamy, S.; Lafleur, R.; Bédard, V.; Moghrabi, A.; Barrette, S.; Gingras, D.; Béliveau, R. Anthocyanidins inhibit migration of glioblastoma cells: Structure-activity relationship and involvement of the plasminolytic system. J. Cell. Biochem. 2007, 100, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Charepalli, V.; Reddivari, L.; Vadde, R.; Walia, S.; Radhakrishnan, S.; Vanamala, J.K.P. Eugenia jambolana (Java plum) fruit extract exhibits anti-cancer activity against early stage human HCT-116 colon cancer cells and colon cancer stem cells. Cancers 2016, 8, 29. [Google Scholar] [CrossRef] [PubMed]
- Khlifi, D.; Hayouni, E.A.; Valentin, A.; Cazaux, S.; Moukarzel, B.; Hamdi, M.; Bouajila, J. LC–MS analysis, anticancer, antioxidant and antimalarial activities of Cynodon dactylon L. extracts. Ind. Crops Prod. 2013, 45, 240–247. [Google Scholar] [CrossRef]
- Duan, J.; Guo, H.; Fang, Y.; Zhou, G. The mechanisms of wine phenolic compounds for preclinical anticancer therapeutics. Food Nutr. Res. 2021, 65. [Google Scholar]
- Bontempo, P.; Carafa, V.; Grassi, R.; Basile, A.; Tenore, G.C.; Formisano, C.; Rigano, D.; Altucci, L. Antioxidant, antimicrobial and anti-proliferative activities of Solanum tuberosum L. var. Vitelotte. Food Chem. Toxicol. 2013, 55, 304–331. [Google Scholar]
- Zhou, F.; Wang, T.; Zhang, B.; Zhao, H. Addition of sucrose during the blueberry heating process is good or bad? Evaluating the changes of anthocyanins/anthocyanidins and the anticancer ability in HepG-2 cells. Food Res. Int. 2018, 107, 509–517. [Google Scholar]
- Wang, G.; Fu, X.L.; Wang, J.J.; Guan, R.; Sun, Y.; Tony To, S.S. Inhibition of glycolytic metabolism in glioblastoma cells by Pt3glc combinated with PI3K inhibitor via SIRT3-mediated mitochondrial and PI3K/Akt–MAPK pathway. J. Cell. Physiol. 2019, 234, 5888–5903. [Google Scholar]
- Pan, F.; Liu, Y.; Liu, J.; Wang, E. Stability of blueberry anthocyanin, anthocyanidin and pyranoanthocyanidin pigments and their inhibitory effects and mechanisms in human cervical cancer HeLa cells. RSC Adv. 2019, 9, 10842–10853. [Google Scholar]
- Olejnik, A.; Kaczmarek, M.; Olkowicz, M.; Kowalska, K.; Juzwa, W.; Dembczyński, R. ROS-modulating anticancer effects of gastrointestinally digested Ribes nigrum L. fruit extract in human colon cancer cells. J. Funct. Foods 2018, 42, 224–236. [Google Scholar]
- Salehi, B.; Vlaisavljevic, S.; Adetunji, C.O.; Adetunji, J.B.; Kregiel, D.; Antolak, H.; Pawlikowska, E.; Uprety, Y.; Mileski, K.S.; Devkota, H.P.; et al. Plants of the genus Vitis: Phenolic compounds, anticancer properties and clinical relevance. Trends Food Sci. Technol. 2019, 91, 362–379. [Google Scholar] [CrossRef]
- Visvanathan, R.; Jayathilake, C.; Chaminda Jayawardana, B.; Liyanage, R. Health-beneficial properties of potato and compounds of interest. J. Sci. Food Agric. 2016, 96, 4850–4860. [Google Scholar] [CrossRef] [PubMed]
- Qin, F.; Yao, L.; Lu, C.; Li, C.; Zhou, Y.; Su, C.; Chen, B.; Shen, Y. Phenolic composition, antioxidant and antibacterial properties, and in vitro anti-HepG2 cell activities of wild apricot (Armeniaca Sibirica L. Lam) kernel skins. Food Chem. Toxicol. 2019, 129, 354–364. [Google Scholar] [CrossRef] [PubMed]
- Minutolo, A.; Gismondi, A.; Chirico, R.; Di Marco, G.; Petrone, V.; Fanelli, M.; D’Agostino, A.; Canini, A.; Grelli, S.; Albanese, L.; et al. Antioxidant Phytocomplexes Extracted from Pomegranate (Punica granatum L.) Using Hydrodynamic Cavitation Show Potential Anticancer Activity in Vitro. Antioxidants 2023, 12, 1560. [Google Scholar] [CrossRef]
- Jabamalairaj, A.; Priatama, R.A.; Heo, J.; Park, S.J. Medicinal metabolites with common biosynthetic pathways in Solanum nigrum. Plant Biotechnol. Rep. 2019, 13, 315–327. [Google Scholar] [CrossRef]
- Eid, N.; Enani, S.; Walton, G.; Corona, G.; Costabile, A.; Gibson, G.; Rowland, I.; Spencer, J.P. The impact of date palm fruits and their component polyphenols, on gut microbial ecology, bacterial metabolites and colon cancer cell proliferation. J. Nutr. Sci. 2014, 3, e46. [Google Scholar] [CrossRef]
- Wang, E.; Liu, Y.; Xu, C.; Liu, J. Antiproliferative and proapoptotic activities of anthocyanin and anthocyanidin extracts from blueberry fruits on B16-F10 melanoma cells. Food Nutr. Res. 2017, 61, 1325308. [Google Scholar] [CrossRef]
- Zhang, Y.; Vareed, S.K.; Nair, M.G. Human tumor cell growth inhibition by nontoxic anthocyanidins, the pigments in fruits and vegetables. Life Sci. 2005, 76, 1465–1472. [Google Scholar] [CrossRef]
- Aqil, F.; Gupta, A.; Munagala, R.; Jeyabalan, J.; Kausar, H.; Sharma, R.J.; Pal Singh, I.; Gupta, R.C. Antioxidant and Antiproliferative Activities of Anthocyanin/Ellagitannin-Enriched Extracts from Syzygium cumini L. (Jamun, the Indian Blackberry). Nutr. Cancer 2012, 64, 428–438. [Google Scholar] [CrossRef]
- Han, L.; Yan, Y.; Fan, M.; Gao, S.; Zhang, L.; Xiong, X.; Li, R.; Xiao, X.; Wang, X.; Ni, l.; et al. Pt3R5G inhibits colon cancer cell proliferation through inducing ferroptosis by down-regulating SLC7A11. Life Sci. 2022, 306, 120859. [Google Scholar] [CrossRef]
- Kim, M.J.; Paramanantham, A.; Lee, W.S.; Yun, J.W.; Chang, S.H.; Kim, D.C.; Park, H.S.; Choi, Y.H.; Kim, G.S.; Ryu, C.H.; et al. Anthocyanins derived from vitis coignetiae pulliat contributes anti-cancer effects by suppressing NF-κB pathways in Hep3B human hepatocellular carcinoma cells and in vivo. Molecules 2020, 25, 5445. [Google Scholar] [CrossRef] [PubMed]
- Chhikara, N.; Kaur, R.; Jaglan, S.; Sharma, P.; Gat, Y.; Panghal, A. Bioactive compounds and pharmacological and food applications of Syzygium cumini—A review. Food Funct. 2018, 9, 6096–6115. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Yan, Y.; Fan, M.; Gao, S.; Zhang, L.; Xiong, X.; Li, R.; Xiao, X.; Wang, X.; Ni, L.; et al. Anthocyanin Inhibits Colon Cancer Cell Proliferation Through Inducing Ferroptosis by Down-Regulating SLC7A11. SSRN Electron. J. 2022. [Google Scholar] [CrossRef]
Source | Dominant Anthocyanins | Ref. |
---|---|---|
Red grape (Vitis vinifera L.) | Delphinidin-3-O-glucoside, Cyanindin-3-O-glucoside, Petunidin-3-O-glucoside, Peonidin-3-O-glucoside, Malvidin-3-O glucoside, Peonidin-3-O-acetylglucoside, Malvidin-3-O-acetylglucoside, Peonidin-3-O-p-coumarylglucoside, Malvidin-3-O-p-coumarylglucoside | [59] |
Currant (Ribes nigrum L.) | Delphinidin-3-O-glucoside, Delphinidin-3-O-rutinoside, Cyanidin-3-O-glucoside, Cyanidin-3-O-rutinoside, Petunidin-3-O-rutinoside, Peonidin-3-O-rutinoside, Petunidin-3-O-glucoside, Pelargonidin-3-O-glucoside, Peonidin-3-O-glucoside, Pelargonidin-3-O-rutinoside | [53] |
Bilberry (Vaccinium myrtillus L.) | Cyanidin-3-arabinoside, Cyanidin-3-galatoside, Cyanidin-3-glucoside, Delphinidin-3-arabinoside, Delphinidin-3-glucoside, Delphinidin-3-galatoside, Malvidin-3-arabinoside, Malvidin-3-galatoside, Malvidin-3-glucoside, Peonidin-3-arabinoside, Peonidin-3-galatoside, Peonidin-3-glucoside, Petunidin-3-arabinoside, Petunidin-3-galatoside, petunidin-3-glucoside | [60] |
Apricot (Armeniaca Sibirica L. Lam) | Cyanidin 3-(4″-acetylrutinoside), Cyanidin3-(6″-acetylglucoside)-5-glucoside, Petunidin 3-galactoside, Cyanidin 3-rutinoside, Cyanidin 3-O-galactoside, Petunidin 3-rutinoside, Petunidin, Pelargonidin 3-p-coumarylglucoside, Malvidin 3-glucoside-pyruvate, Pelargonidin 3-lathyroside, Cyanidin 3-glucogalactoside, Cyanidin 3-(6-acetylgalactoside), Pelargonidin 3-arabinoside | [61] |
Barley | Cyanidin 3-glucoside, Delphindin 3-glucoside, Petunidin 3-glucoside | [62] |
Syzygium cumini L./Eugenia jambolana | Delphinidin-3,5-O-diglucoside, Cyanidin-3,5-O-diglucoside, Delphinidin-3-O-glucoside, Petunidin-3,5-O-diglucoside, Cyanidin-3-O-glucoside, Peonidin-3,5-O-diglucoside, Malvidin-3,5-O-diglucoside, Petunidin-3-O-glucoside, Malvidin-3-O-glucoside | [63] |
Plant/Source | Compounds | Cell Line/Model | Effect | Ref. | |
---|---|---|---|---|---|
Vitis coignetiae Pulliat Meoru | delphinidin-3,5-diglucoside, cyanidin-3,5-diglucoside, petunidin-3,5-diglucoside, delphinidin-3-glucoside, malvdin3,5-diglucoside, peonidin-3,5-diglucoside, cyanidin-3-glucoside, petunidin-3-glucoside, peonidin-3-glucoside, malvidin-3-glucoside | human hepatoma Hep3B cells | chemotherapeutic effects, antiproliferative, anti-invasive, apoptotic effects, inhibit cell growth by 75%, increased the amount of DNA fragments (sub-G1 fraction), mitochondrial dysfunction, reduction in antiapoptotic proteins (Bcl-2, xIAP, cIAP-1, and cIAP-2), inhibited migration and invasion | In vitro | [187] |
Vaccinium uliginosum L. (Chinese blueberry) | delphinidin, cyanidin, petunidin, peonidin, malvidin | DLD-1 and COLO205 cells human colon and colorectal cancer cell lines | inhibited the promotion and progression of cancer cells, abolished mitogen-activated protein kinase (MAPK) pathway and activator protein-1 (AP-1), destroyed cancer cells by ROS, kappa B factor, cyclooxygenase 2 (COX-2) | In vitro | [188] |
Substance obtained from Sandnes, Norway | cyanidin, delphinidin, petunidin, malvidin | human glioblastoma cell line U-87 | inhibition of glioblastoma cell migration, decreased conversion of plasminogen to plasmin, decreased EGF, IGF-1, SF/HGF, TGF-b1, and VEGF, inducing cell migration | In vitro | [189] |
Eugenia jambolana (Java plum) | delphinidin, cyanidin, petunidin, peonidin, malvidin | colon cancer cell line HCT-116, colon cancer stem cells (colon CSCs) | antiproliferative and pro-apoptotic properties, activation of caspase-glo 3/7 assay–fragmentation of DNA, increased mitochondrial protein cytochrome c | In vitro | [190] |
Cynodon dactylon L. | delphinidin-3-O-acetylglucoside, petunidin-3-O-caffeoylglucoside-5-O-glucoside, petunidin-3-O-coumarylglucoside-5-O-glucoside, malvidin-3-O-monoglucoside, delphinidin-3-O-acetylglucoside-pyruvic acid, petunidin-3- O-acetylglucoside-5-O-glucoside and cyanidin-3,5-O-diglucoside | human breast cancer cells (MCF7), and the parasite Plasmodium falciparum | anticancer, antimalarial, antioxidant activity | In vitro | [191] |
Commercial substance | cyanidin, delphinidin, peonidin, malvidin, petunidin | human glioblastoma cell | antiproliferative effect, induced death of glioblastoma cells by regulating the silent information regulator 3 (SIRT3)/p53 and PI3K/AKT/ERK pathways | In vitro | [192] |
Solanum tuberosum L. var. Vitelotte | p-coumaroyl-5-glucoside-3-rhamnoglucosides of pelargonidin, cyanidin, peonidin, delphinidin, petunidin, malvidin | hematological cancer cell lines NB4 cells, MCF-7, HeLa, MDA-MB231, LNCaP and U937 cell lines | antiproliferative effects, antioxidant, antifungal, antimicrobial activities and inhibition of apoptosis, decreased number of cells in HeLa, MCF7, U937, NB4, MDA-MB231, and LNCaP lines, inhibited growth of Gram-positive and Gram-negative bacteria | In vitro | [193] |
Wild blueberries | cyanidin, delphinidin, malvidin, peonidin, petunidin, and their glycosides | HepG-2 cells | anticancer ability, antiproliferative, apoptosis effect, antioxidant properties | In vitro | [194] |
purchased from Dutendorfer, Vestenbergsgreuth, Germany | petunidin-3-O-glucoside | DBTRG-05MG glioblastoma cell line | antiproliferative activity, increased: Bax, decreased: Bcl-2, caspase-3 activity, Akt, p-Akt, ERK, phospho-ERK, SIRT3, and phosphorylated p53, induced cell death | In vitro | [195] |
Blueberry fruits | delphinidin-3-O-glucoside, petunidin-3-O-glucoside and malvidin-3-O-glucoside | human cervical cancer HeLa cells | anticancer activities, arrested cell cycle at the G2/M phase, increased p53 protein expression, induced apoptosis, activated p38 MAPK/p53 signaling pathway, inhibited gene expression of NF-kB-dependent MMP-9 | In vitro | [196] |
Ribes nigrum L. fruit | delphinidin-3-0-glucoside, delphinidin-3-0-rutinoside, cyanidin-3-0-glucoside, cyanidin-3-O-rutinoside, petunidin-3-0-rutinoside, peonidin-3-O-rutinoside, petunidin-3-O-glucoside, pelargonidin-3-O-glucoside, peonidin-3-O-glucoside, pelargonidin-3-O-rutinoside, delphinidin-3-O-xyloside, cyanidin-3-0-xyloside, delphinidin-3-0-(6″-coumaroyl)glucoside cyanidin-3-O-(6″-coumaroyl)glucoside | human colorectal adenocarcinoma HT-29 cell line | inhibited growth of colon cancer cells, arrested cell cycle at the G0/G1 phase, induced apoptosis pathway by caspase 3, down-regulated matrix metalloproteinases MMP-2 and MMP-9, anticancer effect, modulation of accumulation intracellular ROS | In vitro | [197] |
Vitis sp., Vitis vinifera | anthocyanin 3,5-diglucoside, delphinidin-3,5-diglucoside, cyanidin-3,5-diglucoside petunidin-3,5-diglucoside, delphinidin-3-glucoside, malvidin-3,5-diglucoside, peonidin-3,5-diglucoside petunidin-3-glucoside malvidin-3-glucoside | human prostate cancer cell lines, LNCaP cells, DU145 cells, skin cancer cell lines A431, HeLa, MCF7, HT-29, and others | induced mechanism of oxidative stress, apoptosis, cell death, regulation of Cip1/p21, caspase pathway, impairment of mitogenic signaling, increased TGF-β1, antioxidant, antimicrobial, anticancer, anti-inflammatory properties | In vitro | [198] |
Potato | pelargonidin, petunidin, malvidin, cyanidin, peonidin, and delphinidin | human cancer cell lines such as human colon (HT29), liver (HepG2), cervical (HeLa), lymphoma (U937), and stomach cancer cells, A549 human lung cancer | induced apoptosis, suppressed phosphoinositide 3-kinase, Akt, NF-kappaB signaling pathway, antiproliferative activity, inhibition of ERK 1/2 phosphorylation, antioxidant, hypocholesterolemic, anti-inflammatory, antiobesity, anticancer, and antidiabetic properties | In vitro | [199] |
Armeniaca Sibirica L. Lam (bitter apricot; kernel skins) | cyanidin 3-(4″-acetylrutinoside) cyanidin3-(6″-acetylglucoside)-5-glucoside petunidin 3-galactoside cyanidin 3-rutinoside cyanidin 3-o-galactoside petunidin 3-rutinoside petunidin pelargonidin 3-p-coumarylglucoside malvidin 3-glucosidepyruvate pelargonidin 3-latyroside cyanidin 3-glucogalactoside cyanidin 3-(6-acetylgalactoside) pelargonidin 3-arabinoside | human hepatocellular carcinoma (HepG2) | induced apoptosis, accumulation ROS, cell death mediated by caspase pathway, protein BCL-2 decreased, antimicrobial activity | In vitro | [200] |
Pomegranate (Punica granatum L.) | cyanidin, delphinidin, malvidin, pelargonidin, pelargonidin 3-glucoside, peonidin, petunidin 3-glucoside | human breast cancer cell line AU565 | antiproliferative effect, reduced tumor cell proliferation and intracellular oxygen reactive species, modulation of NFkB, COX2 phosphorylation, STAT3, and AKT, anti-inflammatory effect | In vitro | [201] |
- | anthocyanidins (delphinidin, malvidin, peonidin, cyanidin, and pelargonidin) | HCT-116 colon, CSC cell line | inhibition of proliferation, induced apoptosis, activation of caspase 3, activation of caspase 7 | In vitro | [190] |
Solanum nigrum | delphinidin, cyanidin, petunidin, pelargonidin, peonidin, | MDA-MB-231, MCF-7, HepG2, SW480, MGC803, and others | anticancer, antioxidant, hepatoprotective, antiulcer, anti-inflammatory, antihyperlipidemic, antidiabetic, antibacterial, and antiseizure properties | In vitro | [202] |
Phoenix dactylifera L. | petunidin | Caco-2 cell lines | inhibited growth of colon cancer cells, antiproliferative effect | In vitro | [203] |
Blueberry fruits | delphinidin, cyanidin, petunidin, peonidin, pelargonidin, malvidin | B16-F10 melanoma cells | blocked cell cycle procession at the G0/G1 phase, inhibited proliferation, induced apoptosis, p21 and p27 regulation | In vitro | [204] |
Berries, cherries, other fruits and vegetables | Petunidin | breast cancer cell lines, NSCLC cell lines (H1299 and A549) | inhibited cell growth, arrested G2/M cell cycle, stimulated apoptosis, decreased NF-κB, tumor xenograft growth modulating Wnt/ β-catenin, Notch pathways | In vitro | [179,205] |
Chrysobalanus icaco L. | delphinidin-3-glucoside, cyanidin 3-glucoside, petunidin 3-glucoside, delphinidin 3-(6″-acetoyl) galactoside, delphinidin 3-(6″-oxaloyl) arabinoside, peonidin 3-glucoside, petunidin 3-(6″-acetoyl) galactoside or petunidin 3-(6″-oxaloyl) arabinoside, peonidin 3-(6″-acetoyl) glucoside, or peonidin 3-(6″-oxaloyl) arabinoside | TNF-α induced non-malignant colonic fibroblasts CCD-18Co and HT-29 colorectal adenocarcinoma cells | suppressed proliferation in HT-29 cells, decreased intracellular ROS production in CCD-18Co, decreased TNF-α, IL-1β, IL-6 expression | In vitro | [133] |
Vitis coignetiae Pulliat | delphinidin-3,5-diglucoside, cyanidin-3,5-diglucoside, petunidin-3,5-diglucoside, delphinidin-3-glucoside, malvdin3,5-diglucoside, peonidin-3,5-diglucoside, cyanidin-3-glucoside, petunidin-3-glucoside, peonidin-3-glucoside, malvidin-3-glucoside | human hepatoma Hep3B cells | inhibition of cell growth, mitochondrial dysfunction, reduction of antiapoptotic proteins (Bcl-2, xIAP, cIAP-1, and cIAP-2), inhibition of the migration and invasion of Hep3B | In vitro | [187] |
Syzygium cumini L. | malvidin, petunidin, delphinidin, cyanidin, and peonidin | human lung cancer A549 cells | antiproliferative properties, high oxygen radical absorbance capacity, high antioxidant potential, scavenging from 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)- and 2,2-diphenyl-1-picrylhydrazyl and ferrous ion-chelating activities | In vitro | [206] |
Four varieties of beans: Negro 8025, Bayo Victoria, Pinto Durango, and Pinto Saltillo | delphinidin-3-glucoside, malvidin-3-glucoside, petunidin-3-glucoside, pelargonidin-3-glucoside, and cyanidin-3-glucoside | human intestinal cell model | antioxidant activities, inhibited lipid peroxidation, chelating capacities, deoxy-D-ribose degradation, inhibited cell proliferation, decreased interleukin-8 (IL-8), modulated interleukin-10 (IL-10), inhibited tumor necrosis factor alpha (TNFa), NF-kb, cyclooxygenase-2 (COX-2) | In vitro | [139] |
Lycium ruthenicum Murray | petunidin 3-O-[rhamnopyranosyl-(trans-p-coumaroyl)]-5-O-(β-D-glucopyranoside) | mouse model-colon cancer (nude mice) | specific anticancer effects, cell apoptosis, ferroptosis, reactive oxygen species (ROS), antioxidant effect, block the cell cycle in G0/G1 phase, inhibition cell proliferation and tumor growth | In vivo | [207] |
Blueberry, bilberry and Indian blackberry (“Jamun”) | cyanidin, malvidin, peonidin, petunidin and delphinidin | nude mouse xenograft model and cell lines: nontumorigenic human bronchial epithelial cells (Beas2b) and the tumorigenic NSCLC H1299 (p53null/EGFRWT) and A549 (p53WT/EGFRWT) cells | Nontumorigenic effect, induction of cell apoptosis, suppression, inhibited migration of cells and invasion, influenced the oncogenic Notch and WNT pathways and b-catenin, c-myc, cyclin D1, cyclin B1, pERK, MMP9, and VEGF proteins, increased: Bcl2, PARP, decreased TNFa, NF-kappa B, prevented metastasis | In vivo | [179] |
Fruits of Vitis coignetiae Pulliat | delphinidin-3,5-diglucoside, cyanidin-3,5-diglucoside, petunidin-3,5-diglucoside, delphinidin-3-glucoside, malvdin-3,5-diglucoside, peonidin-3,5- diglucoside, cyanidin-3-glucoside, petunidin-3-glucoside, peonidin-3-glucoside, malvidin-3-glucoside | Hep3B cells in a xenograft mouse model | inhibited the tumorigenicity of Hep3B cells, the activation NF-κB, suppressed intra-tumoral microvessel density, Ki67, anticancer effects, inhibition, proliferation, invasion | In vivo | [208] |
Lonicera caerulea L. | cyanidin, delphinidin, petunidin, pelargonidin, malvidin, and peonidin | male BALB/cByJNarl mice–lung large-cell carcinoma | determined tumor growth, apoptosis, inflammation, metastasis, inhibited tumor growth; increased tumor apoptosis; decreased inflammatory cytokines: IL-1β, TNF-α, C-reactive protein, IL-6; decreased inflammation-related factors: cyclooxygenase-2 protein and nuclear factor-κB (NF-κB) mRNA; transforming growth factor-β, CD44, epidermal growth factor receptor, and vascular endothelial growth factor, expression of factors Ki67, CD45, PDL1, and CD73, decreased tumor sizes, increased tumor inhibition | In vivo | [71] |
Syzygium cumini | delphinidin-3,5-O-diglucoside, cyanidin-3,5-O-diglucoside, delphinidin-3-O-glucoside, petunidin-3,5-O-diglucoside, cyanidin-3-O-glucoside, peonidin-3,5-O-diglucoside, malvidin-3,5-O-diglucoside, petunidin-3-O-glucoside, malvidin-3-O-glucoside | breast cancer, rat brain lipid peroxidation, Swiss mice, rabbits | inhibited apoptosis, hepatoprotective, antioxidant hypoglycemic, anti-inflammatory, antianemic, antibacterial, antiallergic, hypolipidemic, and antipyretic properties, inhibited apoptosis | In vivo | [209] |
Lycium ruthenicum Murray | delphinidin-3,5-O-diglucoside, petunidin-3,5-O-diglucoside, malvidin-3,5-O-diglucoside | male BALB/c-nude mice, colon cancer cells | anticancer effects, reduced cell activity, blocked the cell cycle in the G0/G1 phase, induced apoptosis, ferroptosis, changes in mitochondrial morphology, increased ROS, malondialdehyde level, decreased protein expression: SLC7A11, GPX4, increased: TFR1 | In vivo | [210] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalczyk, T.; Muskała, M.; Merecz-Sadowska, A.; Sikora, J.; Picot, L.; Sitarek, P. Anti-Inflammatory and Anticancer Effects of Anthocyanins in In Vitro and In Vivo Studies. Antioxidants 2024, 13, 1143. https://doi.org/10.3390/antiox13091143
Kowalczyk T, Muskała M, Merecz-Sadowska A, Sikora J, Picot L, Sitarek P. Anti-Inflammatory and Anticancer Effects of Anthocyanins in In Vitro and In Vivo Studies. Antioxidants. 2024; 13(9):1143. https://doi.org/10.3390/antiox13091143
Chicago/Turabian StyleKowalczyk, Tomasz, Martyna Muskała, Anna Merecz-Sadowska, Joanna Sikora, Laurent Picot, and Przemysław Sitarek. 2024. "Anti-Inflammatory and Anticancer Effects of Anthocyanins in In Vitro and In Vivo Studies" Antioxidants 13, no. 9: 1143. https://doi.org/10.3390/antiox13091143
APA StyleKowalczyk, T., Muskała, M., Merecz-Sadowska, A., Sikora, J., Picot, L., & Sitarek, P. (2024). Anti-Inflammatory and Anticancer Effects of Anthocyanins in In Vitro and In Vivo Studies. Antioxidants, 13(9), 1143. https://doi.org/10.3390/antiox13091143