Melatonin Enhances Heat Tolerance via Increasing Antioxidant Enzyme Activities and Osmotic Regulatory Substances by Upregulating zmeno1 Expression in Maize (Zea mays L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. RNA Extraction and RT-qPCR Analysis
2.3. Construction of Overexpression Lines of zmeno1
2.4. Construction of Knockout Plants of zmeno1
2.5. Determination of Melatonin and MDA Content, Fresh Weight, Leaf RWC, and Survival Rate
2.6. Determination of SOD, POD, CAT, and APX Activities, H2O2, O2−, and GSH Content
2.7. Determination of the Rate of Electrolyte Leakage (REL), Water Potential, Pro and Soluble Protein Content
3. Results
3.1. H and MH Treatments Induce Upregulation of ZmENO1 Expression
3.2. MT Enhances Heat Tolerance in Maize Seedlings by UpregulatingZmENO1 Expression
3.3. MT Upregulates ZmENO1 Expression to Enhance the Antioxidant Activities in Maize Seedlings
3.4. MT Upregulates ZmENO1 Expression to Enhance the Content of Osmoregulatory Substances in Maize Seedlings
4. Discussion
4.1. MT Enhances Heat Tolerance in Maize Seedlings by Upregulating zmeno1 Expression Level
4.2. The Effect of Antioxidant Enzyme Activity on Plant Stress Tolerance
4.3. The Effect of Content of Osmoregulatory Substances on Plant Stress Tolerance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, L.; Ye, F.; Fahim, A.M.; Ma, C.; Pang, Y.; Zhang, X.; Zhang, Q.; Lu, X. Transcription factor ZmDof22 enhances drought tolerance by regulating stomatal movement and antioxidant enzymes activities in maize (Zea mays L.). Theor. Appl. Genet. 2024, 137, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.; Zhang, C.; Wang, W.; Cao, Z.; Li, S.; Li, H.; Zhu, W.; Huang, Y.; Bao, M.; He, Y.; et al. Comparative transcriptome analysis of different heat stress responses between self-root grafting line and heterogeneous grafting line in rose. Hortic. Plant J. 2021, 7, 243–255. [Google Scholar] [CrossRef]
- Nie, X.; Du, Y. Experts and Scholars Discuss the Response to High Temperature and Drought under the Influence of Climate Change. China Meteorological Administration Website. 2022. Available online: https://www.cma.gov.cn/2011xwzx/2011xqxkj/2011xkjdt/202209/t20220927_5106189.html (accessed on 3 September 2024).
- Saidi, I.; Yousfi, N.; Borgi, M.A. Salicylic acid improves the antioxidant ability against arsenic-induced oxidative stress in sunflower (Helianthus annuus) seedling. J. Plant Nutr. 2017, 40, 2326–2335. [Google Scholar] [CrossRef]
- Park, S.; Back, K. Melatonin promotes seminal root elongation and root growth in transgenic rice after germination. J. Pineal Res. 2012, 53, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Arnao, M.B.; Hernández-Ruiz, J. Functions of melatonin in plants: A review. J. Pineal Res. 2015, 59, 133–150. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Xin, L.; Li, Z.; Zheng, H.; Mao, J.; Yang, Q. Physiology and transcriptome analyses reveal a protective effect of the radical scavenger melatonin in aging maize seeds. Free. Radic. Res. 2018, 52, 1094–1109. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernández-Ruiz, J. Melatonin: A New Plant Hormone and/or a Plant Master Regulator? Trends Plant Sci. 2019, 24, 38–48. [Google Scholar] [CrossRef]
- Zhang, M.C.; He, S.Y.; Qin, B.; Wang, M.X.; Jin, X.J.; Ren, C.Y.; Wu, Y.K.; Zhang, Y.X. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress. Acta Agron. Sin. 2021, 47, 1791–1805. [Google Scholar]
- Mukherjee, S.; Corpas, F.J. Melatonin: Role in Plant Signaling, Growth and Stress Tolerance; Springer Nature: Cham, Switzerland, 2023. [Google Scholar]
- Colombage, R.; Singh, M.B.; Bhalla, P.L. Melatonin and abiotic stress tolerance in crop plants. Int. J. Mol. Sci. 2023, 24, 7447. [Google Scholar] [CrossRef]
- Ahmad, I.; Zhu, G.; Zhou, G.; Liu, J.; Younas, M.U.; Zhu, Y. Melatonin Role in Plant Growth and Physiology under Abiotic Stress. Int. J. Mol. Sci. 2023, 24, 8759. [Google Scholar] [CrossRef]
- Shi, H.; Tan, D.; Reiter, R.J.; Ye, T.; Yang, F.; Chan, Z. Melatonin induces class A1 heat-shock factors (HSFA1s) and their possible involvement of thermotolerance in Arabidopsis. J. Pineal Res. 2015, 58, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Brewer, J.M.; Wampler, J.E. A differential scanning calorimetric study of the effects of metal ions, substrate/product, substrate analogues and chaotropic anions on the thermal denaturation of yeast enolase 1. Int. J. Biol. Macromol. 2001, 28, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Ucker, D.S. Exploiting death: Apoptotic immunity in microbial pathogenesis. Cell Death Differ. 2016, 23, 990–996. [Google Scholar] [CrossRef]
- Yufei, H. Research progress on the function of enolase in model organisms. Metal Mater. 2019, 39, 15–17. [Google Scholar]
- Eremina, M.; Rozhon, W.; Yang, S.; Poppenberger, B. ENO2 activity is required for the development and reproductive success of plants, and is feedback-repressed by AtMBP-1. Plant J. 2015, 81, 895–906. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Chen, C.; Shi, Z.-H.; Cheng, H.-M.; Bing, J.; Ma, X.-F.; Zheng, C.-X.; Li, H.-J.; Zhang, G.-F. Identification of salinity-related genes in ENO2 mutant (eno2) of Arabidopsis thaliana. J. Integr. Agric. 2018, 17, 94–110. [Google Scholar] [CrossRef]
- Lee, H.; Guo, Y.; Ohta, M.; Xiong, L.; Stevenson, B.; Zhu, J. LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO J. 2002, 21, 2692–2702. [Google Scholar] [CrossRef]
- Forsthoefel, N.R.; Cushman, M.; Cushman, J.C. Posttranscriptional and Posttranslational Control of Enolase Expression in the Facultative Crassulacean Acid Metabolism Plant Mesembryanthemum crystallinum L. Plant Physiol. 1995, 108, 1185–1195. [Google Scholar] [CrossRef] [PubMed]
- Iida, H.; Yahara, I. Yeast heat-shock protein of Mr 48,000 is an isoprotein of enolase. Nature 1985, 315, 688–690. [Google Scholar] [CrossRef]
- Wei, Y.; Chang, Y.; Zeng, H.; Liu, G.; He, C.; Shi, H. RAV transcription factors are essential for disease resistance against cassava bacterial blight via activation of melatonin biosynthesis genes. J. Pineal Res. 2017, 64, e12454. [Google Scholar] [CrossRef]
- Lakra, N.; Nutan, K.K.; Das, P.; Anwar, K.; Singla-Pareek, S.L.; Pareek, A. A nuclear-localized histone-gene binding protein from rice (OsHBP1b) functions in salinity and drought stress tolerance by maintaining chlorophyll content and improving the antioxidant machinery. J. Plant Physiol. 2015, 176, 36–46. [Google Scholar] [CrossRef]
- Wang, X.K. Principle and Technology of Plant Physiological and Biochemical Test; Higher Education Press: Beijing, China, 2006. [Google Scholar]
- Qian, W. Effects of Water and Salt Stress on Hydraulic Characteristics of Maize Stem Xylem; North China University of Water Resources and Electric Power: Beijing, China, 2021. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Lu, M.; Zhang, Y.; Cheng, J.; Li, W. Regulation of Melatonin on Photosynthetic Characteristics and Antioxidant Enzyme Activities in Maize Leaves under High Temperature Stress Condition. J. Maize Sci. 2024, 32, 90–99. [Google Scholar]
- Martineau, J.R.; Specht, J.E.; Williams, J.H.; Sullivan, C.Y. Temperature tolerance in soybeans. I. evaluation of a technique for assessing cellular membrane thermostability. Crop Sci. 1979, 19, 75. [Google Scholar] [CrossRef]
- Zhou, W.; Xue, D.; Zhang, G. Identification and physiological characterization of thermo-tolerant rice genotypes. J. Zhejiang Univ. Agric. Life Sci. 2012, 38, 1–9. [Google Scholar]
- Sairam, R.K.; Tyagi, A. Physiology and molecular biology of salinity stress tolerance in plants. Curr. Sci. 2004, 86, 407–421. [Google Scholar]
- Duan, J.; Wang, Y.; Kang, L.; Zhang, C.; Wang, M.; Du, S.; Cao, D. Effects of high temperature stress on antioxidant system and accumulation of osmotic adjustment substance of Bromeliaceae. Chin. Agric. Sci. Bull. 2010, 26, 164–169. [Google Scholar]
- Campos, M.L.D.O.; Hsie, B.S.D.; Granja, J.A.D.A.; Correia, R.M.; Almeida-Cortez, J.S.D.; Pompelli, M.F. Photosynthesis and antioxidant activity in Jatropha curcas L. under salt stress. Braz. J. Plant Physiol. 2012, 24, 55–67. [Google Scholar] [CrossRef]
- Zhou, H.D.; Luo, X.P.; Tu, M.X.; Li, Z.G. Phytomelatonin: An Emerging Signal Molecule Responding to Abiotic Stress. Biotechnol. Bull. 2024, 40, 41–51. [Google Scholar]
- Li, H.; Chang, J.; Chen, H.; Wang, Z.; Gu, X.; Wei, C.; Zhang, Y.; Ma, J.; Yang, J.; Zhang, X. Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Front. Plant Sci. 2017, 8, 295. [Google Scholar] [CrossRef]
- Kaya, C.; Higgs, D.; Ashraf, M.; Alyemeni, M.N.; Ahmad, P. Integrative roles of nitric oxide and hydrogen sulfide in melatonin-induced tolerance of pepper (Capsicum annuum L.)plants to iron deficiency and salt stress alone or in combination. Physiol. Plant 2020, 168, 256–277. [Google Scholar] [CrossRef] [PubMed]
- Mohamadi Esboei, M.; Ebrahimi, A.; Amerian, M.R.; Alipour, H. Melatonin confers fenugreek tolerance to salinity stress by stimulating the biosynthesis processes of enzymatic, non-enzymatic antioxidants, and diosgenin content. Front Plant Sci. 2022, 13, 890613. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.X.; Zhang, X.Y.; Liu, C.Y.; Liu, K.; Bi, H.G.; Ai, X.Z. Alleviating effect of exogenous melatonin and calcium on the peroxidation damages of cucumber under high temperature stress. Chin. J. Appl. Ecol. 2022, 33, 2725–2735. [Google Scholar]
- Altaf, M.A.; Hao, Y.; Shu, H.; Mumtaz, M.A.; Cheng, S.; Alyemeni, M.N.; Ahmad, P.; Wang, Z. Melatonin enhanced the heavy metal-stress tolerance of pepper by mitigating the oxidative damage and reducing the heavy metal accumulation. J. Hazard. Mater. 2023, 454, 131468. [Google Scholar] [CrossRef]
- Ye, X.; He, H.; Zhang, Y.; Zhu, X. Effects of proline on physiological indexes related to heat resistance of kiwifruit seedlings under high temperature stress. Shandong Agric. Sci. 2010, 42, 44–46. [Google Scholar]
- Yang, H.G.; Yan, S.L.; Chen, H.J.; Yang, C.F.; Yang, F.S.; Liu, Z.F. Effect of exoge nous methyl jasmonate, calcium and salicylic acid on the heat tolerance in Phalaenopsis seedlings under high temperature stress. Chin. Agric. Sci. Bull. 2011, 27, 150–157. [Google Scholar]
- Chen, W.P.; Li, P.H. Membrane stabilization by abscisic acid under cold aids proline in alleviating chilling injury in maize (Zea mays L.) cultured cells. Plant Cell Environ. 2002, 25, 955–962. [Google Scholar] [CrossRef]
- Korkmaz, A.; Değer, Ö.; Szafrańska, K.; Köklü, Ş.; Karaca, A.; Yakupoğlu, G.; Kocacinar, F. Melatonin effects in enhancing chilling stress tolerance of pepper. Sci. Hortic. 2021, 289, 110434. [Google Scholar] [CrossRef]
- He, M.; Mei, S.; Zhai, Y.; Geng, G.; Yu, L.; Wang, Y. Effects of melatonin on the growth of sugar beet (Beta vulgaris L.)seedlings under drought stress. J. Plant Growth Regul. 2023, 42, 5116–5130. [Google Scholar] [CrossRef]
- Back, K. Melatonin metabolism, signaling and possible roles in plants. Plant J. 2021, 105, 376–391. [Google Scholar] [CrossRef]
- Tan, D.X.; Reiter, R.J. An evolutionary view of melatonin synthesis and metabolism related to its biological functions in plants. J. Exp. Bot. 2020, 71, 4677–4689. [Google Scholar] [CrossRef] [PubMed]
- Meneses-Reyes, G.I.; Rodriguez-Bustos, D.L.; Cuevas-Velazquez, C.L. Macromolecular crowding sensing during osmotic stress in plants. Trends Biochem. Sci. 2024, 49, 480–493. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Pu, H.; Shan, S.; Zhang, P.; Li, J.; Song, H.; Xu, X. Melatonin enhanced chilling tolerance and alleviated peel browning of banana fruit under low temperature storage. Postharvest Biol. Technol. 2021, 179, 111571. [Google Scholar] [CrossRef]
- Luo, M.; Wang, D.; Delaplace, P.; Pan, Y.; Zhou, Y.; Tang, W.; Chen, K.; Chen, J.; Xu, Z.; Ma, Y.; et al. Melatonin enhances drought tolerance by affecting jasmonic acid and lignin biosynthesis in wheat (Triticum aestivum L.). Plant Physiol. Biochem. 2023, 202, 107974. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Feng, Y.; Zhang, X.; Bi, H.; Ai, X. SlTDC1 Overexpression Promoted Photosynthesis in Tomato under Chilling Stress by Improving CO2 Assimilation and Alleviating Photoinhibition. Int. J. Mol. Sci. 2023, 24, 11042. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, L.; Fahim, A.M.; Liang, X.; Fan, S.; Song, Y.; Liu, H.; Ye, F.; Ma, C.; Zhang, D.; Lu, X. Melatonin Enhances Heat Tolerance via Increasing Antioxidant Enzyme Activities and Osmotic Regulatory Substances by Upregulating zmeno1 Expression in Maize (Zea mays L.). Antioxidants 2024, 13, 1144. https://doi.org/10.3390/antiox13091144
Cao L, Fahim AM, Liang X, Fan S, Song Y, Liu H, Ye F, Ma C, Zhang D, Lu X. Melatonin Enhances Heat Tolerance via Increasing Antioxidant Enzyme Activities and Osmotic Regulatory Substances by Upregulating zmeno1 Expression in Maize (Zea mays L.). Antioxidants. 2024; 13(9):1144. https://doi.org/10.3390/antiox13091144
Chicago/Turabian StyleCao, Liru, Abbas Muhammad Fahim, Xiaohan Liang, Senmiao Fan, Yinghui Song, Huafeng Liu, Feiyu Ye, Chenchen Ma, Dongling Zhang, and Xiaomin Lu. 2024. "Melatonin Enhances Heat Tolerance via Increasing Antioxidant Enzyme Activities and Osmotic Regulatory Substances by Upregulating zmeno1 Expression in Maize (Zea mays L.)" Antioxidants 13, no. 9: 1144. https://doi.org/10.3390/antiox13091144
APA StyleCao, L., Fahim, A. M., Liang, X., Fan, S., Song, Y., Liu, H., Ye, F., Ma, C., Zhang, D., & Lu, X. (2024). Melatonin Enhances Heat Tolerance via Increasing Antioxidant Enzyme Activities and Osmotic Regulatory Substances by Upregulating zmeno1 Expression in Maize (Zea mays L.). Antioxidants, 13(9), 1144. https://doi.org/10.3390/antiox13091144