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Abstract: The encapsulation of fish oil by monoaxial electrospraying using kafirin or zein pro-
teins as hydrophobic wall materials was investigated. Kafirin resulted in spherical fish oil-loaded
nanocapsules (>50% of capsules below 1 µm), whereas zein led to fish oil-loaded nanocapsules
with non-spherical morphology (>80% of capsules below 1 µm). Both hydrophobic encapsulating
materials interacted with fish oil, successfully entrapping the oil within the protein matrix as indi-
cated by Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy results. FTIR also
suggested hydrogen bonding between fish oil and the proteins. Trapped radicals in the encapsulation
matrix that were detected by electron paramagnetic resonance (EPR), indicated oxidation during
electrospraying and storage. Results from isothermal (140 ◦C) differential scanning calorimetry
(DSC) denoted that the encapsulation of fish oil by electrospraying using both kafirin or zein as wall
materials protected fish oil from oxidation. In particular, the zein-based nanocapsules were 3.3 times
more oxidatively stable than the kafirin-based nanocapsules, which correlates with the higher oil
encapsulation efficiency found for zein-based capsules. Thus, this study shows that kafirin might be
considered a hydrophobic wall material for the encapsulation of fish oil by electrospraying, although
it prevented lipid oxidation to a lower extent when compared to zein.

Keywords: lipid oxidation; omega-3 polyunsaturated fatty acids; encapsulation; prolamins; kafirin;
zein; electron paramagnetic resonance; differential scanning calorimetry

1. Introduction

The populations of most countries in the world present a low or considerably low
omega-3 index (Schuchardt et al., 2024), which is associated with an increasing risk of
chronic diseases (e.g., cardiovascular and inflammatory diseases) [1]. Therefore, the food
industry aims to develop omega-3-enriched food, which could raise the omega-3 level in
those populations with low consumption of natural omega-3-rich food products (e.g., fatty
fish, krill, some microalgae species) [2]. Fish oil, which is rich in omega-3 polyunsaturated
fatty acids such as eicosapentaenoic (C20:5n-3, EPA) and docosahexaenoic (C22:6n-3, DHA)
acids, is the most common ingredient used to produce omega-3-fortified food products [3].
Nevertheless, EPA and DHA are highly prone to oxidation, leading to rancidity and altering
the nutritional and organoleptic properties of foods [4].

The encapsulation of fish oil, consisting of the entrapment of the oil within biopolymers
wall material(s), is widely carried out by the food industry to (i) enhance the incorporation
of lipophilic ingredients into aqueous-based food matrices, (ii) increase the oxidative stabil-
ity of the resulting fortified product, and (iii) improve the target delivery of the bioactive
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in the small intestine [5,6]. Electrospraying, which allows drying at room temperature,
which can mitigate lipid oxidation, has been reported as a relevant encapsulation technique
used to produce omega-3 nano-microencapsulates [7]. In electrospraying, a high-voltage
electrostatic field is applied between an injector and a collector charging the surface of
the feed solution, which leads to the formation of a Taylor cone, the ejection of a jet, jet
destabilization into charged droplets due to the low viscoelasticity of the feed solution, and
solvent evaporation in the way to the collector, where dried particles are obtained [8,9]. In
particular, the formation of a polymer jet is mainly governed by Coulombic, electric field,
viscoelastic, and surface tension forces and other forces, such as air drag and gravitational
forces. Depending on the relative magnitude of viscoelastic and surface tension, the jet can
be deposited as electrospun fibres or broken into liquid droplets forming electrosprayed
particles [10]. Nevertheless, electrosprayed capsules loaded with omega-3 have been mainly
produced with hydrophilic polysaccharides (maltodextrin, glucose syrup, dextran, Arabic
gum) and/or aqueous-soluble proteins (whey proteins, soy proteins, gelatin) as main
encapsulating agents [7,11]. The use of an aqueous-soluble encapsulating agent results in
potential capsule disintegration when incorporating these encapsulates into aqueous-based
food matrices, which does not enhance the oxidative stability of the encapsulated fish
oil [12].

Protein-based materials provide various advantages as encapsulating agents when
compared with carbohydrates, such as a high binding capacity, the availability of a large
surface area for entrapment, and an ability to interact with molecules of different polar-
ities based on pH with electrostatic interaction or hydrophobic bonds [13]. In particu-
lar, zein, a prolamin obtained from maize displays significant hydrophobic properties
and has been widely investigated as wall material for the encapsulation of fish oil by
electrospraying [14–16]. In fact, in our previous study [16], we confirmed that fish oil-
loaded electrosprayed capsules produced with zein as the encapsulating agent remained
intact after their incorporation into an aqueous-based food matrix such as mayonnaise,
improving the oxidative stability of the omega-3-fortified product. However, zein has been
reported to present several maize impurities, which might lead to undesired colour, odour,
or flavour, limiting its use as an encapsulating material [8]. Therefore, further research on
the use of alternative prolamin proteins to encapsulate fish oil is required.

Sorghum, which is a drought-tolerant crop that properly adapts to hot and arid regions,
is gaining interest in Europe not only for bio-alcohol production or animal feed but also for
food applications [17,18]. Indeed, protein content in sorghum grains ranges between 6 and
18 wt.%, serving as a source of natural and sustainable plant protein-based ingredients [18].
Interestingly, the most abundant protein in sorghum grain is kafirin (making up 70–90%
of the total), a food storage prolamin with α-, β-, and γ-subunits with similar molecular
weight and structure when compared to zein [19,20]. Moreover, kafirin presents higher
cysteine content than zein, resulting in higher hydrophobicity due to the higher formation
of disulfide crosslinks [21]. In addition, and contrarily to other grain prolamins (e.g., wheat,
rye or barley), kafirin is non-allergic and thus safe for consumers with celiac disease [22].

Kafirin particles, produced using the antisolvent method, have often been used for
the wet encapsulation of hydrophobic bioactive ingredients (e.g., curcumin) through the
production of Pickering emulsions [19,23]. Furthermore, kafirin has been successfully
used as sole wall material for the dry encapsulation (e.g., dried particles) of catechin
and sorghum tannins by freeze-drying [24], or in combination with sodium caseinate
for the encapsulation of soybean oil by spray-drying [25]. Recently, we reported the
development of fish oil-loaded electrosprayed particles using kafirin as the sole wall
material [26]. Nonetheless, to the best of our knowledge, the ability of kafirin to protect
fish oil encapsulated by electrospraying from lipid oxidation and the comparison with the
use of zein have not yet been studied.

Therefore, this work aimed at investigating the oxidative stability of fish oil-loaded
capsules produced by electrospraying using zein or kafirin as hydrophobic wall mate-
rials. First, the physicochemical properties of the obtained capsules (size, morphology,
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encapsulation efficiency, glass transition temperature) were evaluated. Secondly, electron
paramagnetic resonance (EPR) and differential scanning calorimetry (DSC) were used to
study the oxidative stability of the encapsulates.

2. Materials and Methods
2.1. Materials

Fish oil (FO) (Omega Oil 1812 TG Gold) was acquired from BASF Personal Care
and Nutrition GmbH (Illertissen, Germany). Zein (Z) from maize, grade Z3625 (Lot#
SLCD0046) with protein content 94.0 ± 0.4% (conversion factor nitrogen-to-protein of 6.25),
was purchased from Sigma-Aldrich S.A. (Madrid, Spain). Spin trap (α-Phenyl-N-tertbutyl
nitrone, PBN) was purchased from Sigma Aldrich (Madrid, Spain). The rest of the reagents
used were of analytical grade.

2.2. Isolation of Kafirin

Kafirin (K) was isolated from decorticated grain from a commercial sorghum hybrid
(F1000) (NuLife Market, Scott City, KS, USA) as described by Cetinkaya et al. [26]. The
protein content of the isolated kafirin was determined via nitrogen combustion with a Leco
FP-628 nitrogen determinator (Leco Corporation, St. Joseph, MI, USA) with a nitrogen-to-
protein conversion factor of 6.25. Protein content was 89.2% (as-is basis).

2.3. Characterization of Kafirin

For RP-HPLC, isolated kafirin was dissolved in 60% t-butanol (v/v) with 0.5% sodium
acetate (w/v) and 2% β-mercaptoethanol (v/v). After being dissolved, the sample was
alkylated with 4-vinylpyridine and analyzed with a C18 column as described by Bean
et al. [27]. For size exclusion analysis (SEC), the kafirin isolate was dissolved (2 mg/mL) in
a 50 mM Tris-borate buffer, pH 7.0, containing 1% SDS (w/v), and analyzed as described
by Ioerger et al. [28]. Molecular weight marker proteins bovine serum albumin (66 kDa),
carbonic anhydrase (29 kDa), and lysozyme (14.3 kDa) were analyzed under the same
conditions as the kafirin isolate. Results are shown in the Supplementary Materials.

2.4. Preparation of Electrospraying Solutions

Fish oil-in-water emulsions were produced to achieve an oil load of the dry capsules
of ~13 wt.%. For this purpose, fish oil (2.0 wt.%) was dispersed in ethanol/water solvent
(85/15, v/v) containing kafirin or zein (15 wt.%) using a hand disperser, POLYTRON®

PT1200E, (Kinematic Inc., New York, NY, USA), set at 18,000 rpm. The fish oil was added
during the first minute of mixing, and the total mixing time was 2 min. The zein or kafirin
was dissolved in the ethanol/water solvent (85/15, v/v) by magnetic stirring (300 rpm) for
1 h at room temperature. To investigate the oxidative stability of the encapsulated systems
by EPR, PBN was added to fish oil as an ethanol solution (50 mg/mL) to obtain a final
concentration of 30 mM of PBN in the lipid phase.

2.5. Production of Electrosprayed Capsules

Immediately after production, emulsions were monoaxially electrosprayed using the
SpinBox® electrospinning device (Bioinicia S.L., Valencia, Spain), which consists of a drying
chamber equipped with a variable high-voltage power supply, a syringe pump, and a
stainless-steel collector plate. The infusing flow rate was fixed to 0.6 mL/h regardless of
the protein-based emulsion, the voltage applied varied between 15 and 18 kV, and the
distance from the injector to the collector was kept at 15 cm. Electrospraying was carried
out using a 16 G needle at ambient conditions (19–23 ◦C, 22–50% RH) in batches of 30 min.
The nanocapsules were collected from the different batches and gently mixed to ensure
that the analyzed samples were homogeneous and representative of the obtained material.
Kafirin and zein nanocapsules without fish oil were designated as K-NFO and Z-NFO,
respectively. Kafirin and zein nanocapsules loaded with fish oil were designated as K-FO
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and Z-FO, respectively. The capsules were stored in airtight flasks, at −80 ◦C in the dark
until further analysis.

2.6. Characterization of Electrosprayed Capsules
2.6.1. Scanning Electron Microscopy

A FESEM microscope (LEO 1500 GEMINI, Zeiss, Oberkochen, Germany) was used
to determine the morphology of the capsules by scanning electron microscopy (SEM).
The samples were placed on carbon tape and carbon coated as described in our previous
work [29]. The SEM images were acquired in the range of 500×–15 k× magnification
with a 5 kV accelerating voltage. The particle size distributions and mean diameters were
determined by measuring 160 randomly selected capsules using the ImageJ software 1.47
(National Institute of Health, Bethesda, MD, USA). The polydispersity index (PdI) was
calculated as PdI = (σ/D)2, where σ corresponds to the standard deviation of the diameter,
and D is the mean diameter of the capsules.

2.6.2. Encapsulation Efficiency (EE)

The encapsulation efficiency of the electrosprayed capsules was measured as described
in our previous work, with some modifications, including a washing method and the
removal of non-encapsulated fish oil from the surface of the capsules [16]. In brief, ca. 25 mg
of nanocapsules were placed inside a funnel made from grade 1 filter paper with 11 µm
particle retention (Whatman, Buckinghamshire, UK), and then 5 mL of isooctane was gently
poured over the capsules. The absorbance of the filtrate solvent was measured in triplicate
at 284 nm using a NanoDropTM One/OneC Microvolume UV–Vis spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). The amount of extractable oil contained
in the filtrate was determined from a calibration curve (R2 = 0.99) prepared by dissolving
various quantities of fish oil in isooctane (0.005–0.15 mg/mL). The EE was calculated
as follows:

EE % =
A − B

A
·100 (1)

where A refers to the theoretical oil load of the nanocapsules (g), and B to the extractable
oil (g). The measurements were carried out in triplicate.

2.6.3. Attenuated Total Reflection–Fourier Transform Infrared (ATR–FTIR) Spectroscopy

FTIR analysis was performed using a Nicolet iS50 FT-IR (Thermo Fisher Scientific,
Waltham, MA, USA). To conduct the measurement, enough of each sample was placed on
the diamond ATR to ensure proper coverage. The spectra were recorded over a wavenum-
ber range of 4000–400 cm−1 with 32 scans at a resolution of 4 cm−1, at room temperature
(20 ± 2 ◦C).

2.6.4. Raman Spectroscopy

The Raman spectra of electrosprayed nanocapsules were acquired using a DXR3 Ra-
man microscope (Thermo Fisher Scientific, Waltham, MA, USA) equipped with Omnic 9.12.928
software. The spectra were collected with a laser wavelength of 532 nm, a preview exposure
time of 5 s, a number of exposures of 20 s, a laser power of 8 mW, 10× magnification, a
pinhole size of 25, and an aperture within the range of 4000 to 400 cm−1.

2.6.5. Differential Scanning Calorimetry (DSC)

The glass transition temperature (Tg), which is a crucial property for electrosprayed
nanocapsules, was determined using the modulated differential scanning calorimetry
(MDSC) method using a Discovery DSC 250 (TA Instruments Ltd., New Castle, DE, USA)
following the protocol described by García-Moreno et al. [30]. For obtaining the sample
thermograms, 3 ± 0.15 mg of capsules were hermetically sealed in an aluminium pan
(Tzero aluminium hermetic pans, TA Instruments, New Castle, DE, USA), while an empty
hermetically sealed aluminium pan was used as a reference. Samples were initially cooled
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down and equilibrated for 10 min at −80 ◦C, and then heated to 200 ◦C with a heating ramp
of 10 ◦C/min under a nitrogen gas at 50 mL/min flow rate. The glass transition midpoint
of the samples was detected at the step change point using TRIOS software (V5.6.87) (TA
Instruments, New Castle, DE, USA). The measurements for each sample were conducted
in duplicate.

2.7. Oxidative Stability of Electrosprayed Capsules
2.7.1. Electron Paramagnetic Resonance (EPR)

The EPR spectra of the encapsulated systems containing the spin trap (PBN) were
recorded using a MiniScope MS5000 (Bruker, Rheinstetten, Germany) at ambient tempera-
ture. The modulation amplitude used in all EPR measurements was kept constant in each
determination at 0.2 mT. Quartz EPR tubes (5 mm OD) were filled with powder to obtain a
sample height of ~3.5 cm to ensure that the part of the tube inside the resonant cavity of the
spectrometer was completely filled with sample [31]. Thus, the volume of the capsules was
kept constant for the analyses. Three tubes were prepared per sample and subsequently
stored at 25 ◦C in the dark for 25 days. Additionally, the spin probe PBN was added to pure
fish oil to obtain a concentration of 30 mM in the oil. The EPR spectra of fish oil containing
PBN were measured by soaking a filter paper in the oil and placing it in an EPR tube.

2.7.2. Differential Scanning Calorimetry (DSC)

For the assessment of the oxidative stability of the nanocapsules, the differential
scanning calorimetry (DSC) technique, using DSC 250 (TA Instruments Ltd., New Castle,
DE, USA), following a previously described oxidation induction time (OIT) protocol [32],
was used. The DSC apparatus was calibrated using high-purity indium, and measurements
were conducted using TA Instrument Trios software (V5.6.0.87) (TA Instruments, New
Castle, DE, USA). For each measurement, 3 mg of sample was weighed into an open
aluminium pan and placed in the DSC tray, with an empty aluminium pan with an open
lid serving as the reference.

In the initial phase, the experiments were conducted under a nitrogen atmosphere with
a 50 mL/min flow rate. The samples were equilibrated at 10 ◦C for 5 min, and then heated
to 140 ◦C at a rate of 5 ◦C/min, followed by a 5 min isothermal hold. Subsequently, the
purge gas was switched to oxygen (99.995% purity) at a 50 mL/min flow rate. During this
phase, the DSC cells were maintained isothermally for 120 min while data were recorded.

The oxidation of the capsules was quantified by measuring the area under the isother-
mal DSC curves [32–34]. A calibration curve for non-encapsulated fish oil was also created
for comparison with the encapsulated fish oil.

2.8. Statistical Analysis

Data were subjected to analysis of variance (ANOVA) using OriginPro 2021 (version
9.8.0.200, OriginLab Corporation, Northampton, MA, USA). Tukey’s multiple range test
was used to determine significant differences between mean values. Differences between
mean values were considered significant at a level of confidence of 95% (p < 0.05) and
indicated with different lowercase letters.

3. Results and Discussion
3.1. Characterization of the Electrosprayed Capsules
3.1.1. Morphology, Particle Size Distribution, and Encapsulation Efficiency

As shown in Figure 1, monoaxial electrospraying processing resulted in a discrete dis-
tribution of spherical particles when kafirin was used as the encapsulating agent (Figure 1a),
which is in line with the results previously reported by Cetinkaya et al. [26], whilst zein-
based nanocapsules showed a dented surface (Figure 1b), as observed in other studies
where the electrospray of zein solutions in ethanol was conducted [35]. These results con-
trast with the morphology observed in previous studies for omega-3-loaded nanocapsules
produced by electrospraying with zein as the encapsulating agent, where mostly spherical
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particles were produced [15,16]. However, it must be considered that the aforementioned
authors produced the nanocapsules using pilot-plant electrospraying assisted by pressur-
ized gas (EAPG) technology, where the infeed emulsion is first mechanically atomized
within the high-voltage electrostatic field, contrary to the electrohydrodynamic atomization
achieved at lab-scale electrospraying processing reported in the current study, which might
explain our results.

As for the particle size distribution of the fish oil-loaded nanocapsules, kafirin resulted
in significantly larger capsules (mean diameters of 1.1 ± 0.5 µm and 0.7 ± 0.2 µm for K-FO
and Z-FO, respectively) with a broader particle size distribution (PdI of 0.21 for K-FO vs.
0.08 for Z-FO) (Figure 2) despite the protein content of the infeed emulsions (15 wt.%), and
the infeed flow rates (0.6 mL/h) were the same, irrespective of the hydrophobic protein
used as the encapsulating agent (i.e., kafirin or zein). In addition, although it is known that
higher voltages applied during electrospraying processing result in smaller capsules due
to increased electrostatic charge repulsion [5], the variation in the voltage applied during
processing (15–18 kV) was not different enough to have such a significant impact on the
particle size of the nanocapsules. Therefore, we hypothesize that the differences observed
could be attributed to the different hydrophobicity of the native proteins. Although both
kafirin and zein, as hydrophobic proteins, are soluble in alcohol-based solutions, kafirin
is relatively more hydrophobic compared to zein [23,36], thus requiring larger amounts
of ethanol to result in a homogeneous solution [37]. Ethanol plays an important role by
improving the incorporation of poorly water-soluble proteins into oil-in-aqueous ethanol
emulsion [38]. Kafirin solubility in different concentrations (10 to 100%) at 2 mg/mL
revealed that the maximum solubility occurs at 70% ethanol. This behaviour is related
to the amphiphilic nature of kafirin in a way that the hydrophilic segment of the protein
was oriented outward at 70% ethanol [39], while at 85% ethanol, the solubility decreases
to about 60%. Another study showed an increase in the solubility of (4 wt.%) zein in
ethanol content up to 90% (solubility of zein at 85% ethanol is 70%). The high content of
non-polar amino acid residues in zein structure leads to this solubility behaviour [40,41]
Thus, kafirin might be dispersed but not totally solubilized in the solvent used in this study,
thus explaining the larger protein aggregates observed.
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The encapsulation efficiency of Z-FO electrosprayed nanocapsules was 92.4 ± 3.8%,
while the EE obtained for K-FO nanocapsules was 38.4 ± 6.4%. This indicates that fish oil
was encapsulated 2.4 times more in the zein matrix than in kafirin-based nanocapsules.
Nevertheless, it should be mentioned that the EE value obtained for the fish oil-loaded
kafirin capsules was considerably lower when compared to our previous work, where EE
of 94.0 ± 2.5% was reported [26]. This difference might be attributed to the lower kafirin
content used in our previous study (10 wt.%), which might facilitate the dispersion of fish
oil in the continuous phase during homogenization, leading to better oil entrapment. In
any case, it should also be pointed out that kafirin might also be removed from the surface
in the current study when evaluating EE by washing with isooctane, which increases
UV-absorbance, underestimating the EE value. This latter statement agrees with the results
from ATR-FTIR spectra, as discussed below.

3.1.2. ATR-FTIR

The FTIR spectra of electrosprayed fish oil-loaded nanocapsules were compared with
the free fish oil and control capsules without fish oil to identify and detect any potential
interaction between materials. The fatty acid composition of fish oils specifies the band
position and shape of the FTIR spectrum. Consequently, any changes in the fatty acids
proportion in the triglyceride molecules result in band shifts [42,43].

The FTIR spectrum of fish oil (Figure 3) exhibits a triplet band at 2800–3000 cm−1,
which is attributed to the C–H stretching modes of the methyl and methylene backbone of
lipids [44,45]. A band at 3011 cm−1 corresponds to the C–H stretching of cis–alkene–HC=CH–
from unsaturated fatty acids. The sharp band at 2923 cm−1 is attributed to methylene (CH2)
groups, and the band at 2852 cm−1 represents methyl (CH3) (both symmetrical stretching).
Another sharp band at 1742 cm−1 is assigned to the C=O stretch of the ester functional
group from ethyl esters of lipids and fatty acids. The band at 1455 cm−1 is assigned to
the asymmetrical deformation scissor from methylene (CH2). The band at 1145 cm−1 is
attributed to CH2 out-of-plane deformation modes, and a small band at 1099 cm−1 is
assigned to C–O–C symmetrical stretches [44,46,47].
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In the FTIR spectrum of kafirin (K) (Figure 4), a broad band was observed at 3280 cm−1

and in the FTIR of zein at 3292 cm−1, which is the characteristic band of the protein
assigned to amid I stretching (N–H stretching). The same broad band was also observed
in the control and fish oil-loaded nanocapsules. The FTIR spectrum of kafirin displays
bands at 2959 and 2931 cm−1, and in zein (Z), it appears at 2957 and 2924 cm−1, related
to the asymmetric stretching vibration of =C–H and NH3. Two major bands at the 1645
and 1532 cm−1 could be seen in both spectra of kafirin and zein, which are typical from
proteins amide I and amide II functional groups. The same bands were also observed
in the spectra of electrosprayed nanocapsules. A small band at 1447 and 1239 cm−1 is
assigned to CH2 bending vibration, and the band at 1239 cm−1 is the amide III together
with C–N stretching of peptide bonds [25,48,49]. Shifts in the band position in K-NFO
from 2931 to 2925 cm−1 in the K-FO sample were observed, as well as in Z-NFO from
2929 to 2925 cm−1 (Figure 4b). The mentioned shifts in the characteristic band of the N–H
stretching to lower wavenumbers in the fish-loaded nanocapsules suggested the formation
of hydrogen bonds, as seen in the study in [49], where kafirin and polylactic acid were
electrospun to encapsulate clove essential oil (CEO). The spectra of K-FO show a band
at 1743 cm−1, which is characteristic of lipids and fatty acids (fish oil) and is assigned to
the C=O stretched of the ester functional group. This band is more pronounced in the
K-FO than Z-FO nanocapsules, confirming the higher encapsulation efficiency of fish oil
measured for Z-FO, comparatively to K-FO nanocapsules (Figure 4c). Nevertheless, the
small difference observed in the band at 1743 cm−1 between K-FO and Z-FO does not
correlate with the considerable difference obtained in the EE values for these capsules. This
fact indicates that although the fish oil was better entrapped in zein-based capsules, when
compared to kafirin-based capsules, the markedly low EE value obtained for kafirin-based
capsules might be underestimated due to the potential removal of kafirin when washing
with isooctane.
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electrosprayed kafirin capsules without fish oil (K-NFO) or loaded with fish oil (K-FO), and electro-
sprayed zein capsules without fish oil (Z-NFO) or loaded with fish oil (Z-FO) (a); spectra expanded
region from 3050 to 2800 cm−1 (b); and spectra expanded region from 1780 to 1710 cm−1 (c).

3.1.3. Raman Spectroscopy

The Raman spectrum of free fish oil (FO) and a 3D image of line mapping across
about 30µm of FO and its counter map image are shown in Figure 5. In the region ranging
between 3000 and 2800 cm−1, several bands can be seen associated with the C–H stretching
vibrations. The peak observed at 3014 cm−1 corresponds to the stretching of =C–H (of
cis–HC=C–H) groups [46]. The band at 2930–2903 cm−1 is associated with CH3 groups,
while the peak at 2852 cm−1 is assigned to CH2 groups [50]. The peak at 1748 cm−1

contributes to the C=O stretch, the peak at 1659 cm−1 is related to the stretching vibration
of the C=C stretch, and the peak around 1439 cm−1 signifies the CH2 scissoring groups.
Furthermore, the peaks at 1302 cm−1 and 1265 cm−1 are assigned to CH2 bending and
symmetric =C–H rock (=C–H deformation), respectively [32,51,52]. As expected, the
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spectra of fish oil across the line mapping show the same peaks with the same intensity
(Figure 5b,c).
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In Figure 6, the Raman spectra of both electrosprayed kafirin (Figure 6a) and zein
(Figure 6c) nanocapsules show typical peaks for Raman spectra of proteins [53]. For
instance, a main intense peak can be seen around 2934–2929 cm−1, assigned to N–H
stretching from amide groups [53]. In the region of 1656 cm−1, the peak is assigned to
C=O Amide I, the peak at 1450 cm−1 is assigned to C-H deformation, and the peak at
10 cm−1 is attributed to aromatic residues of Phenylalanine [53,54]. The Raman spectra of
electrosprayed kafirin (Figure 6e), and zein (Figure 6g) nanocapsules loaded with fish oil
showed no noticeable or major shifts compared to kafirin and zein capsules without fish
oil, therefore suggesting the successful encapsulation of fish oil. However, it is to be noted
that the intensity of some of the Raman peaks is higher in the capsules loaded with fish oil,
particularly for the Z-FO, as evidenced in contour map images (Figure 6h), probably due to
the higher encapsulation of fish oil in these nanocapsules.
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Figure 6. Three-dimensional image spectra from line-scanning Raman mapping across the surface of
the electrosprayed (a) kafirin control (K-NFO), (c) zein control (Z-NFO), (e) fish oil-loaded kafirin
(K-FO), (g) fish oil-loaded zein capsules (Z-FO); and (b,d,f,h) corresponding contour map images.
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3.1.4. Glass Transition Temperature (Tg)

Figure 7 shows the Tg of the proteins and the protein electrosprayed nanocapsules
containing fish oil. Both protein-based capsules are in a glassy state at room temperature,
which is preferred as it restricts the diffusion of oxygen and other prooxidants and enhances
the oxidative stability of the fish oil. The zein protein had a glass transition of about 70 ◦C,
whereas the Tg of the zein capsules was reduced to about 20 ◦C. The Tg of the kafirin protein
is close to zein (75 ◦C), whereas the reduction in the Tg was lower for the kafirin capsules
(about 10 ◦C in comparison to the protein). The Tg values of the proteins are similar to
those previously reported in the literature. The glass transition temperature of kafirin was
reported in the literature to range from 40 ◦C to 233.8 ◦C, and typically higher than the Tg
of zein [36,55]. The broad range of kafirin’s Tg is probably due to the moisture content of
kafirin, which plasticizes the prolamins and other proteins and substantially reduces their
Tg, as well as due to the opposing interpretations of the endotherm that denotes its glass
transition [36]. It should be noted that the addition of fish oil did not affect the Tg of the
nanocapsules (Figure 7).
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3.2. Oxidative Stability of Electrosprayed Capsules
3.2.1. Electron Paramagnetic Resonance (EPR)

An evaluation of the protective effects of the nanoencapsulation for lipid oxidation
was attempted through the detection of lipid radicals by EPR spectroscopy combined with
spin trapping. Radicals are central-chain-carrying intermediates in the autoxidation of
polyunsaturated fatty acids. Radicals formed during lipid oxidation have a short lifetimes,
leading to low steady-state concentrations, which prevent the direct detection of these
radicals by EPR in most food systems [56]. The EPR spin-trapping technique, which is
based on spin traps that react with lipid radicals, allows for the indirect monitoring of
lipid oxidation through the generation and detection of long-lived radical adducts [57].
EPR spin trapping has been used to evaluate the oxidative stability of bulk oils [58], oil-
in-water emulsions [59–62], and fish oil-loaded nano-microcapsules produced either by
electrospraying or spray-drying [29,31,63]. N-tert-butyl-a-phenyl nitrone (PBN), a nitrone
spin trap, was dissolved in the fish oil. The EPR spectrum of PBN lipid radical adducts
formed in encapsulated fish oil has previously been reported to consist of three broad lines
with the typical coupling for nitroxyl radicals due to the nitrogen nucleus [29,58,62,63].
However, the EPR spectra obtained in this study for the fish oil-loaded electrosprayed
capsules with zein or kafirin as wall materials, using PBN as spin-trap, did not show the
typical three broad lines (Figure 8). The absence of the EPR spectrum of spin-trapped lipid
radicals do not, however, rule out that lipid oxidation did not occur in the encapsulated
fish oils, since EPR-detectable spin adducts have previously been found to be unstable
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in the presence of high levels of radicals that may be present in fish oils that undergo
extensive oxidation. This could have been the situation during the preparations of the fish
oil emulsions or during the subsequent electrospraying.
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Figure 8. EPR spectra of protein samples at day 0: (a) kafirin capsules loaded with fish oil (K-FO),
(b) zein capsules loaded with fish oil (Z-FO), (c) kafirin capsules without fish oil (K-NFO), (d) zein
capsules without fish oil (Z-NFO), (e) kafirin protein powder (Z), and (f) zein protein powder (Z).
In (a,b), day 0 (solid line), day15 (dashed line), and day 25 (dotted line).

Despite the absence of evidence of spin-trapped lipid radicals, the EPR spectra of fish
oil-loaded capsules (K-FO, Z-FO) consisted of broad peaks, which are practically the same
as EPR spectra of electrosprayed zein or kafirin proteins without fish oil (K-NFO, Z-NFO)
(Figure 8a–d). These spectra are characteristic of large and partially immobilized protein
spin adducts or radicals trapped in glassy encapsulation materials [64]. Indeed, it was
observed that electrospraying processing induced the formation of kafirin protein radicals,
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which were not observed in the native kafirin (Figure 8c,e), and that the concentration of
the protein radicals in the commercial zein increased due to electrospraying as indicated
by the increase in the intensity (Figure 8d,f). The intensity of the broad peaks increased
during 25 days of storage for fish oil-loaded kafirin capsules, whereas a slight decrease
was observed for zein capsules loaded with fish oil (Figure 8a,b). In line with these results,
Amft et al. [65] obtained an EPR spectrum of commercial zein containing a single broad
peak, which was likely due to the superposition of several carbon- and nitrogen-centred
radical species from zein proteins.

Altogether, these results indicate that radicals are generated during the electrospraying
process, where the lipid-derived radicals are eventually trapped and immobilized in the
glassy encapsulation matrix. The further increase in the intensity of these immobilized
radicals in the kafirin capsules indicates that oxidation can progress in this system.

3.2.2. Differential Scanning Calorimetry (DSC)

Figure 9 shows the DSC oxidation curves for the non-encapsulated fish oil at different
magnitudes (1–13 ± 0.1 mg) at an isothermal temperature of 140 ◦C. A large exothermic
peak is clearly shown, which considerably increases as the quantity of the sample increases.
The area under the isothermal curve can be used to quantify and compare the oxidative
stability of the oil [32–34]. The area under the isothermal curve for 13.1 mg oil was
nearly three-fold higher (381.33 mW × min) in comparison to the area of the 1.1 mg oil
(125.06 mW × min).
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Figure 9. (a) Isothermal DSC oxidation curves of non-encapsulated fish oil at different oil magnitudes
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encapsulated fish oil at different oil concentrations.

The oxidative stability of encapsulated fish oil was compared with non-encapsulated
fish oil using the prepared calibration curve. The encapsulation of fish oil by electrospraying
using kafirin or zein as wall materials protected it from oxidation (Figure 10). The area un-
der the isothermal curve for non-encapsulated oil was nearly 7.45 times higher and 25 times
higher, in comparison to the area of the encapsulated oil within kafirin and zein nanocap-
sules, respectively. In other words, zein nanocapsules showed 3.3 times more protection
against oil oxidation than kafirin nanocapsules at 140 ◦C and under oxygen flow. This
reveals the high oxidative stability of encapsulated fish oil that is provided by the protein
matrix by enhancing the impermeability to oxygen and by providing thermal stability.
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Figure 10. Isothermal DSC results at 140 ◦C and oxygen flow of 50 mL/min. Area under the
isothermal oxidation curve for non-encapsulated FO, fish oil-loaded kafirin, and fish oil-loaded
zein nanocapsules. Different superscript letters indicate significant differences (p < 0.05) among
the samples.

The difference between the oxidative stability of K-FO and Z-FO nanocapsules might
be due to the different lower encapsulation efficiency of the oil within kafirin capsules, and
probably the slightly higher surface oil of the kafirin capsules as also observed by FTIR.
Furthermore, previous studies showed that typically films produced from commercial zein
had slightly better oxygen barrier properties than kafirin over a wide range of plasticizer
concentrations (20%–40%) [66]. This was attributed to the free volume of their films as it can
increase the oxygen permeability rate by up to six orders of magnitude. The much greater
disulfide bond cross-linking in kafirin films resulted in areas of a larger intermolecular
free volume than in commercial zein films [36,55,67]. Indeed, the average free volume
substantially affects the oxygen diffusivity in glassy matrices [68]. Boerekamp et al. also
showed that glucose syrup capsules present higher oxidative stability than dextran capsules,
and this was attributed to the lower molecular weight of glucose syrup, which led to a
lower free volume in the glassy matrix, reducing oxygen diffusivity [63]. Overall, the
thermal and oxygen stability of the encapsulated fish oil indicates effective encapsulation
with both protein matrices against degradation and oxidation.

4. Conclusions

The encapsulation of fish oil by monoaxial electrospraying was effectively carried
out when using kafirin or zein as hydrophobic wall materials, resulting in mostly sub-
micron capsules (>50% capsules for kafirin and >80% capsules for zein were below 1 µm).
Moreover, EPR results indicate that oxidation occurred during the electrospraying process
and the storage of the kafirin electrosprayed capsules loaded with fish oil. Nonetheless,
spin trapping did not allow us to detect the presence of lipid radicals. The isothermal DSC
results reveal that both kafirin- and zein-based electrosprayed capsules presented higher
oxidative stability than non-encapsulated oil. Kafirin-based capsules were less oxidatively
stable than zein-based capsules, which was attributed to the higher oil encapsulation
efficiency obtained for zein capsules and the lower oxygen impermeability of kafirin when
compared to zein. Overall, this study suggests that although kafirin might be considered an
alternative hydrophobic encapsulating agent, it resulted in fish oil-loaded electrosprayed
nanocapsules with lower oxidative stability than zein.
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