E Pluribus, Unum: Emergent Redox Harmony from the Chaos of Blood Cells
Conflicts of Interest
List of Contributions
- Mbiandjeu, S.C.T.; Siciliano, A.; Mattè, A.; Federti, E.; Perduca, M.; Melisi, D.; Andolfo, I.; Amoresano, A.; Iolascon, A.; Valenti, M.T.; et al. Nrf2 Plays a Key Role in Erythropoiesis during Aging. Antioxidants 2024, 13, 454. https://doi.org/10.3390/antiox13040454
- Bo, T.; Nohara, H.; Yamada, K.-i.; Miyata, S.; Fujii, J. Ascorbic Acid Protects Bone Marrow from Oxidative Stress and Transient Elevation of Corticosterone Caused by X-ray Exposure in Akr1a-Knockout Mice. Antioxidants 2024, 13, 152. https://doi.org/10.3390/antiox13020152
- Pan, X.; Köberle, M.; Ghashghaeinia, M. Vitamin C-Dependent Uptake of Non-Heme Iron by Enterocytes, Its Impact on Erythropoiesis and Redox Capacity of Human Erythrocytes. Antioxidants 2024, 13, 968. https://doi.org/10.3390/antiox13080968
- Chakraborty, P.; Orvos, H.; Hermesz, E. Molecular Study on Twin Cohort with Discordant Birth Weight. Antioxidants 2023, 12, 1370. https://doi.org/10.3390/antiox12071370
- Jasenovec, T.; Radosinska, D.; Jansakova, K.; Kopcikova, M.; Tomova, A.; Snurikova, D.; Vrbjar, N.; Radosinska, J. Alterations in Antioxidant Status and Erythrocyte Properties in Children with Autism Spectrum Disorder. Antioxidants 2023, 12, 2054. https://doi.org/10.3390/antiox12122054
- Reisz, J.A.; Dzieciatkowska, M.; Stephenson, D.; Gamboni, F.; Morton, D.H.; D’Alessandro, A. Red Blood Cells from Individuals with Lesch–Nyhan Syndrome: Multi-Omics Insights into a Novel S162N Mutation Causing Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency. Antioxidants 2023, 12, 1699. https://doi.org/10.3390/antiox12091699
- Szlachta, B.; Birková, A.; Čižmárová, B.; Głogowska-Gruszka, A.; Zalejska-Fiolka, P.; Dydoń, M.; Zalejska-Fiolka, J. Erythrocyte Oxidative Status in People with Obesity: Relation to Tissue Losses, Glucose Levels, and Weight Reduction. Antioxidants 2024, 13, 960. https://doi.org/10.3390/antiox13080960
- Giannaki, A.; Georgatzakou, H.Τ.; Fortis, S.P.; Anastasiadi, A.T.; Pavlou, E.G.; Nomikou, E.G.; Drandaki, M.P.; Kotsiafti, A.; Xydaki, A.; Fountzoula, C.; et al. Stratification of βSβ+ Compound Heterozygotes Based on L-Glutamine Administration and RDW: Focusing on Disease Severity. Antioxidants 2023, 12, 1982. https://doi.org/10.3390/antiox12111982
- Thomas, T.A.; Francis, R.O.; Zimring, J.C.; Kao, J.P.; Nemkov, T.; Spitalnik, S.L. The Role of Ergothioneine in Red Blood Cell Biology: A Review and Perspective. Antioxidants 2024, 13, 717. https://doi.org/10.3390/antiox13060717
- Yang, M.; Silverstein, R.L. Targeting Cysteine Oxidation in Thrombotic Disorders. Antioxidants 2024, 13, 83. https://doi.org/10.3390/antiox13010083
References
- Pimkova, K.; Jassinskaja, M.; Munita, R.; Ciesla, M.; Guzzi, N.; Cao Thi Ngoc, P.; Vajrychova, M.; Johansson, E.; Bellodi, C.; Hansson, J. Quantitative analysis of redox proteome reveals oxidation-sensitive protein thiols acting in fundamental processes of developmental hematopoiesis. Redox Biol. 2022, 53, 102343. [Google Scholar] [CrossRef] [PubMed]
- Sattler, M.; Winkler, T.; Verma, S.; Byrne, C.H.; Shrikhande, G.; Salgia, R.; Griffin, J.D. Hematopoietic growth factors signal through the formation of reactive oxygen species. Blood 1999, 93, 2928–2935. [Google Scholar] [CrossRef] [PubMed]
- Ludin, A.; Gur-Cohen, S.; Golan, K.; Kaufmann, K.B.; Itkin, T.; Medaglia, C.; Lu, X.J.; Ledergor, G.; Kollet, O.; Lapidot, T. Reactive oxygen species regulate hematopoietic stem cell self-renewal, migration and development, as well as their bone marrow microenvironment. Antioxid. Redox Signal. 2014, 21, 1605–1619. [Google Scholar] [CrossRef]
- Sies, H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015, 4, 180–183. [Google Scholar] [CrossRef]
- He, L.; He, T.; Farrar, S.; Ji, L.; Liu, T.; Ma, X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2017, 44, 532–553. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef] [PubMed]
- Nemkov, T.; Reisz, J.A.; Xia, Y.; Zimring, J.C.; D’Alessandro, A. Red blood cells as an organ? How deep omics characterization of the most abundant cell in the human body highlights other systemic metabolic functions beyond oxygen transport. Expert Rev. Proteom. 2018, 15, 855–864. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anastasiadi, A.T.; D’Alessandro, A. E Pluribus, Unum: Emergent Redox Harmony from the Chaos of Blood Cells. Antioxidants 2024, 13, 1151. https://doi.org/10.3390/antiox13091151
Anastasiadi AT, D’Alessandro A. E Pluribus, Unum: Emergent Redox Harmony from the Chaos of Blood Cells. Antioxidants. 2024; 13(9):1151. https://doi.org/10.3390/antiox13091151
Chicago/Turabian StyleAnastasiadi, Alkmini T., and Angelo D’Alessandro. 2024. "E Pluribus, Unum: Emergent Redox Harmony from the Chaos of Blood Cells" Antioxidants 13, no. 9: 1151. https://doi.org/10.3390/antiox13091151
APA StyleAnastasiadi, A. T., & D’Alessandro, A. (2024). E Pluribus, Unum: Emergent Redox Harmony from the Chaos of Blood Cells. Antioxidants, 13(9), 1151. https://doi.org/10.3390/antiox13091151