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Abstract: Due to oxidative damage and mitochondrial dysfunction, boar semen cryop-
reservation remains a significant challenge. This study investigates the effects of pyrrolo-
quinoline quinone (PQQ), a mitochondrial-targeted antioxidant, on the post-thaw boar
sperm quality during cryopreservation. Boar semen was diluted in a freezing extender
containing different concentrations of PQQ (0, 10, 100, 1000, 10,000 nM). After freezing–
thawing, the sperm motility, viability, acrosome integrity, mitochondrial activity, adenosine
triphosphate (ATP) levels, DNA integrity, malondialdehyde (MDA) levels, reactive oxygen
species (ROS) levels, superoxide dismutase (SOD) activity, mitochondrial transcription
proteins levels, and fertilization capacity were assessed. The results show that 1000 nM
PQQ supplementation to the freezing extender significantly enhanced post-thaw sperm
motility, viability, and acrosome integrity compared to the control (p < 0.05). Additionally,
1000 nM PQQ increased mitochondrial membrane potential (MMP) and ATP levels, while
decreasing MDA and mitochondrial ROS levels, and reducing DNA damage (p < 0.05).
Furthermore, the levels of mitochondrial-encoded proteins were significantly elevated in
the 1000 nM PQQ group compared to the control (p < 0.05). Interestingly, sperm in the
1000 nM PQQ group showed a higher binding rate to oviductal epithelial cells and the zona
pellucida (ZP), indicating higher fertilization potential. These findings suggest that the use
of mitochondria-target antioxidant, PQQ, can improve post-thaw boar sperm quality and
fertilization via its capacity to reduce oxidative stress and protect mitochondrial function.

Keywords: boar semen; cryopreservation; pyrroloquinoline quinone; sperm quality

1. Introduction
Intensive pig farming primarily relies on liquid-preserved semen for artificial insem-

ination (AI). However, liquid semen faces numerous challenges in transferring genetic
material between populations due to its strict temperature requirements during transporta-
tion (17–25 ◦C) and the limited lifespan of sperm [1]. In overcoming these limitations,
alternative semen preservation techniques remain a key focus of research. Cryopreserva-
tion enables decoupling of semen collection and AI processes in time and space, allowing
for the indefinite storage of genetic resources. This technology offers a unique solution for
genetic resource management. Although progress has been made in enhancing the boar
post-thaw sperm motility and fertilization capacity, the practical application of AI with
post-thaw sperm in pigs remains limited [2]. This is because when post-thaw sperm is used
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for AI in place of fresh semen, lower farrowing rates and live litter sizes are recorded [3].
During the cryopreservation process, sperm plasma membranes are highly susceptible to
damage [4]. Membrane damage could impair spermatozoa’s ability to interact effectively
with cells in the female genital tract [5], leading to a reduction in fertilization efficiency
compared to liquid semen [6]. These issues have hindered the widespread adoption of
cryopreservation technology in pig farming.

Boar sperm exhibit heightened sensitivity to cryoinjury, mainly attributed to their
high levels of unsaturated fatty acids, necessitating strategies to mitigate its detrimental
effects on fertility [7,8]. Furthermore, the limited antioxidant capacity in the cytoplasm
of boar sperm [9] makes them highly vulnerable to oxidative damage induced by ROS.
During thawing, the mitochondrial electron transport chain (ETC) generates ROS due
to electron leakage as the proton gradient across the inner mitochondrial membrane is
reestablished [10]. Meanwhile, semen dilution, osmotic fluctuations, and ice crystal forma-
tion during cryopreservation further exacerbate ROS production, intensifying oxidative
stress in sperm [11,12]. Excessive ROS accumulation impairs mitochondrial function [13],
inhibits the mitochondrial ETC, and reduces adenosine triphosphate (ATP) production,
subsequently triggering sperm apoptosis and cell death [14,15]. Elevated ROS levels could
negatively impact sperm motility, DNA, and membrane integrity. Likewise, it reduces the
fertilization capacity of cryopreserved sperm [16,17]. Antioxidants serve as the primary
defense components responsible for scavenging ROS [18]. Exogenous antioxidants are usu-
ally added to the freezing extender to protect sperm cells from cryopreservation-induced
ROS damage. Previous studies showed that supplementation with antioxidants like glu-
tathione, taurine, quercetin, and ascorbic acid could improve the quality of cryopreservation
sperm [19–22].

Pyrroloquinoline quinone (PQQ) is a water-soluble vitamin-like factor with multiple
biological activities. Previous studies showed that PQQ plays important roles in inhibiting
lipid peroxidation, reducing oxidative damage, and promoting nerve growth factor produc-
tion [23–25]. Additionally, PQQ protects tissue damage caused by hypoxia/ischemia [26]
and inflammatory responses [23] and prevents glucocorticoid-induced cataract formation
and glutathione depletion [27]. As a redox cofactor, PQQ is an antioxidant and a regulator
of various cellular signaling pathways [28]. It has been reported that PQQ could directly
scavenge aroxyl and peroxyl radicals to protect cells from oxidative damage [29]. Also,
PQQ can promote mitochondrial function [30]. In addition, in Hepa1-6 mouse cells, supple-
mentation with PQQ significantly increased the mitochondrial DNA levels and enhanced
the activities of enzymes [31] involved in mitochondrial metabolism. Moreover, supple-
mentation with PQQ can reduce mitochondrial dysfunction by maintaining ATP levels,
improving mitochondrial DNA integrity, restoring MMP, and increasing mitochondrial
number [32]. Recently, the importance of PQQ in the field of reproduction has gradually
gained attention. PQQ improves mitochondrial function by reducing ROS levels, thereby
enhancing the proliferation and viability of granulosa cells [33]. Moreover, PQQ allevi-
ates ovarian dysfunction and significantly increases pregnancy rates and litter sizes in
mice [34]. Previous studies showed that PQQ significantly improved the quality of chilled
ram sperm and post-thaw Holstein bull sperm [35,36]. Furthermore, in our previous study,
PQQ supplementation in boar sperm diluted with low-glucose medium preserved high
linear motility by reducing ROS levels, stabilizing mitochondrial DNA, and improving
mitochondrial activity [37]. However, the effects of PQQ on frozen–thawed boar sperm are
limited, and its potential mechanisms remain largely unknown. Therefore, this study aims
to evaluate the impact of PQQ on boar sperm quality during cryopreservation, and also to
undertake a preliminary exploration of its underlying mechanisms.
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2. Materials and Methods
2.1. Chemicals

All chemicals and reagents were purchased from Sigma-Aldrich (Shanghai, China)
unless specified otherwise. The reduced form of PQQ was purchased from MCE
(HY-100196, Shanghai, China).

2.2. Media Preparation

As described by Zhu et al. (2022) [3], Modena solution was used to prepare the
pre-treatment extender and served as the thawing solution. The freezing extender A
includes 20% (v/v) of egg yolk, 80% (v/v) of 310 mM lactose, and 100 µg/mL polymyxin B,
while freezing extender B consists of freezing extender A supplemented with 1.5% (v/v)
Equex-Paste (Minitube, Tiefenbach, Germany) and 4% (v/v) glycerol.

2.3. Animals and Semen Collection

Nine healthy and fertile large white boars sourced from the Jian Aobao Biotechnology
Co., Ltd. (Ji’an, China). were utilized in this study. Each boar provided a single ejaculate
collected via the gloved-hand technique. The sperm-rich portion of the ejaculate was filtered
through a double layer of sterile gauze. Only samples with sperm motility exceeding 90%
and an abnormality rate below 15% were used for the study. To minimize variation, the
collected ejaculates were pooled before the analysis.

2.4. Sperm Processing and Cryopreservation

As described in our previous study [3], after semen collection, the ejaculate was diluted
with Modena solution (1:1, v/v), and cooled to 17 ◦C. Subsequently, the sperm sample
was centrifuged to remove the supernatant. Freezing extender A was used to resuspend
the sperm pellets, achieving a final concentration of 2 × 109 sperm/mL. Following this,
the sperm suspension was gradually cooled to 4 ◦C. At this stage, the sperm samples
were divided into five groups, each containing different concentrations of PQQ (0, 10, 100,
1000, and 10,000 nM). Next, the sperm samples were mixed with freezing extender B (1:1,
v/v). The prepared samples were transferred into 500 µL plastic straws and moved to a
programmable freezer chamber (SIBO Livestock Equipment Co., Ltd., Qingdao, China).
The freezing protocol involved the following temperature drop curve: maintaining 4 ◦C for
100 s, cooling from 4 ◦C to −1 ◦C in 90 s, and from −1 ◦C to −140 ◦C in 300 s. The plastic
straws were subsequently immersed in liquid nitrogen for storage until further analysis.
After 7 days of storage, the sperm samples were thawed and incubated for 15 min before
further analysis to evaluate the effects of PQQ on the post-thaw boar sperm quality and to
choose the optimal concentration of PQQ treatment to elucidate its underlying mechanism
of action.

2.5. Evaluation of Sperm Motility

As described by our previous study [38], sperm motility parameters were analyzed
using a computer-assisted sperm analysis (CASA) system (HT, Beverly, MA, USA). After
thawing, the semen sample was loaded onto a Makler chamber (SMI, Haifa, Israel) and
evaluated motility in five randomly chosen samples, with each field containing at least
300 sperm.

2.6. Thermo-Resistance Test

After thawing, the semen samples were subjected to a thermo-resistance test (TRT)
based on the protocol adapted from Schulze et al. (2017) [39]. Semen samples were
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incubated at 38 ◦C for up to 300 min and sperm motility parameters were evaluated hourly
by a CASA system to monitor changes in sperm motility over time.

2.7. Flow Cytometric Evaluation of Sperm Viability and Acrosome Integrity

Sperm viability and acrosome integrity were assessed with FITC-PNA/PI staining.
Briefly, 1 mL of diluted semen sample was stained with 0.54 µL of PI (2.4 mM) and 0.6 µL
of FITC (1 mg/mL). The sample was mixed and incubated at 38 ◦C in the dark for 5 min.
A flow cytometer (BeamCyte, Changzhou, China) was used to analyze 20,000 events and
sperm cells negative for FITC-PNA were classified as having intact acrosome, while those
negative for PI were classified as viable sperm cells. The percentage of sperm cells with
intact acrosome and viable sperm cells (FITC-PNA-/PI-) was calculated. The analyses were
performed in triplicate (n = 3).

2.8. Evaluation of Mitochondrial Membrane Potential

Sperm MMP was analyzed with fluorochrome JC-1 dye (65-0851-38, Thermo Fisher
Scientific, Boston, MA, USA) as described in our previous study [38]. To establish a negative
control, semen containing 10 µM of carbonyl cyanide 3-chlorophenylhydrazone (CCCP)
was incubated for 30 min. Subsequently, the sperm sample was stained with 400 µL of JC-1
working solution. After two washes with JC-1 buffer, the sample was resuspended and
analyzed by flow cytometry (BeamCyte, Changzhou, China), with 20,000 events recorded.
The analyses were performed in triplicate (n = 3).

2.9. Measure of Sperm ATP Levels

ATP levels of sperm were quantified using an ATP Assay Kit (ADS-W-A001-96,
AIDISHENG, Yancheng, China) following the manufacturer’s protocol. Sperm was disrupted
via ultrasound on ice (200 W, 4 s pulses, 12 s intervals, repeated 15 times), and subsequently
heated in a boiling water bath for 10 min. Then, 30 µL of lysate sample was incubated with
the working solution. Following incubation, a precipitating reagent was added, and the
mixture was centrifuged to obtain the supernatant. The supernatant, chromogenic and stop
solution were sequentially added to a 96-well plate, and absorbance was read at 636 nm with
a microplate reader. The analyses were performed in triplicate (n = 3).

2.10. Sperm Oxidative DNA Damage

Oxidized guanine adducts serve as markers of oxidative DNA damage preceding
DNA fragmentation. A 100 µL sperm sample was fixed in 4% paraformaldehyde in PBS for
20 min. Afterward, the sample was rinsed with PBS containing 0.5% bovine serum albumin
(BSA) and incubated in PBS with 10 mM dithiothreitol for 20 min. The permeabilization
step involved a 30 min treatment on ice with 0.1% Triton and 0.1% sodium citrate, followed
by another rinse. Subsequently, the sample was incubated with an anti-8-OHdG (bs-1278R,
Bioss, Beijing, China) antibody solution. After another wash, a CY3-conjugated secondary
antibody was applied, followed by a final wash. After that, the sample was analyzed
by a flow cytometer (BeamCyte, Changzhou, China), with a total of 20,000 sperm events
recorded for analysis. The analyses were performed in triplicate (n = 3).

2.11. Sperm DNA Fragmentation

The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was
used to analyze sperm DNA fragmentation. A 100 µL sample was fixed in 4% paraformalde-
hyde for 30 min on an orbital shaker. After washing again with PBS, the sample was
incubated in PBS with 0.3% Triton X-100 for 5 min. Afterward, 50 µL of TUNEL working
solution was applied, followed by a 60 min incubation at 37 ◦C in the dark. Following two
PBS washes, the sperm samples were analyzed by flow cytometry (BeamCyte, Changzhou,
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China), with 20,000 sperm events recorded for analysis. The analyses were performed in
triplicate (n = 3).

2.12. Measurement of Sperm MDA Levels

MDA levels in sperm were determined using an MDA Assay Kit (GMS14028,
AIDISHENG, Yancheng, China). Sperm samples were lysed on ice, and reagents were
added following the manufacturer’s protocol. After heating at 95 ◦C for 40 min, the mixture
was centrifuged, and the supernatant was collected. After heating at 95 ◦C for 40 min, the
mixture was centrifuged, and the supernatant was collected. Absorbance was read at 530
nm using a microplate reader. The analyses were performed in triplicate (n = 3).

2.13. Measurement of Sperm SOD Activity

SOD activity in sperm was determined using an SOD Assay Kit (ADS-W-KY011,
AIDISHENG, Yancheng, China). Briefly, sperm samples were subjected to ultrasonic
disruption (300 W, sonication for 3 s with a 30 s interval, repeated four times). The enzyme
working solution was added to the homogenized sperm mixture and incubated at 37 ◦C for
20 min. Absorbance was measured at 450 nm with a microplate reader. The analyses were
performed in triplicate (n = 3).

2.14. Detection of Sperm Reactive Oxygen Species

Sperm mitochondrial ROS levels were assessed with the MitoSOX™ Red Assay Kit
(M36007, Thermo Fisher Scientific, Boston, MA, USA). Sperm samples were mixed with
400 µL of 5 µM working solution at 37 ◦C in the dark for 12 min, followed by three washes
with PBS. The unstained sperm sample was used as a negative control. A gate was set
to distinguish mitochondrial ROS-positive sperms from the negative control. ROS levels
were evaluated by flow cytometry (BeamCyte, Changzhou, China), based on 20,000 sperm
events. The analyses were performed in triplicate (n = 3).

2.15. Western Blotting

Sperm lysates were prepared using RIPA buffer with protease inhibitors via sonication.
After lysis, the samples were centrifugated at 12,000× g rpm for 15 min. The supernatant was
combined with SDS loading buffer and boiled for 10 min. Protein separation was performed
by 10% SDS–polyacrylamide gels (SDS-PAGE), followed by proteins being transferred onto
a PVDF membrane (Merck Millipore, Darmstadt, Germany). Non-specific binding was
blocked using 5% (m/v) BSA diluted in TBST, and the membranes were incubated with
primary antibodies targeting MT-ND1 (A17967, ABclonal, Wuhan, China) and MT-ND6
(A17991, ABclonal, Wuhan, China). The membranes were incubated with an HRP-conjugated
secondary antibody (A0208, Beyotime, Shanghai, China) for 1 h. The blots were visualized
with a gel imaging analyzer. Quantification of the results was performed using ImageJ
software Version 1.54m (NIH, Bethesda, MD, USA), and the relative intensity of the target
proteins was normalized using α-tubulin. The analyses were performed in triplicate (n = 3).

2.16. The Ability of Frozen–Thawed Sperm to Bind to the Explants Was Evaluated

As described in a previous study [38], the relative fertility of sperm was evaluated
based on their binding capacity to oviduct explants. Oviductal tissues were collected
from healthy sows. Explants were prepared from the oviductal isthmus and subsequently
maintained in Tyrode’s medium. Only explants with intact ciliated structures were used
for experiments. Hoechst 33342-stained sperm were incubated for 30 min. Explants
(4 per sow) were placed individually into pre-warmed Tyrode’s medium (5% CO2, 38 ◦C,
100% humidity) in 24-well plates and co-incubated with sperm (2 × 105) for 45 min. After
washing to remove loosely attached sperm, explants were mounted on glass slides with
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Tyrode’s medium and sealed with a coverslip. To minimize the edge effects from tissue
preparation, the outermost layer of the explant was excluded, and three regions for analysis
were randomly chosen within the remaining explant surface area. Images of different focal
planes were combined to quantify sperm binding. Explant surface area and sperm count
were determined to evaluate binding density.

The average sperm bound per mm2 was defined as the binding index (BI), and it is
calculated as shown in Equation (1):

BI = (NI1 + NI2 + NI3)/(AI1 + AI2 + AI3) (1)

where Al1, Al2, and Al3 represent the areas of three different regions, while Nl1, Nl2, and
Nl3 represent the number of sperm bound to each of these regions.

2.17. Sperm–Zona Pellucida Binding Capacity

Ovaries were collected from pigs at the slaughterhouse, and 3–8 mm follicles were
aspirated using a 3 mL plastic syringe to obtain cumulus–oocyte complexes. According
to a previous study [40], the cumulus–oocyte complexes were incubated in PBS contain-
ing 0.1% hyaluronidase (v:v) and slowly vortexed for 5 min to remove the cumulus cells.
The zona pellucida (ZP) was prepared from oocytes using a microinjection system (Biocom-
pare, San Francisco, CA, USA). The ZP was placed in a 1000 µL culture medium droplet.
Based on our prior research [38], thawed sperm were incubated in a capacitation medium
(95 mM NaCl, 4.8 mM KCl, 1.2 mM KH2PO4, 5.55 mM glucose, 25 mM NaHCO3, 2 mM
CaCl2, 2 mM sodium pyruvate, and 0.4% BSA). Then, 50 µL of capacitated sperm suspension
(at a final concentration of 3 × 106 sperm/mL) was added to each PBS droplet containing
five ZP, with five droplets used per group (total 25 ZPs). The droplets were incubated for
15 min at 38 ◦C in a 5% CO2. After incubation, the sperm–ZP complexes were gently washed
with PBS to remove loosely attached sperm. The sperm attached to the ZP were separated by
repeated aspiration using a pipette, followed by counting under a microscope.

2.18. Statistical Analysis

Statistical analyses were conducted using IBM SPSS Statistics 27 (IBM Corp., Armonk,
NY, USA). Normality and homogeneity of variance tests were conducted before proceeding
with statistical analysis. The data were transformed by arcsine square root transformation
when necessary. One-way analysis of variance (ANOVA) was applied to compare basic
sperm parameters, and pairwise comparisons were made using independent t-tests. All
data were expressed as mean ± standard deviation (SD). Graphs were created using
GraphPad Prism 8.0 (GraphPad Software Inc., La Jolla, CA, USA). Statistical significance
was defined as p < 0.05.

3. Results
3.1. PQQ Improved the Frozen–Thawed Boar Sperm Motility, Viability and Acrosome Integrity

As shown in Table 1, supplementation of PQQ to the freezing extender significantly
improved the post-thaw boar sperm total motility and progressive motility compared to the
control (p < 0.05). Specifically, sperm samples supplemented with 1000 nM PQQ exhibited
a 23.7% increase in total motility (72.3 ± 2.5% vs. 48.6 ± 5.9%) and a 17.8% increase in
progressive motility (34.1 ± 1.7% vs. 16.3 ± 3.1%) when compared to the control group.
Moreover, PQQ supplementation significantly improved the post-thaw sperm curvilinear
velocity (VCL), straight-line velocity (VSL), straightness (STR), average path velocity (VAP),
beat-cross frequency (BCF), and linearity (LIN)compared to the control group (p < 0.05).
However, there is no significant difference between PQQ treatment and the control for
post-thaw sperm ALH and WOB (p > 0.05).
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Table 1. Effects of PQQ added to the freezing extender on post-thaw boar sperm motility parameters.

Parameters 0 nM 10 nM 100 nM 1000 nM 10,000 nM

Total motility (%) 48.6 ± 5.9 d 51.1 ± 4.8 d 68.2 ± 2.2 b 72.3 ± 2.5 a 60.9 ± 4.7 c

Progressive motility (%) 16.3 ± 3.1 d 21.7 ± 1.3 c 31.9 ± 1.7 a 34.1 ± 1.7 a 26.2 ± 3.5 b

VCL (µm/s) 97.5 ± 2.8 c 103.4 ± 5.6 b 115.0 ± 2.4 a 112.2 ± 2.3 a 102.9 ± 2.2 b

VSL (µm/s) 27.3 ± 1.0 c 33.0 ± 2.0 b 36.0 ± 1.4 a 36.2 ± 1.2 a 33.2 ± 0.9 b

VAP (µm/s) 48.5 ± 1.5 c 51.8 ± 3.0 b 57.5 ± 1.4 a 57.1 ± 1.7 a 51.8 ± 1.1 b

STR (%) 54.8 ± 1.0 c 61.0 ± 2.2 a 59.2 ± 1.6 b 60.3 ± 1.6 ab 60.5 ± 1.3 ab

LIN (%) 28.8 ± 1.0 c 31.7 ± 2.0 a 30.3 ± 1.0 b 31.4 ± 0.9 ab 31.6 ± 0.9 a

WOB (%) 50.9 ± 1.0 50.5 ± 1.5 49.7 ± 0.9 50.5 ± 0.7 50.0 ± 0.8
ALH (µm) 8.2 ± 0.3 8.7 ± 0.3 8.5 ± 0.2 8.3 ± 0.3 8.6 ± 0.2
BCF (Hz) 34.4 ± 1.8 d 37.2 ± 1.3 c 39.6 ± 1.0 b 39.0 ± 0.8 b 42.6 ± 1.2 a

Statistical analysis was performed using one-way ANOVA followed by Tukey’s post hoc test, n = 3. Data are
presented as means ± standard deviation, with different letters representing significant differences (p < 0.05).
VCL, curvilinear velocity; VSL, straight-line velocity; VAP, average path velocity; BCF, beat-cross frequency; ALH,
lateral head; STR, straightness (VSL/VAP); LIN, linearity (VSL/VCL); WOB, wobble (VAP/VCL).

In terms of boar post-thaw sperm with acrosome intact and viability, as shown in
Figures 1A–F and S1, PQQ supplementation from 100 nM to 1000 nM significantly elevated
the percentage of acrosome intact viable sperm (FITC-PNA-/PI-) compared to the control (p
< 0.05); however, the percentage of acrosome intact viable sperm in the 10 nM PQQ group
was similar to that of the control (p > 0.05).
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Figure 1. Effect of PQQ added to the freezing extender on post-thaw boar sperm viability and
acrosome integrity. (A–E) Flow cytometry analysis of post-thaw boar sperm viability and acrosome
integrity; (F) acrosome intact viable sperm (FITC-PNA-/PI-). Statistical analysis was performed using
one-way ANOVA followed by Tukey’s post hoc test. Statistical analysis was performed using one-way
ANOVA followed by Tukey’s post hoc test. Data are presented as means ± standard deviation, n = 3,
with different letters representing significant differences (p < 0.05).
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3.2. PQQ Enhanced the Thermo-Resistance of Frozen–Thawed Sperm

As shown in Table 2, adding PQQ influenced sperm total motility, progressive motility,
VCL, VSL, VAP, and ALH following TRT. Sperm samples supplemented with 1000 nM PQQ
showed significantly higher values for total motility, progressive motility, VCL, VSL, VAP,
and ALH, compared to the other groups (p < 0.05). Specifically, after one hour of incubation,
sperm total motility in the 1000 nM PQQ group was 24% higher than the control group
(71.5 ± 3.5% vs. 47.5 ± 3.9%), while progressive motility was 12.8% higher (29.8 ± 3.0% vs.
17.0 ± 2.8%). After five hours of incubation, the total motility and progressive motility in
the 1000 nM PQQ group were respectively 34.6% (71.3 ± 4.3% vs. 36.7 ± 8.8%) and 14.8%
(26.5 ± 1.4% vs. 11.7 ± 2.7%) higher than those in the control. Moreover, sperm in the
10,000 nM PQQ group exhibited significantly lower values for total motility, progressive
motility, VCL, VSL, VAP, and ALH when compared to those in the 100 nM and 1000 nM
PQQ groups (p < 0.05).

Table 2. Effects of PQQ added to the freezing extender on post-thaw boar sperm thermo-resistance.

Parameters Time (h) 0 nM 10 nM 100 nM 1000 nM 10,000 nM

Total motility (%)

1 47.5 ± 3.9 e 51.7 ± 3.9 d 66.5 ± 4.6 b 71.5 ± 3.5 a 56.0 ± 3.2 c

2 47.7 ± 4.2 d 51.7 ± 3.7 c 65.9 ± 2.2 b 72.0 ± 4.8 a 52.3 ± 3.4 c

3 45.3 ± 3.3 d 46.0 ± 4.5 d 61.5 ± 4.5 b 71.2 ± 4.2 a 52.0 ± 3.4 c

4 40.6 ± 2.7 d 45.9 ± 2.7 c 61.7 ± 4.6 b 71.1 ± 4.7 a 47.6 ± 4.1 c

5 36.7 ± 8.8 d 44.5 ± 3.9 c 60.2 ± 5.2 b 71.3 ± 4.3 a 38.0 ± 5.2 c d

Progressive
motility (%)

1 17.0 ± 2.8 d 22.9 ± 2.4 c 27.0 ± 3.0 b 29.8 ± 3.0 a 21.4 ± 2.8 c

2 15.0 ± 1.9 d 16.0 ± 3.1 d 26.5 ± 2.7 b 30.4 ± 4.2 a 22.4 ± 2.4 c

3 13.1 ± 2.6 d 14.5 ± 3.0 d 21.7 ± 2.8 b 31.9 ± 6.4 a 17.8 ± 1.9 c

4 12.4 ± 1.3 e 15.5 ± 1.9 d 22.2 ± 3.3 b 26.7 ± 2.1 a 18.0 ± 2.2 c

5 11.7 ± 2.7 d 16.0 ± 2.5 c 21.5 ± 3.9 b 26.5 ± 1.4 a 11.9 ± 2.4 d

VCL (µm/s)

1 95.5 ± 6.9 b 114.1 ± 3.1 a 111.9 ± 4.2 a 111.3 ± 5.1 a 99.3 ± 4.2 b

2 90.5 ± 3.1 b 106.8 ± 3.6 a 109.6 ± 5.7 a 110.9 ± 7.0 a 94.5 ± 4.2 b

3 94.1 ± 4.2 c 107.9 ± 7.0 ab 105.8 ± 4.7 ab 111.7 ± 7.1 a 102.2 ± 1.8 b

4 92.1 ± 5.8 c 91.5 ± 3.3 c 99.2 ± 5.7 b 112.4 ± 9.8 a 97.8 ± 3.0 b

5 91.6 ± 4.3 d 97.1 ± 4.5 c 106.4 ± 3.9 b 116.1 ± 2.6 a 97.2 ± 6.4 c

VSL (µm/s)

1 28.9 ± 2.3 b 33.6 ± 1.8 a 32.3 ± 1.0 a 33.1 ± 1.6 a 29.8 ± 1.9 b

2 24.9 ± 1.4 c 31.1 ± 1.6 a 31.9 ± 2.1 a 31.7 ± 2.0 a 27.7 ± 1.4 b

3 24.8 ± 1.2 c 29.5 ± 1.7 b 30.1 ± 1.4 ab 31.5 ± 2.7 a 29.0 ± 0.9 b

4 25.0 ± 1.8 c 25.5 ± 1.7 bc 27.2 ± 1.8 b 32.8 ± 3.1 a 27.1 ± 1.6 b

5 25.5 ± 1.4 d 27.7 ± 1.4 c 29.9 ± 1.4 b 32.6 ± 1.2 a 28.4 ± 1.9 c

VAP (µm/s)

1 47.1 ± 2.9 c 56.6 ± 2.2 a 55.4 ± 1.8 a 55.7 ± 2.3 a 49.1 ± 2.2 b

2 42.0 ± 2.4 c 52.1 ± 1.9 a 54.2 ± 3.4 a 54.1 ± 3.2 a 46.0 ± 2.0 b

3 42.1 ± 2.3 c 51.3 ± 2.5 ab 52.6 ± 2.3 ab 54.8 ± 5.5 a 49.0 ± 1.3 b

4 41.8 ± 2.9 c 41.8 ± 2.1 c 47.1 ± 2.8 b 55.5 ± 4.9 a 45.6 ± 1.9 b

5 43.5 ± 1.9 d 46.6 ± 2.2 c 50.9 ± 2.3 b 55.1 ± 1.9 a 46.9 ± 2.8 c

STR (%)

1 59.3 ± 3.1 a 57.5 ± 2.2 ab 55.3 ± 1.5 c 57.2 ± 1.3 b 57.8 ± 1.9 ab

2 57.9 ± 2.0 ab 57.8 ± 1.5 ab 56.7 ± 1.8 bc 56.0 ± 1.8 c 58.8 ± 1.7 a

3 56.4 ± 1.9 ab 55.1 ± 1.2 b 56.5 ± 1.8 ab 57.4 ± 1.6 a 57.2 ± 1.8 ab

4 58.3 ± 1.6 a 58.6 ± 2 a 55.2 ± 1.7 c 56.9 ± 0.9 b 56.9 ± 1.2 b

5 56.6 ± 2.5 b 56.5 ± 2.1 b 56 ± 1.4 b 57.5 ± 1.1 b 59.7 ± 1.9 a

LIN (%)

1 30.2 ± 1.8 a 29.2 ± 1.4 ab 28.1 ± 1.1 b 29.3 ± 0.6 ab 29.4 ± 1.3 ab

2 27.5 ± 1.1 c 28.3 ± 0.9 bc 28.4 ± 1.0 b 28.0 ± 1.2 bc 29.5 ± 1.1 a

3 26.5 ± 1.2 b 26.9 ± 0.6 b 29.2 ± 2.0 a 28.7 ± 1.2 a 28.1 ± 1.1 ab

4 26.9 ± 1.2 b 27.2 ± 1.1 b 27.0 ± 1.1 b 28.5 ± 0.6 a 27.2 ± 0.9 b

5 28.4 ± 2.2 b 28.3 ± 1.3 b 27.3 ± 0.6 b 27.9 ± 0.8 b 29.8 ± 1.6 a

WOB (%)

1 49.2 ± 1.4 49.0 ± 1.0 48.9 ± 0.5 49.5 ± 0.4 49.1 ± 1.3
2 46.5 ± 1.4 c 47.7 ± 0.5 b 48.7 ± 0.8 a 48.5 ± 1.2 ab 48.7 ± 1.1 a

3 44.9 ± 1.3 b 47.3 ± 1.3 a 49.4 ± 2.7 a 48.6 ± 1.9 a 47.6 ± 0.8 a

4 45.1 ± 1.0 d 45.1 ± 1.2 d 47.3 ± 0.9 b 48.6 ± 0.5 a 46.3 ± 0.8 c

5 48.2 ± 1.8 ab 48.0 ± 1.0 ab 47.4 ± 0.6 ab 47.1 ± 0.7 b 48.4 ± 1.2 a
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Table 2. Cont.

Parameters Time (h) 0 nM 10 nM 100 nM 1000 nM 10,000 nM

ALH (µm)

1 7.1 ± 0.4 bc 6.8 ± 0.2 c 7.8 ± 0.2 a 7.6 ± 0.3 a 7.1 ± 0.3 b

2 6.5 ± 0.4 d 6.6 ± 0.2 d 7.5 ± 0.2 b 7.9 ± 0.4 a 7.1 ± 0.3 c

3 5.7 ± 0.4 d 6.3 ± 0.4 c 7.4 ± 0.4 a 7.5 ± 0.4 a 6.8 ± 0.3 b

4 6.6 ± 0.4 c 6.3 ± 0.3 d 7.4 ± 0.3 a 7.6 ± 0.3 a 7.1 ± 0.3 b

5 7.1 ± 0.3 c d 7.3 ± 0.2 bc 7.5 ± 0.3 ab 7.6 ± 0.3 a 6.9 ± 0.3 d

BCF (Hz)

1 43.0 ± 2.2 a 43.1 ± 1.5 a 42.3 ± 1.6 a 40.5 ± 1.2 b 42.0 ± 2.2 ab

2 39.5 ± 3.5 37.8 ± 1.9 39.4 ± 1.6 38.3 ± 2.1 38.2 ± 2.1
3 43.6 ± 1.5 a 38.2 ± 1.5 b 39.8 ± 5.2 b 38.1 ± 3.7 b 37.6 ± 1.3 b

4 42.0 ± 1.8 a 38.4 ± 2.6 b 38.5 ± 1.9 b 38.4 ± 1.9 b 37.8 ± 3.1 b

5 41.6 ± 2.7 a 39.4 ± 2.3 b 38.6 ± 1.3 b 38.0 ± 0.8 b 38.4 ± 2.0 b

Statistical analysis was performed using one-way ANOVA followed by Tukey’s post hoc test, n = 3. Data are
presented as means ± standard deviation from three replicates, with different letters representing significant
differences (p < 0.05). VCL, curvilinear velocity; VSL, straight-line velocity; VAP, average path velocity; BCF,
beat-cross frequency; ALH, lateral head; STR, straightness (VSL/VAP); LIN, linearity (VSL/VCL); WOB, wobble
(VAP/VCL).

3.3. PQQ Increased the Frozen–Thawed Mitochondrial Membrane Potential and ATP Levels

As shown in Figures 2A–F and S2, PQQ supplementation in the freezing extender
significantly improved sperm MMP compared to the control (p < 0.05), with the 1000 nM
PQQ group having the highest values. However, the 10,000 nM PQQ group exhibited a
significant decrease in MMP compared to the 1000 nM PQQ group (p < 0.05). In addition,
PQQ supplementation also significantly improved post-thaw sperm ATP levels (p < 0.05;
Figure 2G). Moreover, the 1000 nM PQQ-treated group had the highest ATP levels compared
to the other group.
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Figure 2. Effects of PQQ added to the freezing extender on post-thaw boar sperm MMP.
(A–E) Flow cytometry evaluation of sperm MMP. Sperm with HMMP are represented by the red
region; (F) sperm MMP; (G) ATP levels. Statistical analysis was performed using one-way ANOVA
followed by Tukey’s post hoc test. Data are presented as means ± standard deviation, n = 3, with
different letters representing significant differences (p < 0.05). HMMP: high mitochondrial mem-
brane potential.
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3.4. PQQ Reduced DNA Oxidative Damage in the Frozen–Thawed Sperm

Sperm DNA oxidative damage has potentially harmful effects on fertility. To inves-
tigate whether PQQ can alleviate oxidative DNA damage in boar sperm, we evaluated
TUNEL-stained sperm samples and the oxidative DNA damage marker 8-hydroxy-2’-
deoxyguanosine (8-OHdG) using flow cytometry. Figure 3A–D demonstrates that supple-
mentation with 1000 nM PQQ to the freezing extender significantly reduced post-thaw
sperm DNA oxidative damage compared to the control group (p < 0.05).
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Figure 3. Effects of PQQ added to the freezing extender on post-thaw boar sperm DNA integrity.
(A,B) 8-OHdG levels in sperm were analyzed by measuring the MFI of stained sperm. Higher MFI
indicates elevated 8-OHdG levels; (C,D) TUNEL levels in sperm were assessed by MFI from stained
sperm. Higher MFI corresponds to increased TUNEL levels. MFI: mean fluorescence intensity;
AU: arbitrary units. Statistical analysis was performed using an independent two-tailed t-test. Data
are presented as means ± standard deviation, n = 3, with different letters representing significant
differences (p < 0.05).

3.5. PQQ Reduced Oxidative Stress Levels in Frozen–Thawed Sperm

As shown in Figure 4A, MDA levels were significantly lower in the 100 nM and
1000 nM PQQ groups compared to the control group (p < 0.05). In contrast, the addition of
a higher concentration of PQQ (10,000 nM) to the freezing extender resulted in a significant
increase in MDA levels compared to the 100 nM and 1000 nM groups (p < 0.05). Addition-
ally, the 1000 nM PQQ treatment exhibited the highest SOD activity in post-thaw sperm
(p < 0.05; Figure 4B). As shown in Figures 4C and S3, the addition of PQQ from 10 to
10,000 nM to the freezing medium also significantly reduced mitochondrial ROS levels
compared to the control group (p < 0.05), and the 1000 nM PQQ treatment showed the
lowest mitochondrial ROS levels among all the treatment.
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Figure 4. Effects of PQQ added to the freezing extender on post-thaw boar sperm MDA levels (A),
SOD activity (B), and mitochondrial ROS levels (C). Statistical analysis was performed using one-way
ANOVA followed by Tukey’s post hoc test. MDA: malondialdehyde; SOD: superoxide dismutase;
ROS: reactive oxygen species. Data are presented as means ± standard deviation, n = 3, with different
letters representing significant differences (p < 0.05).
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3.6. PQQ Maintained Boar Sperm Mitochondrial Proteins Levels

Western blot analysis was employed to examine the effect of PQQ on the levels of
mitochondrial-encoded protein. As demonstrated in Figures 5A–D and S4, the addition
of PQQ to the freezing extender significantly increased the total levels of MT-ND1 and
MT-ND6 compared to the control group (p < 0.05).
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Figure 5. Effects of PQQ added to the freezing extender on post-thaw boar sperm mitochondria-
encoded proteins. (A,C) The Western blotting results illustrate the levels of MT-ND1, MT-ND6, and
α-tubulin proteins in boar sperm samples; (B,D) using α-tubulin as the reference protein, the relative
levels of MT-ND1 and MT-ND6 were quantitatively determined. Statistical analysis was performed
using an independent two-tailed t-test. Data are presented as means ± standard deviation, n = 3,
with different letters representing significant differences (p < 0.05).

3.7. PQQ Improved the Binding Capacity of Frozen–Thawed Sperm to Explants and Zona Pellucida

To explore the effect of PQQ in the freezing extender on post-thaw boar sperm fer-
tilization capacity, Hoechst 33342 staining was performed, and BI was used to measure
sperm reservoir formation ability in the oviduct. As illustrated in Figure 6A–C, sperm
BI in the 1000 nM PQQ group was significantly increased compared to the control group
(p < 0.05), suggesting that PQQ supplementation enhances reservoir-forming potential
of frozen–thawed sperm. Furthermore, the addition of 1000 nM PQQ also significantly
increased the number of sperm bound to the ZP compared to the control group (Figures 6D
and S5, p < 0.05).
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Figure 6. Effects of PQQ added to the freezing extender on the post-thaw binding capacity of boar
sperm to oviductal explants. (A,B) Example image showing sperm bound to the oviduct explant
surface (bar = 10 µm); (C) sperm BI, n = 4; (D) total number of sperm bound to zona pellucida (ZP),
n = 25. Statistical analysis was performed using an independent two-tailed t-test. Data are presented
as means ± standard deviation, with different letters representing significant difference (p < 0.05).
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4. Discussion
Optimization of cryopreservation techniques to preserve sperm quality is critical for

advancing applications in animal reproduction and biotechnology; however, it remains
a complex challenge. Due to the limited cytoplasmic space in sperm, they typically lack
sufficient endogenous antioxidants [9], making them particularly vulnerable to oxidative
damage during cryopreservation. Moreover, antioxidants in seminal plasma help protect
sperm from oxidative damage [41]. During boar sperm cryopreservation, removing
seminal plasma from semen increases the vulnerability of sperm to oxidative damage [42].
While conventional antioxidants have become a common strategy to alleviate oxidative
stress [43], targeted delivery of antioxidants to ROS generation sites offers greater
advantages in reducing oxidative stress and enhancing semen cryopreservation outcomes
compared to traditional antioxidants [37,44–46]. As a novel mitochondrial-targeted
antioxidant, PQQ has shown the potential to improve sperm quality during preservation,
but its effects on boar sperm remain unclear. In this study, we observed that adding 1000
nM PQQ to the freezing extender significantly increased sperm motility, and improved
motility parameters, viability, and acrosome integrity. This suggests that PQQ can
alleviate damage during cryopreservation, thereby improving sperm quality. Similar
effects were reported in studies on Holstein bull sperm [36]. However, we also observed
that higher concentrations of PQQ (10,000 nM) resulted in a reduction in sperm quality.
This phenomenon may be related to the concentration of PQQ being significantly higher
than those typically observed in normal blood or tissues (3–40 nM) [47,48]. Furthermore,
PQQ plays a crucial role in enhancing mitochondrial function by increasing the activity
of NAD+-dependent deacetylases sirtuin 1 (SIRT1) and sirtuin 3 (SIRT3). While moderate
activation of SIRT1 and SIRT3 is essential for maintaining cellular function, excessive
PQQ may adversely affect sperm viability by overstimulating the activity of SIRT1 and
SIRT3. The appropriate concentration of PQQ in freezing extenders varies across studies,
likely due to differences in animal species, freezing extender composition, and semen
handling procedures.

Post-thaw sperm motility is a reliable indicator of the effectiveness of cryopreservation
and a predictor of sperm fertility [49]. During the freezing process, the functional integrity
of sperm is challenging to assess using conventional motility tests, making methods like the
TRT invaluable for detecting subtle sperm damage [50]. In addition, to achieve successful
fertilization, viable and non-capacitated sperm is required to bind with epithelial cells
of the oviduct [51]. In this study, sperm treated with 1000 nM PQQ exhibited improved
motility in the TRT and higher binding rates to both explants and the ZP, emphasizing
PQQ’s role in preserving sperm functional integrity and enhancing fertilization potential
after thawing.

Boar sperm membranes are highly enriched in polyunsaturated fatty acids, ren-
dering them particularly sensitive to ROS-induced oxidative stress [52]. Accumulation
of ROS can lead to a depletion of intracellular ATP, which is associated with reduced
motility and male infertility [53,54]. In the present study, the addition of 1000 nM PQQ to
the freezing extender significantly reduced mitochondrial ROS levels. This suggests that
PQQ mitigates oxidative damage during cryopreservation, thereby enhancing sperm
quality. However, when a higher concentration of PQQ (10,000 nM) was used, we ob-
served a significant increase in mitochondrial ROS levels. This increase in mitochondrial
ROS suggested that excessive PQQ may overwhelm the antioxidant defense system,
leading to mitochondrial stress and oxidative damage. ROS-induced oxidative stress can
cause damage to cellular proteins, leading to their degradation and functional loss [55].
Mitochondria are the main source of ROS, with Complex I and Complex III acting as key
sites of ROS production in the ETC [37]. As subunits of Complex I situated near ROS
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generation sites [56], MT-ND1 and MT-ND6 are particularly susceptible to ROS-induced
oxidative damage. In this study, PQQ protects these proteins from oxidative damage,
thereby supporting the functionality of the ETC and ATP production. These findings are
consistent with previous studies, which have shown that the preserving of mitochon-
drial proteins can enhance mitochondrial function and energy production in sperm [37].
MMP is a critical indicator of overall mitochondrial health and plays a crucial role in
ATP generation [57]. MMP is associated with the proton gradient generated during
electron transport through the ETC [58]. A decrease in membrane potential is indica-
tive of mitochondrial dysfunction and is associated with reduced ATP production [59].
Mitochondrial dysfunction and insufficient energy production are key contributors to
reduced sperm motility [60]. In this study, a significant increase in MMP and ATP content
in the 1000 nM PQQ group was observed, suggesting that PQQ enhances mitochondrial
function. This, in turn, supports improved sperm motility and overall sperm quality.
However, in the 10,000 nM PQQ group, we observed a significant decrease in MMP and
ATP levels, which coincided with an increase in ROS, indicating that excessive PQQ
caused mitochondrial dysfunction and impaired sperm motility.

MDA is widely recognized as a marker of lipid peroxidation and oxidative
stress [61]. In addition, SOD is a critical antioxidant enzyme in male germ cells that
neutralizes ROS and prevents cellular damage induced by oxidative stress [62]. In this
study, 1000 nM PQQ reduced MDA levels and increased SOD activity, suggesting that
PQQ mitigates oxidative stress during cryopreservation. In contrast, in the 10,000 nM
PQQ group, elevated MDA and reduced SOD activity indicated that excessive PQQ may
induce mitochondrial ROS, leading to oxidative damage and decreased sperm quality.
Sperm DNA integrity is closely associated with male fertility potential [63], as DNA
damage can lead to poor fertilization outcomes and affect litter size [64]. Evaluating
sperm DNA integrity serves as a valuable complementary tool in semen analysis. The
process of DNA fragmentation in sperm is primarily driven by oxidative stress, wherein
ROS induces single-strand breaks in DNA. These breaks are typically the result of an
imbalance between ROS production and the antioxidant defense system. ROS can also
directly interact with nitrogenous bases in DNA, leading to oxidative DNA damage,
such as the formation of 8-OHdG. 8-OHdG is a common marker for oxidative DNA
damage and is often excised during repair processes, contributing to the formation of
DNA strand breaks [65]. TUNEL assays were developed to analyze DNA fragmentation
in sperm. The TUNEL assay and 8-OHdG measurement revealed that 1000 nM PQQ
reduced both 8-OHdG levels and TUNEL-positive sperm, improving DNA integrity by
mitigating oxidative DNA damage.

In conclusion, as shown in Figure 7, ROS, a byproduct of mitochondrial ATP pro-
duction, is generated during freezing and thawing processes. Adding the mitochondrial-
targeted antioxidant PQQ to the freezing extender can reduce ROS levels and protect DNA
integrity and ETC proteins such as MT-ND1 and MT-ND6 involved in maintaining ATP
generation in the mitochondria. Overall, the supplementation of PQQ to the freezing
extender enhances boar post-thaw sperm motility and fertilization potential. These find-
ings provide a straightforward strategy for enhancing the application of frozen semen in
swine AI. However, it should be noted that the effects of PQQ-treated sperm following
in vivo insemination have not been evaluated, and further studies are needed to confirm
its in vivo impact.
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