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Abstract: Dry eye syndrome (DES) is a prevalent ocular condition characterized by tear
film instability, inflammation, and discomfort, affecting millions worldwide. DES is re-
lated to oxidative stress imbalance and ocular surface inflammation, which are important
factors in the development of the condition. Recent studies have demonstrated that fish
oil, lutein, and zeaxanthin possess anti-inflammatory and antioxidant properties. This
study investigated the efficacy of a multicomponent dietary supplement in improving
tear secretion and mitigating ocular surface inflammation in patients with DES. It was an
open-label intervention trial. In total, 52 participants were randomly assigned to control
(n = 23) and supplement (45 mg/day eicosapentaenoic acid, 30 mg/day docosahexaenoic
acid, 30 mg/day lutein, and 1.8 mg/day zeaxanthin; n = 29) groups for 12 weeks. The
participants were evaluated using Schirmer’s test and the ocular surface disease index
(OSDI) as ocular surface parameters. Moreover, blood or tear oxidative stress, antioxidant
capacities, and tear inflammatory indicators were measured at weeks 0 and 12. The results
indicated a significant increase in tear secretion and a significant reduction in OSDI scores in
the supplement group. Additionally, inflammatory markers, such as interleukin (IL)-6 and
IL-8, significantly decreased after the intervention. However, the OSDI of the supplement
group significantly improved by 6.60 points (β = −6.60, p = 0.01). These findings support
the potential of targeted nutritional supplementation as a safe and effective strategy for alle-
viating DES symptoms, offering an alternative to conventional treatments that exclusively
focus on symptom management. This study highlights the role of specific nutrients in
modulating tear production and inflammation, thereby providing a foundation for dietary
approaches to DES treatment. Future research should explore the long-term benefits of
such interventions and their impact on overall ocular health.
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1. Introduction
Dry eye syndrome (DES), a multifactorial disease of the ocular surface, is primarily

characterized by tear film instability. This instability leads to increased tear film osmolarity
and ocular surface inflammation or damage, resulting in discomfort [1]. DES significantly
impacts patients’ quality of life [2]. As of 2021, the global prevalence of DES was estimated
at 29.5%. Notably, Africa exhibited the highest regional prevalence rate (47.9%), followed by
West Asia (29.0%); East Asia (19.4%); and Europe, South America, and Oceania (13.7–14.9%).
Taiwan, Japan, and South Korea have reported rates of approximately 30.0% [3]. In Taiwan,
approximately 25% of the population suffers from DES, and the incidence is increasing
annually [4].

DES potentially arises from a multitude of single or multiple risk factors, encompassing
personal attributes (e.g., age, post-menopausal status, and contact lens use), environmental
conditions (e.g., prolonged eye fixation without adequate blinking), clinical diseases (e.g.,
autoimmune and chronic diseases), medications (e.g., psychiatric drugs, antiviral medica-
tions, beta blockers, and diuretics), and ocular surgeries (e.g., laser and cataract operations).
These factors have been identified and discussed in various studies [5–7].

Inflammation is a key mechanism underlying the pathogenesis of DES. Research
has demonstrated that in DES, epithelial cells release relatively high concentrations of
chemokines and cytokines, notably tumor necrosis factor-alpha (TNF-α), interleukin (IL)-
1β, IL-6, and IL-8 [8,9]. Among these, IL-6 and TNF-α have been identified as critical
inflammatory markers in DES, contributing to lacrimal gland cell apoptosis and reduced
tear production [10]. Patients with DES may develop an adaptive immune response leading
to chronic inflammation [11]. This cytokine-mediated process affects sensory neurons and
cytokine alterations, resulting in decreased lacrimal secretion and associated ocular surface
discomfort [12,13].

Oxidative stress is another crucial mechanism contributing to the exacerbation of DES.
Prolonged exposure of the ocular surface to factors such as ultraviolet radiation, air pollu-
tion, hormonal changes, and bacterial infections potentially induces the overproduction of
reactive oxygen species (ROS). When antioxidant capabilities are insufficient or imbalanced,
ROS can directly damage the ocular glands, leading to epithelial and goblet cell apop-
tosis or harm to corneal nerves, thereby diminishing tear secretion quality and tear film
stability [14]. ROS also trigger inflammatory responses, rendering their overproduction a
key factor in the DES cycle [15].

Clinically, artificial tears are commonly used to manage DES, aiming to increase
moisture and prevent tear evaporation; however, they merely alleviate symptoms
temporarily [16]. Researchers suggest that intense pulsed light therapy significantly im-
proves DES symptoms; nevertheless, it is considered unsafe for upper-eyelid treatment,
requires annual or biennial sessions, and is costly [17]. Autologous serum eye drops have
recently emerged, and they are made from the patient’s own blood and cellular compo-
nents to mimic the biologically active nutrients in natural tears, such as vitamins A and C,
lysozyme, and immunoglobulins [18,19]. However, they are not suitable for patients with
autoimmune disease, are prone to microbial contamination, and require refrigeration [20].
Additionally, the Food and Drug Administration has approved anti-inflammatory drugs
such as cyclosporine A and lifitegrast 5% for DES; while they can improve symptoms, their
long-term use may cause side effects such as conjunctival hyperemia, secretions, foreign
body sensation, and decreased vision [16,21]. Consequently, dietary supplements for eye
health have actively been explored and are considered safer for long-term use [22].

An in vitro study found omega-3 fatty acids, particularly eicosapentaenoic acid (EPA)
and docosahexaenoic acid (DHA), to significantly enhance cell viability and reduce in-
flammation in corneal epithelial cells [23]. Numerous studies have indicated that high
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doses of fish oil, specifically EPA (1500–2000 mg) plus DHA (1000–1050 mg) daily for
3–6 months, potentially improve tear film break-up time, tear secretion, and the ocular
surface disease index (OSDI) [24,25]. In contrast, low-dose fish oil supplementation often
uses a compound formula to enhance efficacy. A study administered a high-dose fish oil
compound (EPA 1050 mg + DHA 127.5 mg/day), which also included vitamins (A, C, and
E), zinc, magnesium, copper, selenium, tyrosine, and cysteine, to patients with DES for
3 months. This regimen significantly increased tear secretion and tear film break-up time
compared with the control [24]. Another study administered a fish oil compound (EPA
45 mg + DHA 700 mg/day), which also contained vitamins (A, C, and E), zinc, copper,
and selenium, to patients with DES for 3 months, resulting in a significant reduction in
inflammatory factors IL-1β, IL-6, and IL-8 [26].

Lutein and zeaxanthin, widely recognized as beneficial for eye health, can absorb
40–90% of incident blue light, thus protecting the retina from photodamage and reduc-
ing light scattering [27]. Their antioxidant properties help scavenge free radicals and
enhance overall antioxidative capacity, preventing oxidative damage [28,29]. Furthermore,
their anti-inflammatory properties are significant, as inflammation is a key pathogenic
mechanism underlying several ocular diseases. Lutein and zeaxanthin can prevent oxida-
tive stress-induced cytokine increase and regulate the expression of inflammation-related
genes [30]. Research has demonstrated that administering lutein (20 mg/day) and zeax-
anthin (2 mg/day) to patients with DES for 3 months significantly improves tear film
break-up time and tear meniscus height [22]. Another study providing lutein (20 mg/day)
and zeaxanthin (4 mg/day) for 8 weeks resulted in significant improvements in tear film
break-up time, tear secretion, the OSDI, tear osmolarity, and matrix metallopeptidase-9
(MMP-9) levels [31]. These benefits may be attributed to lutein’s ability to inhibit IL-6 secre-
tion by epithelial cells through the nuclear factor kappa B signaling pathway, highlighting
its anti-inflammatory potential [32].

The incidence of DES has been increasing annually and is affecting younger
populations [4]. However, the long-term health effects of high-dose fish oil supplementa-
tion are concerning. Moreover, the efficacy of dietary supplements containing a combination
of fish oil, lutein, and zeaxanthin in ameliorating inflammation and oxidative stress and
enhancing antioxidant capacity is yet to be elucidated. Therefore, this study aimed to inves-
tigate the effects of 12-week supplementation with a compound containing fish oil, lutein,
and zeaxanthin on symptoms, oxidative stress, antioxidant capacity, and inflammation in
patients with DES.

2. Methods
2.1. Study Design and Sample Size Determination

This study was an open-label intervention trial. The participants were randomly
assigned to control and supplement (45 mg/day EPA, 30 mg/day DHA, 30 mg/day lutein,
and 1.8 mg/day zeaxanthin) (Far East Bio-Tec Co., Ltd., Taipei City, Taiwan) groups.
Supplementation was administered for 12 weeks. Each participant had two visits (weeks
0 and 12) throughout the study period. To assure compliance with the intervention, the
participants were asked to return their bottles for capsule counts. In addition, the study
co-executor made phone calls to remind each participant to take the capsules every week
during the intervention period. A participant would be excluded if their compliance
was <80%. In a previous study, the supplement group exhibited a significant increase in
tear break-up time (TBUT) of 4.6 s (p < 0.05) compared with the control group [33]. We
subsequently calculated the sample size based on the detection of a significant 4.6 s increase
between two groups with a power of 80% and a two-sided test with an α value of 0.05. A
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total of 42 patients were required to match the calculation criteria. The final recruitment
number was 52 patients, exceeding our original calculation.

2.2. Participants

In total, 60 participants were initially enrolled at baseline from the Ophthalmology
Outpatient Clinic of Chung Shan Medical University Hospital, Taiwan. The inclusion
criteria were as follows: (1) age between 20 and 80 years and (2) the presence of moderate
or severe DES. The exclusion criteria were as follows: (1) ophthalmic surgery within the
preceding 3 months, (2) autoimmune disease, (3) ocular allergy, (4) the consumption of
fish oil or antioxidant supplements within the preceding 3 months, and (5) pregnancy
or lactation. The participant enrollment process is illustrated in Figure 1. A total of
8 participants withdrew owing to an inability to attend follow-up appointments and
personal reasons, resulting in a final sample of 52 participants. The total dropout rate
was 13.3%. This study was approved by the Institutional Review Board (IRB) of Chung
Shan Medical University Hospital (IRB CSMUH No. CSI-20199). Each patient signed
an informed consent form prior to participating, and the informed consent process was
consistent with the principles of the Declaration of Helsinki.
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2.3. Data Collection and Measurements

Data regarding each participant’s age, gender, self-reported DES symptoms, oph-
thalmic condition inquiries (high myopia: −5.00 D or more; high astigmatism: −1.50 D or
more; past eye surgeries), medication usage, and lifestyle habits were collected. Addition-
ally, the OSDI questionnaire was administered.

2.4. Schirmer Test

The Schirmer test is a common clinical method used to assess tear secretion. The
procedure was repeated twice using filter paper strips placed inside the lower eyelid.
After 5 min, each strip was removed, and the length of the moist section was measured to
ascertain the amount of moisture absorbed. The conversion volume has been described in
a previous study [34], as shown in Figure 2.
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2.5. Ocular Surface Analyzer (OSA)

Dry eye analysis was performed using a non-invasive SBM Sistemi OSA to examine
the tear film and meibomian glands. This non-contact method avoids errors resulting
from contact irritation or fluorescein use. The analyzer automatically focuses and records
data for quantitative analysis. Researchers have demonstrated that OSAs accurately assess
tear film function, providing valuable insights into the clinical diagnosis of DES [34]. The
parameters measured included non-invasive TBUT (NIBUT), lipid layer thickness (LLT),
tear meniscus height (TMH), and meibomian gland loss (MG loss %).

2.6. Dietary Assessment

To ensure that the patients were maintaining their usual dietary intake, they had
to complete 24 h dietary recalls at weeks 0 and 12. Nutritional composition was calcu-
lated using Nutritional composition was calculated using Nutritionist Pro™ software v7.9
(Nutrition Butler Enhanced Edition, E-Kitchen Business Corporation, Taichung City, Tai-
wan, 2002), and the nutrient database was based on the Taiwan food composition table
(Department of Health, 2021).

2.7. Blood and Tear Collection

Fasting blood samples were drawn on the designated day. Blood specimens were
collected in vacutainer tubes (Becton Dickinson, Rutherford, NJ, USA). Tear samples were
collected using filter paper strips and diluted in 330 µL of phosphate-buffered saline. The
original concentration of the tears was calculated based on the dilution [35,36].

2.8. Oxidative Stress and Total Antioxidant Capacity Evaluation Using Blood and Tear Specimens

To evaluate oxidative stress and antioxidant capacity, plasma and tear malondialde-
hyde (MDA) levels were assessed as indicators of oxidative stress. The plasma MDA
concentration was measured along with thiobarbituric acid reactive substances at exci-
tation and emission wavelengths of 515 and 555 nm, respectively, using a fluorescence
spectrophotometer [37]. Tear MDA levels were measured using a commercial competitive
enzyme-linked immunosorbent assay kit (Arigo, Hsinchu, Taiwan) [38]. Plasma and tear
Trolox equivalent antioxidant capacity (TEAC) was analyzed using a previously described
method [39].

2.9. Multiplex Cytokine Analysis

Tear samples were tested using the Bio-Rad Bio-Plex® Pro Human Cytokine 27-Plex
Assay on the Bio-Rad MAGPIX™ Multiplex Reader for the following inflammatory cy-
tokines: IL-1β, IL-2, IL-6, IL-8, IL-17A, and TNF-α. Data were acquired using the Bio-Plex
Array Reader System 200 (Bio-Rad, Hercules, CA, USA). The lower limits of quantitation
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(LOQs) for each cytokine are as follows: IL-1β: 0.00029 pg/µL; IL-2: 0.00129 pg/µL; IL-6:
0.00038 pg/µL; IL-8: 0.00085 pg/µL; IL-17α: 0.00244 pg/µL; and TNF-α: 0.00333 pg/µL.

2.10. Statistical Analysis

All data were analyzed using SigmaPlot software (version 12.5; Systat Software, San
Jose, CA, USA) and presented on an intention-to-treat basis. A Shapiro–Wilk test was
performed to determine normality. Between-group differences in demographic character-
istics and experimental data were evaluated for significance using Student’s t-test or the
Mann–Whitney rank-sum test. The χ2 or Fisher’s exact test was used to analyze categor-
ical variables. Paired comparisons were performed using the paired t-test or Wilcoxon
signed-rank test to examine changes in outcomes before and after the intervention. Partial
Spearman’s correlation analysis was used to assess the association of changes in blood
and tear oxidative stress, antioxidant capacity, and inflammatory factors with DES, after
adjusting for potential confounders. Multiple linear regression analyses, with or without
dietary supplementation as the dependent variable, were used to examine the association
of changes in blood and tear oxidative stress, antioxidant capacity, and cytokines with DES,
after adjusting for potential confounders. Statistical significance was set at p < 0.05.

3. Results
Participant Demographics and Self-Assessment of Dry Eye Symptoms

This study enrolled 52 participants (29 participants in the supplement group and
23 in the control group). Their mean age was 58.0 years, with a range of 39–80 years.
The compliance of the supplement group was 96.6 ± 5.4%, and no participants reflected
any tolerance after taking the supplement. No significant differences in age, sex, or the
proportion of participants with severe myopia or severe astigmatism were noted between
the groups. However, the supplement group had a significantly greater proportion of
participants who had undergone previous eye-related surgery than the control group. The
self-assessment of dry eye symptoms revealed that dry eyes (80.8%) constituted the greatest
proportion of symptoms, followed by eye fatigue (78.8%) and blurred or worsened vision
(75.0%). No significant differences in various self-reported dry eye symptoms occurred
between the two groups (Table 1).

Table 1. Characteristics, visual outcome experiences, and dry eye questionnaires of study groups
at baseline.

Variables 1 Control Group
(n = 23)

Supplement Group
(n = 29) p-Value

Age (y) 56.48 ± 7.81 59.59 ± 10.33 0.24
Gender (M/F) 2/23 8/29 0.16
Age of menopause 50.23 ± 4.44 51.71 ± 6.06 0.15
Menopause (n, %) 12 (52%) 14 (48%) 0.1
High myopia (n, %) 7 (30%) 7 (24%) 0.85
High astigmatism (n, %) 4 (17%) 10 (34%) 0.29
Eye surgery experience (n, %) 6 (26%) * 19 (66%) 0.01
Symptoms of dry eye

Dryness (n, %) 20 (87%) 22 (76%) 0.48
Fatigue (n, %) 20 (87%) 21 (72%) 0.31
Foreign body sensation (n, %) 14 (61%) 15 (52%) 0.71
Photophobia (n, %) 13 (57%) 17 (59%) 0.90
Itching (n, %) 11 (48%) 14 (48%) 0.81
Burning sensation (n, %) 4 (17%) 4 (14%) 1.00
Blurred or poor vision (n, %) 17 (74%) 22 (76%) 0.87
Pain (n, %) 5 (22%) 7 (24%) 0.90

1 Values are presented as mean ± SD. * Values are significantly different between control and supplement groups
at baseline.
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The use of medication and lifestyle habits of participants before and after the inter-
vention are shown in Table 2. Most participants did not use anti-inflammatory drugs.
Regarding lifestyle habits, a significant difference in the average daily sleep duration was
observed between the two groups, both before and after the intervention. However, no
significant differences in other lifestyle habits were found between the groups.

Table 2. Lifestyle habits of subjects from study groups at weeks 0 and 12.

Variables 1 Control Group (n = 23) Supplement Group (n = 29) Week 0 Week 12

Week 0 Week 12 Week 0 Week 12 p-Value

Anti-inflammatory drugs (n, %)
No 20 (87%) 19 (90%) 28 (97%) 28 (100%)

0.31 0.18Yes 3 (13%) 2 (10%) 1 (3%) 0 (0%)
Frequency of using artificial tears (times, %)

No 6 (26%) 5 (24%) 11 (38%) 11 (39%)

0.39 0.22
1–2 5 (22%) 6 (29%) 5 (17%) 5 (18%)
3–4 11 (48%) 10 (47%) 8 (28%) 8 (29%)
5–6 1 (4%) 0 (0%) 4 (14%) 2 (7%)
>6 0 (0%) 0 (0%) 1 (3%) 2 (7%)

Frequency of using video display units (hour) (n, %)
0 0 (0%) 1 (5%) 0 (0%) 0 (0%)

0.14 0.45
2 5 (22%) 4 (19%) 4 (14%) 4 (15%)
2–4 4 (17%) 3 (14%) 8 (28%) 6 (21%)
4–6 5 (22%) 4 (19%) 1 (3%) 2 (7%)
>6 9 (39%) 9 (43%) 16 (55%) 16 (57%)

Frequency of reading (hour) (n, %)
0 11 (48%) 14 (66%) 14 (49%) 15 (54%)

0.84 0.59
2 11 (48%) 6 (29%) 13 (45%) 12 (43%)
2–4 0 (0%) 1 (5%) 1 (3%) 1 (3%)
4–6 1 (4%) 0 (0%) 1 (3%) 0 (0%)
>6 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Stay up late frequency (n, %)
Never 7 (30%) 7 (33%) 10 (34%) 10 (36%)

0.85 0.32
Seldom 7 (30%) 8 (38%) 11 (38%) 12 (43%)
Sometimes 5 (22%) 4 (19%) 4 (14%) 1 (3%)
Often 3 (13%) 0 (0%) 2 (7%) 0 (0%)
Always 1 (5%) 2 (10%) 2 (7%) 5 (18%)

Average sleep time (hour) (n, %)
<6 1 (4%) 2 (10%) 10 (35%) 5 (18%)

0.03 0.046–8 17 (74%) 15 (71%) 16 (55%) 23 (82%)
>8 5 (22%) 4 (19%) 3 (10%) 0 (0%)

Contact lens frequency (n, %)
Never 23 (100%) 21 (100%) 27 (94%) 26 (93%)

0.44 0.50
Seldom 0 (0%) 0 (0%) 1 (3%) 0 (0%)
Sometimes 0 (0%) 0 (0%) 1 (3%) 2 (7%)
Often 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Always 0 (0%) 0 (0%) 0 (0%) 0 (0%)

1 Values are presented as number with percentage.

Table 3 shows the results of DES-related indicators before and after the intervention.
After the intervention, the tear secretion volume significantly increased by 30% in the
left eye of the supplement group. Furthermore, the OSDI not only improved compared
with that before the intervention but was also significantly lower than that of the control
group. Post-intervention NIBUT significantly decreased in both the control and supplement
groups (right eye) compared with that before the intervention. The degree of MG loss in
the right eye of the supplement group significantly increased compared with that before
the intervention.
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Table 3. Ocular surface parameters of dry eye in study groups at weeks 0 and 12.

Variables 1 Control Group (n = 23) Supplement Group (n = 29)

Week 0 Week 12 Week 0 Week 12

Schirmer test (mm)
Right eye 6.17 ± 4.74 6.67 ± 5.94 5.93 ± 5.99 5.75 ± 4.32
Left eye 5.65 ± 5.11 5.38 ± 4.90 4.62 ± 4.79 b 6.00 ± 4.55 a

OSDI (score/100) 34.78 ± 12.32 33.43 ± 20.15 * 33.26 ± 16.04 a 18.83 ± 15.19 b

NIBUT (sec)
Right eye 9.79 ± 2.94 a 7.79 ± 2.21 b 10.27 ± 4.67 a 8.47 ± 1.96 b

Left eye 9.07 ± 2.44 8.21 ± 2.15 10.63 ± 4.94 9.02 ± 3.00
TMH (mm)

Right eye 0.21 ± 0.12 0.18 ± 0.07 0.18 ± 0.05 0.19 ± 0.07
Left eye 0.21 ± 0.08 0.19 ± 0.12 0.21 ± 0.06 0.20 ± 0.08

MG loss (%)
Right eye 54.26 ± 15.45 52.81 ± 21.11 48.07 ± 18.97 b 58.18 ± 20.83 a

Left eye 50.22 ± 20.36 47.90 ± 15.14 48.07 ± 16.00 48.89 ± 17.05
LLT (0 of 6) right eye

0 (n, %) 10 (43%) 13 (62%) 13 (45%) 15 (54%)
1 (n, %) 9 (39%) 6 (29%) 9 (31%) 8 (29%)
2 (n, %) 2 (9%) 2 (10%) 5 (17%) 5 (18%)
3 (n, %) 1 (4%) 0 (0%) 2 (7%) 0 (0%)
4 (n, %) 1 (4%) 0 (0%) 0 (0%) 0 (0%)
5 (n, %) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
6 (n, %) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

LLT (0 of 6) left eye
0 (n, %) 9 (39%) 11 (52%) 8 (28%) 16 (57%)
1 (n, %) 8 (35%) 8 (38%) 15 (52%) 9 (32%)
2 (n, %) 5 (22%) 0 (0%) 5 (17%) 3 (11%)
3 (n, %) 1 (4%) 2 (10%) 1 (3%) 0 (0%)
4 (n, %) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
5 (n, %) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
6 (n, %) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

1 Values are presented as mean ± SD and number with percentage; OSDI, ocular surface disease index; NIBUT,
non-invasive tear break-up time; TMH, tear meniscus height; MG, meibomian gland; LLT, lipid layer thickness.
a, b Values are significantly different between weeks 0 and 12 within the group; p < 0.05. * Values are significantly
different between control and supplement groups at week 0 or 12; p < 0.05.

No significant change in calorie intake occurred in either group before and after
the intervention. Regarding macronutrients, protein intake significantly increased in the
control group after the intervention, while a significant increase in fat intake occurred in
the supplement group. Additionally, the control group exhibited a significantly higher
lipid intake and lower carbohydrate intake than the supplement group, and fat intake in
both groups ranged from 31% to 39% (Table 4).

No significant differences in tear TEAC levels were noted between the two groups
or from week 0 to week 12. Regarding oxidative stress, plasma MDA levels significantly
decreased, whereas tear fluid MDA levels significantly increased in the control group at
week 12. In contrast, in the supplement group, no significant changes in oxidative stress
manifested in either blood or tears from week 0 to week 12. After 12 weeks, the levels of
tear cytokines, namely, IL-6 and IL-8, significantly decreased compared with those at week
0, and IL-6 also significantly decreased compared with that in the control group at week
12. Additionally, the post-intervention IL-17A concentration significantly increased in the
control group at week 12 (Table 5).
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Table 4. Daily nutrient intakes of subjects from study groups at weeks 0 and 12.

Variables 1 Control Group (n = 23) Supplement Group (n = 29)

Week 0 Week 12 Week 0 Week 12

Energy (Kcal/day) 1339.65 ± 352.82 1295.38 ± 399.70 1444.42 ± 489.84 1329.96 ± 465.37
Protein (g/day) 55.69 ± 32.76 65.87 ± 32.76 62.63 ± 32.76 56.97 ± 32.76
Protein (% total energy) 17.00 ± 4.00 b 20.00 ± 5.00 a 17.00 ± 5.00 17.00 ± 5.00
Carbohydrate (g/day) 147.07 ± 32.76 143.06 ± 32.76 * 188.15 ± 32.76 a 149.21 ± 32.76 b

Carbohydrate (% total energy) 44.00 ± 12.00 * 43.00 ± 12.00 52.00 ± 14.00 46.00 ± 12.00
Lipid (g/day) 54.41 ± 32.76 53.82 ± 32.76 50.66 ± 32.76 58.30 ± 32.76
Lipid (% total energy) 37.00 ± 11.00 * 39.00 ± 10.00 31.00 ± 10.00 b 39.00 ± 10.00 a

Saturated fatty acid (mg) 5294.55 ± 4932.79 4302.55 ± 3190.90 4516.58 ± 3700.62 7791.71 ± 7475.99
MUFA (mg) 5338.82 ± 4891.44 4985.13 ± 3283.96 4983.83 ± 4712.27 7572.83 ± 7478.71
PUFA (mg) 4793.86 ± 7681.52 7047.41 ± 5990.41 4981.86 ± 5060.43 4820.06 ± 6107.76

ALA (18:3) (mg) 494.98 ± 886.48 711.82 ± 672.75 * 441.21 ± 503.39 416.16 ± 628.13
EPA (20:5) (mg) 4.35 ± 7.64 b 86.50 ± 259.19 a 8.68 ± 15.72 22.05 ± 55.70
DHA (22:6) (mg) 14.66 ± 17.03 b 50.26 ± 77.75 a 19.87 ± 25.92 27.40 ± 48.41
S-EPA (20:5) (mg) 4.35 ± 7.64 b 86.50 ± 259.19 a,* 8.68 ± 15.72 b 67.05 ± 55.70 a

S-DHA (22:6) (mg) 14.66 ± 17.03 b 50.26 ± 77.75 a,* 19.87 ± 25.92 b 57.40 ± 48.41 a

1 Values are presented as mean ± SD. MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid; ALA, α-linoleic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic
acid; S-EPA, includes dietary and supplement of eicosapentaenoic acid; S-DHA, includes dietary and supplement of docosahexaenoic acid. a, b Values are significantly different between
weeks 0 and 12 within the group; p < 0.05. * Values are significantly different between control and supplement groups at week 0 or 12; p < 0.05.
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Table 5. Antioxidant capacity, oxidative stress, and cytokines levels in study groups at weeks 0 and 12.

Variables 1 Control Group (n = 23) Supplement Group (n = 29)

Week 0 Week 12 Week 0 Week 12

Antioxidant capacities
Plasma TEAC (µmol/L) 4489.67 ± 280.44 a (4531.05) 4217.58 ± 233.51 b (4204.20) 4306.85 ± 397.63 (4345.32) 4315.88 ± 283.65 (4229.81)
Tear TEAC (µmol/µL) 11,242.65 ± 8775.13 (8281.86) 9772.83 ± 8014.59 (7924.94) 10,864.55 ± 6119.1 (10920.00) 8910.12 ± 4084.9 (8182.44)

Oxidative stress
Plasma MDA (µmol/L) 1.02 ± 0.22 a (1.02) 0.87 ± 0.19 b (0.94) 1.10 ± 0.20 (1.06) 1.06 ± 0.26 (0.98)
Tear MDA (µmol/µL) 0.88 ± 0.99 b (0.51) 1.70 ± 1.45 a (1.28) 1.21 ± 1.22 (0.73) 1.37 ± 1.22 (1.21)

Cytokines
IL 1β (pg/µL) 0.02 ± 0.05 (0.00) 0.02 ± 0.03 (0.01) 0.01 ± 0.01 (0.01) 0.01 ± 0.02 (0.01)
IL 2 (pg/µL) 0.01 ± 0.01 (0.01) 0.02 ± 0.02 (0.01) 0.02 ± 0.02 (0.01) 0.02 ± 0.02 (0.01)
IL 6 (pg/µL) 0.23 ± 0.60 (0.07) 0.26 ± 0.59 * (0.10) 0.17 ± 0.16 a (0.13) 0.10 ± 0.20 b (0.06)
IL 8 (pg/µL) 2.27 ± 3.35 * (0.49) 2.02 ± 2.90 (0.76) 3.75 ± 3.83 a (2.80) 1.57 ± 1.98 b (0.48)
IL 17A (pg/µL) 0.02 ± 0.01 b (0.01) 0.05 ± 0.06 a (0.02) 0.03 ± 0.04 (0.01) 0.03 ± 0.02 (0.02)
TNF-α (pg/µL) 0.11 ± 0.17 (0.05) 0.13 ± 0.18 (0.07) 0.08 ± 0.07 (0.05) 0.11 ± 0.1 (0.06)

1 Values are presented as mean ± SD (median). TEAC, Trolox equivalent antioxidant capacity. MDA, malondialdehyde. IL, interleukin. TNF-α, tumor necrosis factor-α. a, b Values are
significantly different between weeks 0 and 12 within the group; p < 0.05. * Values are significantly different between control and supplement groups at week 0 or 12; p < 0.05.
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We subsequently performed partial Spearman’s correlation coefficient analyses to
assess the association of changes in oxidative stress indicators, antioxidant activity, and
inflammatory responses with changes in DES indicators, after adjusting for age, gender,
and menopausal status (Table 6). Tear secretion changes negatively correlated with changes
in tear TEAC and MDA levels (right eye). Plasma TEAC changes negatively correlated
with changes in the meniscus height (left eye) and OSDI of tears. In addition, the results
indicated that alterations in tear secretion were inversely related to IL-1β (right eye) and
IL-2, IL-8, and TNF-α (both eyes) levels. IL-17A changes were negatively associated with
NIBUT (right eye) and TMH (left eye). Furthermore, the degree of MG loss exhibited a
positive relationship with IL-6 (left eye) and IL-8 (left eye).

To ascertain whether supplement intake influenced dry eye-related indicators, ox-
idative stress indicators, antioxidant activity, and inflammatory responses, we conducted
multiple linear regression analyses. Supplement intake was the dependent variable, and
the models were adjusted for age, gender, and menopausal status. The results are presented
in Table 7.

The findings revealed a significant improvement in the OSDI and an elevation in
plasma TEAC levels following supplementation. After adjusting for potential confounders,
an association was established between supplementation and OSDI improvement; however,
the effect on plasma antioxidant capacity was not evident.
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Table 6. The correlation between the changes in ocular surface parameters of dry eye and changes in antioxidant capacity, oxidative stress, and cytokines levels 1.

Variables 3

∆ Schirmer Test ∆ NIBUT (sec) ∆ LLT (0 of 6) ∆ TMH (mm) ∆ MG Loss (%) ∆ OSDI

Eye
Right Left Right Left Right Left Right Left Right Left

r 2

Antioxidant capacities
∆ Plasma TEAC (µmol/L) −0.03 0.02 −0.01 0.03 −0.14 −0.18 −0.14 −0.32 * 0.06 0.67 −0.30 *
∆ Tear TEAC (µmol/µL) −0.72 * −0.64 * 0.22 −0.17 −0.08 −0.18 0.17 −0.10 −0.14 0.23 −0.12

Oxidative stress
∆ Plasma MDA (µmol/L) 0.18 −0.12 0.16 −0.05 0.01 0.07 0.02 0.22 0.05 −0.14 −0.04
∆ Tear MDA (µmol/µL) −0.33 * −0.23 0.28 −0.14 0.10 0.08 −0.06 0.06 0.20 −0.01 0.09

Cytokines
∆ IL 1β (pg/µL) −0.43 * −0.25 −0.03 −0.06 −0.09 0.10 0.08 −0.08 −0.14 0.28 −0.06
∆ IL 2 (pg/µL) −0.50 * −0.48 * 0.12 −0.07 0.01 0.14 −0.10 −0.01 −0.13 −0.01 −0.06
∆ IL 6 (pg/µL) −0.20 −0.26 0.16 0.05 0.09 0.23 0.09 0.12 0.01 0.44 * −0.03
∆ IL 8 (pg/µL) −0.33 * −0.29 * 0.28 0.02 0.04 0.18 0.04 0.11 0.04 0.45 * −0.16
∆ IL 17A (pg/µL) −0.29 −0.27 −0.40 * −0.26 −0.34 −0.29 −0.13 −0.41 * −0.11 −0.02 0.05
∆ TNF-α (pg/µL) −0.06 * −0.56 * 0.30 0.04 −0.10 0.01 0.17 −0.11 −0.13 0.21 −0.22

1 NIBUT, non-invasive tear break-up time; LLT, lipid layer thickness; TMH, tear meniscus height; MG, meibomian gland. OSDI, ocular surface disease index. TEAC, Trolox equivalent
antioxidant capacity. MDA, malondialdehyde. IL, interleukin. TNF-α, tumor necrosis factor-α. 2 r, correlation coefficient. 3 Variables are changes at weeks 0 and 12 [∆ (week 12-0)] in
both groups. * Values are significant correlations between the changes in all parameters, p < 0.05.
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Table 7. Multiple linear regression analysis of treatment with the changes in ocular surface parameters,
oxidative stress, antioxidant capacities, and inflammatory indicators of dry eye in patents with dry
eye syndrome.

Dependent Variables 3 Eye Model 1 1 Model 2 1

β 2 SE 2 β 2 SE 2

∆ Schirmer test (mm)
Right −1.10 1.94 −1.20 1.97
Left 1.10 1.19 1.00 1.21

∆ NIBUT (sec)
Right 0.05 1.26 0.04 1.28
Left −0.89 1.07 −0.85 1.09

∆ LLT (0 of 6)
Right 0.19 0.21 0.18 0.21
Left −0.13 0.19 −0.11 0.19

∆ TMH (mm)
Right 0.02 0.03 0.03 0.03
Left 0.01 0.03 0.01 0.03

∆ MG loss (%)
Right 11.14 0.04 10.63 5.69
Left 3.05 6.20 2.55 6.28

∆ OSDI (score/100) −6.38 * 2.49 −6.60 * 2.52
∆ Plasma TEAC (µM) 239.32 * 114.57 221.40 114.48
∆ Tear TEAC (pg/µL) −21.93 2383.89 14.60 2426.32
∆ Plasma MDA (µM) 0.05 0.07 0.06 0.07
∆ Tear MDA (pg/µL) −0.56 0.51 −0.61 0.53
∆ IL 1β (pg/µL) 0.01 0.01 0.01 0.01
∆ IL 2 (pg/µL) −0.01 0.01 −0.01 0.01
∆ IL 6 (pg/µL) −0.08 0.07 −0.01 0.07
∆ IL 8 (pg/µL) 0.25 1.93 0.22 1.96
∆ IL 17A (pg/µL) −0.03 0.02 −0.03 0.02
∆ TNF-a (pg/µL) 0.01 0.05 0.01 0.05

1 Model 1 was not adjusted; model 2 was adjusted for age, gender, and menopause. 2 β, regression; SE, standard
error, * p < 0.05. NIBUT, non-invasive tear break-up time; LLT, lipid layer thickness; TMH, tear meniscus height;
MG, meibomian gland. OSDI, ocular surface disease index. TEAC, Trolox equivalent antioxidant capacity. MDA,
malondialdehyde. IL, interleukin, TNF-α, tumor necrosis factor-α. 3 Variables are changes at weeks 0 and 12 [∆
(week 12-0)] in both groups.

4. Discussion
After 12-week supplementation, the supplement group exhibited a significant increase

in tear secretion and a significant reduction in tear inflammatory markers. This observation
is consistent with the crucial role of inflammation in the pathogenesis of DES. Ocular surface
epithelial cells are exposed to oxidative stress [40,41], and the innate immune response is
triggered, leading to the release of TNF-α, IL-1β, and IL-6, which induce inflammation [42].
IL-6 stimulates the synthesis and release of acute-phase proteins, leading to the secretion
of the pro-inflammatory cytokine IL-17, which induces apoptosis in lacrimal gland cells,
thereby reducing tear production. Numerous clinical studies have confirmed a negative
correlation between tear secretion and IL-6 and TNF-α [43,44]. Furthermore, inflammation
or prolonged dryness of the ocular surface triggers a significant release of IL-8, which
attracts neutrophil migration [10,45]. A previous study confirmed that increased tear film
inflammation elevates ROS, leading to reduced tear secretion [46]. This study observed
significantly negative correlations among changes in tear secretion, changes in tear MDA
and TEAC levels, and inflammatory markers.

EPA and DHA have been shown to inhibit oxidative stress and mitigate the pro-
duction of inflammatory mediators [47]. Lutein and zeaxanthin exhibit ROS scavenging
properties [48]. Studies indicate that lutein can decrease the sensitivity of cell membranes
to oxidative damage [49] and improve inflammation [50]. Clinical research has demon-
strated that a 3-month supplementation regimen can significantly reduce tear IL-6 levels
compared with the control [26] or increase tear secretion [24]. A 12-week supplementa-
tion regimen involving a combination of lutein, zeaxanthin, and curcumin significantly
increased tear secretion in patients with DES [22]. Our findings are consistent with those ob-
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tained in the above studies, indicating that compound supplements significantly ameliorate
inflammation. Notably, IL-17A significantly increased in the control group.

Additionally, we observed a significant increase in oxidative stress in the tears of
the control group after 12 weeks. This finding is consistent with previous research that
highlights how the disruption of redox homeostasis in DES contributes to the creation of
a localized oxidative environment within the tear film [14]. Furthermore, both plasma
antioxidant capacity and oxidative stress were significantly reduced in the control group.
This paradoxical observation may reflect the complex role oxidative stress plays in the
clinical progression of DES. The increase in oxidative stress could lead to the depletion
of antioxidant defenses, as the body attempts to counteract the damaging effects of ox-
idative stress. Such depletion may represent an adaptive response to chronic oxidative
stress, where cellular protective mechanisms engage antioxidants to neutralize harmful
free radicals. As Liguori et al. [51] suggest, oxidative metabolism produces ROS, which
further exacerbate oxidative stress. This feedback mechanism, although initially protective,
may ultimately result in a reduction in both antioxidant capacity and oxidative stress
markers in plasma. Moreover, additional factors such as lifestyle changes, environmental
exposures, and dietary influences may further modulate oxidative and antioxidant sys-
tems, contributing to the complexity of the response. Future research should explore these
variables and their intricate interactions to provide a more comprehensive understanding
of the mechanisms driving DES progression and its associated oxidative stress. However,
no changes in oxidative stress and antioxidant capacity indicators were observed in the
supplement group, possibly because of the compound supplement providing sufficient
antioxidant capacity to balance oxidants and antioxidants, thereby attenuating the potential
for further deterioration. Despite the relatively low dosage of the compound supplement
in this study compared with that in previous research, it effectively reduced inflammatory
markers and increased tear secretion. Notably, previous studies have failed to verify a rela-
tionship between DES severity and IL-1β concentration; nonetheless, this study established
a correlation between increased tear secretion and decreased IL-1β levels.

After 12-week supplementation, the supplement group displayed a significant OSDI
decrease of 6.6 points compared with the control group, corroborating the antioxidant
and anti-inflammatory properties of fish oil, lutein, and zeaxanthin. DHA depletion
is reportedly caused by H2O2, which also enhances lipid oxidation in retinal pigment
epithelial cells; moreover, lutein and zeaxanthin enhance cellular defense against oxidative
stress [52]. Studies have revealed that antioxidant supplementation may improve plasma
antioxidant capacity, increase TBUT, and enhance tear secretion, thereby alleviating dry
eye discomfort in patients with DES [53–55]. Similarly, this study observed a negative
correlation between OSDI changes and plasma antioxidant capacity. A previous study
involving a 12-week regimen of lutein (20 mg/day) and zeaxanthin (4 mg/day), including
vitamin D and curcumin, yielded a 13-point reduction in the OSDI [31]. Another study
involving EPA (360 mg/day) and DHA (240 mg/day) supplementation for 12 weeks
demonstrated a significant 9.4-point reduction in the OSDI [56]. Our results align with
these findings, showing a significant 14.6-point reduction in the OSDI, despite the lower
dosages than those in previous studies.

DES owing to meibomian gland dysfunction is a clinical problem encountered in
ophthalmology [57], and increased ROS levels can directly damage meibomian glands,
leading to apoptosis [58], further reduced LLT, and increased tear evaporation, affect-
ing TMH [59]. Previous studies have shown that the anti-inflammatory and antiox-
idant properties of fish oil, lutein, and zeaxanthin supplements can reduce eyelid in-
flammation [33]. We also observed a significantly positive correlation between MG loss
and inflammation in tears. Several studies have demonstrated that varying dosages of
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EPA (1680–2000 mg/day) + DHA (560–1000 mg/day) for 12 weeks to 1 year significantly
increase TBUT [60–62]. However, we found a significant increase in MG loss, a significant
decrease in TBUT, and no significant changes in LLT and TMH in the supplement group.
Meibomian gland function is easily influenced by external factors, such as screen time,
sleep duration, environment, and ocular surgery [33]. Numerous studies confirm that
ocular surgery reduces TBUT [63–65].

In this study, the supplement group had a significantly greater proportion of partici-
pants with a history of ocular surgery (66%) than the control group (26%). Additionally, the
supplement group participants reported significantly less average daily sleep, potentially
contributing to the observed lack of improvement. Moreover, the significant decrease in
TBUT in the control group after 12 weeks might have been related to the significant increase
in tear IL-17A levels; furthermore, we found a negative correlation between TBUT and
IL-17A. IL-17A leads to ocular surface epithelial and tear function impairment [66–68] and
stimulates MMPs, causing ocular surface damage and affecting tear film stability [69,70].

The strength of this study was its ability to successfully overcome challenges in
collecting tear samples from patients with DES. This enabled a thorough investigation
into tear antioxidant capacity, oxidative stress, and cytokine profiles. Notwithstanding,
this study also had certain limitations. First, it was an open-label trial. This decision
was based on previous studies indicating that using oil as a placebo may improve the
tear film lipid layer and reduce ocular discomfort, thus impeding the elucidation of the
effects of supplementation. To address this confounding factor, an open-label trial design
was selected. Second, the supplement group had a significantly higher proportion of
participants with a history of ocular surgery and a reduced sleep duration, which may
have contributed to the observed increase in meibomian gland loss and the decrease in
tear break-up time, potentially affecting the supplementation’s overall efficacy. Finally, this
study involved a relatively small sample. Larger sample sizes will aid future studies in
comprehensively elucidating the antioxidant effects of multicomponent supplements.

5. Conclusions
In conclusion, this study suggests that a 12-week supplementation regimen com-

prising EPA, DHA, lutein, and zeaxanthin has the ability to alleviate dry eye symptoms,
enhance tear secretion, and mitigate the tear inflammatory response in patients with DES.
However, a larger study is required to confirm these findings and provide more definitive
recommendations for DES treatment.
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