
Academic Editor: Alessio Bocedi

Received: 30 October 2024

Revised: 13 January 2025

Accepted: 14 January 2025

Published: 17 January 2025

Citation: Tian, Z.; Cui, Y.; Yu, M.;

Deng, D.; Li, Z.; Ma, X.; Qu, M.

Reduced Glutathione Promoted

Growth Performance by Improving

the Jejunal Barrier, Antioxidant

Function, and Altering Proteomics of

Weaned Piglets. Antioxidants 2025, 14,

107. https://doi.org/10.3390/

antiox14010107

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Reduced Glutathione Promoted Growth Performance by
Improving the Jejunal Barrier, Antioxidant Function,
and Altering Proteomics of Weaned Piglets
Zhimei Tian 1,2, Yiyan Cui 2 , Miao Yu 2, Dun Deng 2 , Zhenming Li 2, Xianyong Ma 2,* and Mingren Qu 1,*

1 Jiangxi Province Key Laboratory of Animal Nutrition, Animal Nutrition and Feed Safety Innovation Team,
College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330006, China;
tianzhimei@gdaas.cn

2 State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed
Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of
Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences,
Guangzhou 510640, China

* Correspondence: maxianyong@gdaas.cn (X.M.); qumingren@jxau.edu.cn (M.Q.);
Tel.: +86-020-6136-8896 (X.M. & M.Q.)

Abstract: Reduced glutathione (GSH) is a main nonenzymatic antioxidant, but its effects
and underlying mechanisms on growth and intestinal health in weaned piglets still require
further assessment. A total of 180 weaned piglets were randomly allotted to 5 groups: a
basal diet (CON), and a basal diet supplemented with antibiotic chlortetracycline (ABX),
50 (GSH1), 65 (GSH2), or 100 mg/kg GSH (GSH3). Results revealed that dietary GSH1,
GSH2, and ABX improved body weight and the average daily gain of weaned piglets, and
ABX decreased albumin content but increased aspartate aminotransferase (AST) activity and
the ratio of AST to alanine transaminase levels in plasma. GSH2 significantly decreased
glucose content but increased the content of triglyceride and cholesterol in the plasma. Both
GSH1 and GSH2 improved the jejunal mucosa architecture (villus height, crypt depth, and
the ratio of villus height to crypt depth), tight junction protein (ZO-1 and Occludin), and
antioxidant capacity (CAT and MDA), and the effects were superior to ABX. Dietary GSH
improved the jejunal barrier by probably inhibiting the myosin light chain kinas pathway
to up-regulate the transcript expression of tight junction protein (ZO-1 and Occludin) and
Mucins. Through the proteomics analysis of the jejunal mucosa using 4D-DIA, the KEGG
pathway enrichment analysis showed that differentiated proteins were significantly enriched
in redox homeostasis-related pathways such as glutathione metabolism, cytochrome P450,
the reactive oxygen species metabolic pathway, the oxidative phosphorylation pathway, and
the phosphatidylinositol 3-kinase-serine/threonine kinase pathway in GSH2 vs. CON and in
GSH2 vs. ABX. The results of proteomics and qRT-PCR showed that GSH supplementation
might dose-dependently promote growth performance and that it alleviated the weaning
stress-induced oxidative injury of the jejunal mucosa in piglets by activating SIRTI and Akt
pathways to regulate GPX4, HSP70, FoxO1. Therefore, diets supplemented with 50–65 mg/kg
GSH can promote the growth of and relieve intestinal oxidative injury in weaned piglets.

Keywords: reduced glutathione; growth performance; jejunal barrier; proteomics; weaned
piglets

1. Introduction
Weaning is a critical stage and a bottleneck for piglet production. Owing to alterations

in nutrition, the immune system, faming conditions, and psychology, the early weaning
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of piglets generally triggers oxidative stress, intestinal dysfunction, and growth restric-
tion [1,2]. Antibiotics, especially the broad-spectrum antibiotic chlortetracycline (alias
aureomycin), were widely used to promote growth, the rate of gain, and feed efficiency in
weaned piglets [3–6]; however, they have been forbidden in the European Union since 2006
and in China since 2020 due to their side-effects on animals, the ecological environment,
and microbial resistance. Many strategies as antibiotic alternatives have been implemented
to relieve intestinal redox imbalance and promote the growth of weaned piglets.

Natural antioxidants such as polyphenols, polysaccharide, and Chinese herbs have
been investigated for application in promoting growth and alleviating oxidative stress in
weaned piglets [7–9]. GSH is a main nonenzymatic antioxidant for maintaining cellular re-
dox homeostasis and detoxifying electrophiles [10]. Under normal physiological conditions,
cells need a high GSH concentration for maintaining redox homeostasis [11]. Weaning-
induced intestinal oxidation and inflammation typically necessitates a large amount of GSH
to eliminate reactive oxygen species (ROS) production and interrupts the intestinal redox
balance, which results in GSH dysregulation in the intestine of weaned piglets [12]. There-
fore, we inferred that exogenous GSH supplementation can alleviates weaning-induced
gut damage and growth restriction.

GSH has the potential to alleviate oxidative stress-induced diseases such as diabetic
nephropathy, parkinsonism, COVID-19, and steatosis [13–16]; therefore, GSH has been
applied as an antioxidative and antiaging drug in humans [17]. Previous studies found
that GSH-supplementation in freezing extenders counteracted cryopreservation-related
decrease in the acrosin activity of boar spermatozoa [18] and improved bovine embryo
development through the redox regulation of an increase in intracellular GSH levels by the
γ-glutamyl cycle and ROS elimination [19]. Dietary GSH alleviated toxic intestinal injury in
piglets [20,21] and promoted the growth as well as the intestinal health of juvenile triploid
Oncorhynchus mykiss [22]. However, few studies have investigated the application of GSH
as the feed additive and the mechanism of GSH on growth and intestinal health in weaned
piglets still requires further assessment. Therefore, the objective of the present study was to
explore whether GSH can replace chlortetracycline to promote growth performance and
alleviate intestinal oxidative injury in weaned piglets and to further illustrate its underlying
mechanism. This study will provide the application strategy of GSH as the antibiotic
alternative and the growth promoter for enhancing the intestinal health of weaned piglets.

2. Materials and Methods
2.1. Animal Ethics Statement

Animal procedures and experiments were approved by the Animal Care and Use
Committee of Guangdong Academy of Agricultural Science (No. 2023005) and conducted
according to the Guide for Care and Use of Laboratory Animals of the National Research
Council of China.

2.2. Glutathione and Chlortetracycline

GSH extracted from yeast was provided by Shandong Jincheng Biological Pharmaceu-
tical Co., Ltd. (Zibo, Shandong, China). The chlortetracycline was purchased from Guang-
dong Newland Feed Science and Technology Co., Ltd. (Guangzhou, Guangdong, China).

2.3. Animals and Experimental Design

A total of 180 weaned barrow piglets (Duroc × Landrace × Yorkshire) aged at 21 d
with similar body weights (BW, 6.63 ± 0.04 kg), were randomly allotted to 5 dietary
treatments: (1) Negative control (CON, the basal diet); (2) Antibiotic—Positive control
(ABX, the basal diet supplemented with 75 mg/kg chlortetracycline); (3) 50 mg/kg GSH
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(GSH1, the basal diet supplemented with 50 mg/kg GSH); (4) 65 mg/kg GSH (GSH2,
the basal diet supplemented with 65 mg/kg GSH); (5) 100 mg/kg GSH (GSH3, the basal
diet supplemented with 100 mg/kg GSH). A total of 36 piglets per dietary treatment
were assigned to 6 replicate pens with 6 piglets per pen. The basal diet (Appendix A:
Table A1) was formulated to meet nutrient recommendations of weaned piglets based on
NRC (2012) [23]. Piglets were housed in high bed pens (4.54 by 1.64 m, 1.24 m2 of pen floor
space per piglet) equipped with a sided feeder and a nipple watering device and had free
access to feed and water throughout the 28 d experimental period.

2.4. Growth Performance

Piglets were weighed at the beginning, at 14 d, and at the end of the trial after fasting
for 12 h. Feed intake per pen was recorded daily. The average daily gain (ADG), average
daily feed intake (ADFI), and F/G (feed to gain ratio) were evaluated based on the BW and
feed intake of the piglets.

2.5. Slaughter and Tissue Sample Collection

Pigs aged 49 d were fasted for 12 h at the end of the animal experiment, one piglet per
pen was randomly selected for plasma collection by jugular venipuncture using a 10 mL
heparin-coated vacuum, and then the blood samples were subsequently centrifuged at
3000× g/min for 15 min at 4 ◦C for separating plasma. The plasma was aliquoted into
4 sterile Eppendorf tubes and these were stored at −80 ◦C until measurement. After blood
sampling, piglets were euthanized after anaesthetization and exsanguination for samples
collection. The jejunum was immediately dissected and an about 1 cm length segment
of mid-jejunum per piglet was fixed in 10% formalin solution for morphological analysis.
After cutting longitudinally, emptying contents, and flushing with cold PBS, mid-jejunal
mucosa was scraped and collected with sterile glass slides into 3 sterile Eppendorf tubes,
and was frozen in liquid nitrogen and then held at −80 ◦C before examination.

2.6. Histochemistry Staining

The jejunal segments after fixing were used for morphology analysis using hema-
toxylin and eosin staining protocol as performed our previous study [24]. The morphome-
try of the jejunal mucosa was detected using Pannoramic P250 FLSAH (3DHISTECH, Inc.
Budapest, Hungary). Villi height (VH) and crypt depth (CD) were then measured using
CaseViewer 3.3 software (JAVS, Inc. Louisville, KY, USA).

2.7. Blood Biochemistry Index and Redox Capacity of the Jejunal Mucosa

Plasma biochemical parameters and the jejunal mucosa antioxidant capacity were
detected using the respective kits (Nanjing Jiancheng, Nanjing, China), following the
manufacture’s protocols. The jejunal mucosa was homogenized with 0.9% NaCl as a 1:9
(w/v) ratio and centrifuged at 3500× g at 4 ◦C for 15 min. Supernatant was collected to
detect the content of malondialdehyde (MDA), total antioxidant capacity (T-AOC), and
activities of antioxidant enzymes like total superoxide dismutase (T-SOD), glutathione
peroxidase (GPX), and catalase (CAT).

2.8. Proteomics Analysis of the Jejunal Mucosa Through Four-Dimensional Data-Independent
Acquisition (4D-DIA)–Mass Spectrometry (MS)

Samples were first ground in liquid nitrogen, and six samples of the jejunal mucosa
(100 mg) per group were pooled into three mixed samples. Samples were sonicated three
times on ice by using a high-intensity ultrasonic processor in a lysis buffer (8 M urea
including 1 mM of PMSF and 2 mM of EDTA). The remaining debris were removed
through centrifugation at 15,000× g at 4 ◦C for 10 min. Finally, the protein concentration



Antioxidants 2025, 14, 107 4 of 19

was determined using the BCA kit (Thermo Fisher Scientific Inc., Waltham, MA, USA)
according to the manufacturer’s instructions.

Equal amounts of proteins from each sample were used for trypsin digestion. Following
trypsin digestion, peptides were desalted using the C18 cartridge, followed by drying with
a vacuum concentration meter. Then, the peptides were concentrated through vacuum
centrifugation and redissolved in 0.1% (v/v) formic acid. Approximately 200 ng of peptides
were separated within 60 min at a flow rate of 0.3 µL/min on a commercially available
reverse-phase C18 column with an integrated Captive Spray Emitter (25 cm × 75 µm ID,
1.6µm, Aurora Series) with a CaptiveSpray nano-electrospray ion source (CSI, IonOpticks Inc.,
Melbourne, Australia) by using a nanoElute UHPLC (Bruker Daltonics, Inc., Rheinstetten,
Germany). For liquid chromatography–mass spectrometry (LC-MS)/MS analysis, mobile
phases A and B were produced with 0.1% formic acid in water and 0.1% formic acid in can,
respectively. Mobile phase B was increased from 2% to 22% over the first 45 min, increased to
35% over the next 5 min, further increased to 80% over the next 5 min, and then held at 80% for
5 min. The LC was coupled online to a hybrid timsTOF Pro2 (Bruker Daltonics, Rheinstetten,
Germany) through a CSI. The timsTOF Pro2 was operated in a Data-Dependent Parallel
Accumulation–Serial Fragmentation mode with 10 PASEF MS/MS frames in 1 complete
frame. MS raw data were analyzed using DIA-NN (v1.8.1) in a library-free method. The false
discovery rate of search results was adjusted to <1% at both protein and precursor ion levels,
and the remaining identifications were used for further quantification analysis.

2.9. Quantitative Real-Time PCR (qRT-PCR)

Total RNA of the jejunal mucosa sample was extracted and reverse-transcribed to
cDNA according to the manufacturer’s protocols of the kit (Takara Bio Inc., Ostu, Japan).
qRT-PCR (Bio-Rad System) was performed and analyzed according to our previous proto-
col [24]. The primer sequences for qRT-PCR are shown in Table A2 (Appendix B).

2.10. Statistical Analysis

Using GraphPad Prism 9 (GraphPad Software, Inc. San Diego, CA, USA), data except
proteomics data were analyzed through one-way analysis of variance (ANOVA), followed
by Tukey’s post hoc test. The linear and quadratic contrasts were tested using orthogonal
polynomial contrasts, and coefficients of orthogonal polynomial contrasts were corrected
and determined for unequal spaced dilutions and compost inclusion rates based on the pro-
cedure described by St. Martin [25]. Differences were identified as statistically significant
at p ≤ 0.05. The results were presented as means and standard error of the mean (SEM).
In the proteomics analysis of this study, differentially expressed proteins were filtered
using Student’s t-test at FC > 1.5 or FC < 0.67, and p < 0.05. For bioinformatics analysis,
annotation, functional enrichment, and enrichment-based clustering were performed based
on the Kyoto encyclopedia of genes and genomes (KEGG). The KEGG was used to iden-
tify enriched pathways by a two-tailed Fisher’s exact test to evaluate the enrichment of
differentially expressed proteins against all identified proteins.

3. Results
3.1. Effects of Dietary GSH on Growth Performance in Weaned Piglets

Dietary ABX, GSH1, and GSH2 significantly improved the BW (35 d and 49 d), and
the ADG at 1–14 days, 15–28 days, and 1–28 days of weaned piglets compared with CON
(p < 0.05, Table 1). Dietary GSH2 improved ADFI at 1–28 days compared with CON and
GSH3 (p < 0.05). Dietary GSH3 had no significant effects on BW (body weight), ADG, ADFI,
and F/G compared with other diets (p > 0.05). No significant differences were observed in
ADFI at 1–14 days and 15–28 days and F/G among the five groups (p > 0.05).
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Table 1. Effects of reduced glutathione on growth performance of weaned piglets.

Item
Treatments B

SEM
p-Value A

ABX CON GSH1 GSH2 GSH3 ANOVA Linear Quadratic

Body weight, kg
21 d 6.63 6.63 6.63 6.63 6.63 0.01 0.968 0.981 0.98
35 d 10.87 a 10.26 b 10.82 a 10.88 a 10.35 ab 0.13 0.030 0.038 0.872
49 d 16.38 a 15.01 c 16.11 ab 16.65 a 15.27 bc 0.28 0.007 0.010 0.830

Days 1 to 14
ADG, g 302.77 a 259.13 b 299.17 a 303.55 a 265.20 ab 9.24 0.001 0.005 0.836
ADFI, g 373.97 362.72 387.63 397.81 369.15 6.38 0.139 0.016 0.591

F/G, g/g 1.24 1.42 1.31 1.31 1.41 0.03 0.074 0.352 0.648
Days 15 to 28

ADG, g 393.30 a 339.51 b 378.13 a 411.83 a 351.79 ab 12.35 0.001 0.002 0.546
ADFI, g 555.52 532.16 568.50 595.00 539.33 11.18 0.137 0.022 0.455

F/G, g/g 1.42 1.57 1.51 1.46 1.57 0.02 0.361 0.517 0.971
Days 1 to 28

ADG, g 348.04 a 299.327 b 338.65 a 357.69 a 308.496 ab 10.14 0.001 0.002 0.785
ADFI, g 464.753 ab 447.44 b 478.07 ab 496.41 a 454.24 b 8.75 0.048 0.006 0.422

F/G, g/g 1.34 1.50 1.42 1.39 1.49 0.02 0.078 0.335 0.872

a, b, c Means in a row without a common superscript differ at p < 0.05; A p values indicate the effects of GSH
by ANOVA and contrasts (linear and quadratic) analyses, respectively. B ABX, a basal diet supplemented with
chlortetracycline; CON, basal diet; GSH1, a basal diet supplemented with 50 mg/kg GSH; GSH2, a basal diet
supplemented with 65 mg/kg GSH; GSH3, a basal diet supplemented with 100 mg/kg GSH in the basal diet.
ADG, average daily gain; ADFI, average daily feed intake; F/G, feed to gain ratio; ANOVA, one-way analysis
of variance.

3.2. Effects of Dietary GSH on Biochemical Parameters of Plasma in Weaned Piglets

As shown in Table 2, piglets fed ABX had lower albumin but higher aminotransferase
(AST) and a higher AST to alanine transaminase (ALT) ratio (AST/ALT) compared with
CON (p < 0.05). Piglets fed GSH1 had lower AST and AST/ALT compared with ABX
(p < 0.05) but no significant differences were observed in these biochemical parameters
compared with CON, GSH2, and GSH3 (p > 0.05). Piglets fed GSH2 had higher triglyceride
and cholesterol but lower glucose in plasma compared with CON (p < 0.05), and had higher
albumin but lower AST and AST/ALT compared with ABX (p < 0.05). Pigs fed GSH3
had lower albumin compared with CON but lower AST and AST/ALT compared with
CON and ABX (p < 0.05), as well as higher glucose but lower albumin and urea nitrogen
compared with GSH2 (p < 0.05).

Table 2. Effects of GSH on biochemical indexes in plasma of weaned piglets.

Item
Treatments B

SEM
p-Value A

ABX CON GSH1 GSH2 GSH3 ANOVA Linear Quadratic

Triglyceride (mmol/L) 0.35 ab 0.30 b 0.36 ab 0.48 a 0.32 ab 0.03 0.034 0.006 0.155
Cholesterol (mmol//L) 2.12 ab 1.91 b 2.04 ab 2.53 a 2.12 ab 0.10 0.062 0.018 0.387

LDLC (mmol//L) 1.77 1.61 1.64 1.49 1.68 0.05 0.498 0.278 0.186
HDLC (mmol//L) 0.82 0.96 0.77 0.91 0.82 0.04 0.491 0.556 0.114
Glucose (mM/L) 3.84 ab 4.51 a 3.77 ab 3.26 b 4.30 a 0.22 0.001 <0.001 0.365

Total protein (g/L) 49.36 49.82 50.33 53.56 49.91 0.76 0.467 0.142 0.283
Albumin (g/L) 32.98 b 38.62 a 34.53 ab 39.00 a 32.09 b 1.43 0.006 0.63 <0.001

Urea nitrogen (mmol/L) 14.27 ab 13.02 ab 15.74 ab 17.03 a 11.62 b 0.96 0.016 0.012 0.110
AST (U/L) 36.14 a 20.03 b 11.75 bc 17.34 bc 7.14 c 4.95 <0.001 <0.001 0.163
ALT (U/L) 17.09 17.75 17.69 18.60 15.86 0.45 0.714 0.607 0.244
AST/ALT 2.28 a 1.15 b 0.66 bc 0.94 bc 0.46 c 0.31 <0.001 0.001 <0.001

AKP (U/L) 168.32 174.38 175.18 184.35 156.66 4.57 0.675 0.530 0.235

a, b, c Means in a row without a common superscript differ at p < 0.05; A p values indicate the effects of GSH
by ANOVA and contrasts (linear and quadratic) analyses, respectively. B ABX, a basal diet supplemented with
chlortetracycline; CON, basal diet; GSH1, a basal diet supplemented with 50 mg/kg GSH; GSH2, a basal diet
supplemented with 65 mg/kg GSH; GSH3, a basal diet supplemented with 100 mg/kg GSH in the basal diet.
HDLC, high density lipoprotein-cholesterol; LDLC, low density lipoprotein-cholesterol; ALT, alanine transaminase;
AST, aspartate aminotransferase; AKP, alkaline phosphatase; ANOVA, one-way analysis of variance.
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3.3. Effects of Dietary GSH on Histomorphology and Epithelial Barrier of the Jejunal Mucosa in
Weaned Piglets

The morphology of the jejunal mucosa in Figure 1 showed that piglets fed ABX had
a higher ratio of VH to CD (VH/CD) compared with CON but lower VH and VH/CD
compared with GSH2 (p < 0.05). Piglets fed GSH1 and GSH2 had higher VH and VH/CD
but lower CD compared with CON as well as higher VH/CD compared with GSH3
(p < 0.05). The transcript abundance of intestinal barrier-related genes in Figure 2 showed
that piglets fed ABX had higher Muc2 compared with CON (p < 0.05). Piglets fed GSH1
had lower myosin light chain kinas (MLCK) abundance compared with CON and ABX
but higher occludin abundance compared with CON as well as lower Muc2 abundance
compared with GSH3 (p < 0.05). Piglets fed GSH2 had a higher abundance of zonula
occludens-1 (ZO-1), occludin, and Muc1, but lower MLCK abundance compared with CON
and ABX (p < 0.05). Piglets fed GSH3 had higher Muc2 compared with CON but lower
occludin abundance as well as higher MLCK abundance compared with GSH2 (p < 0.05).
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Figure 1. Effect of GSH on histomorphology of the jejunal mucosa in weaned piglets. (A) Histology
images of jejunum by H&E stains (scale bar, 500 µm). (B–D) The morphometry of the jejunal
mucosa. Note: Values are shown as mean ± SEM. * p < 0.05, ** p < 0.01, and *** p <0.001. ABX, a
basal diet supplemented with chlortetracycline; CON, basal diet; GSH1, a basal diet supplemented
with 50 mg/kg GSH; GSH2, a basal diet supplemented with 65 mg/kg GSH; GSH3, a basal diet
supplemented with 100 mg/kg GSH in the basal diet.

3.4. Jejunal Antioxidant Capacity in Weaned Piglets

Results of oxidant–antioxidant indices in the jejunal mucosa (Figure 3) showed that
MDA content was lower in piglets fed ABX, GSH1, GSH2, and GSH3 compared with CON, or
in piglets fed GSH2 compared with ABX and GSH1 (p < 0.05). Piglets fed GSH1, GSH2, and
GSH3 had higher GSH compared with CON (p < 0.05). Piglets fed GSH1 and GSH2 had lower
GPX but higher CAT compared with ABX (p < 0.05). In piglets fed GSH3, GPX was lower
compared with ABX but higher compared with GSH1, and CAT was lower compared with
GSH2 (p < 0.05). No significant differences were observed for T-AOC and T-SOD (p > 0.05).
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Figure 2. Effect of reduced glutathione on the epithelial barrier of jejunum in weaned piglets. Note:
Values are shown as mean ± SEM. * p < 0.05, ** p < 0.01, and *** p <0.001. ABX, a basal diet supple-
mented with chlortetracycline; CON, basal diet; GSH1, a basal diet supplemented with 50 mg/kg
GSH; GSH2, a basal diet supplemented with 65 mg/kg GSH; GSH3, a basal diet supplemented with
100 mg/kg GSH in the basal diet. ZO-1, zonula occludens-1; Muc1/2, mucin 1/2; MLCK, myosin
light chain kinas.
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Figure 3. Effects of reduced glutathione on jejunal antioxidant status in weaned piglets. Note: Values
are shown as mean ± SEM. * p < 0.05, ** p < 0.01, and *** p <0.001. ABX, a basal diet supplemented with
chlortetracycline; CON, basal diet; GSH1, a basal diet supplemented with 50 mg/kg GSH; GSH2, a
basal diet supplemented with 65 mg/kg GSH; GSH3, a basal diet supplemented with 100 mg/kg GSH
in the basal diet. MDA, malondialdehyde; GSH, reduced glutathione, GPX, glutathione peroxidase;
CAT, catalase; T-AOC, total antioxidant capacity; T-SOD, total superoxide dismutase.

3.5. Proteomics and qRT-PCR Analysis Showed Dietary GSH2 Improved the Jejunal Redox
Homeostasis of the Jejunal Mucosa in Weaned Piglets

The proteomics profile of the jejunal mucosa was detected using 4D-DIA methods
among the CON, ABX, and the most effective dose of GSH2 groups (Figure 4). A total of
139,248 peptidases were identified, and 9462 proteins were identified from 49,793 proteins



Antioxidants 2025, 14, 107 8 of 19

of the database (Figure 4A). A total of 96, 72, and 30 differentiated proteins were identified,
of which 29, 21, and 19 proteins were up-regulated and 67, 51, and 11 proteins were down-
regulated in GSH2 vs. CON, GSH2 vs. ABX, ABX vs. CON, respectively (Figure 4B). The two-
dimensional principal component analysis indicated substantially different proteins in the
jejunal mucosa among the three groups (Figure 4C). The KEGG pathway enrichment analysis
showed that differentiated proteins were significantly enriched in redox homeostasis-related
pathways such as glutathione metabolism, cytochrome P450, the ROS metabolic pathway,
the oxidative phosphorylation pathway, and the PI3K-Akt (phosphatidylinositol 3-kinase-
serine/threonine kinase) pathway in GSH2 vs. CON and in GSH2 vs. ABX (Figure 4D,E).
In ABX vs. CON, differentiated proteins were significantly enriched in redox homeostasis-
related pathways such as oxidative phosphorylation and the PI3K-Akt pathway (Figure 4F).
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Figure 4. Proteomics analysis of the jejunal mucosa in weaned piglets. (A) Qualitative and quantitative
analysis of identified proteins; (B) Differentially expressed proteins; (C) Two-dimensional principal
component analysis; (D–F) KEGG pathway enrichment from GSH2 vs. CON, GSH2 vs. ABX, and
ABX vs. CON, respectively. KEGG: Kyoto encyclopedia of genes and genomes. Note: ABX, a basal
diet supplemented with chlortetracycline; CON, basal diet; GSH2, a basal diet supplemented with
65 mg/kg GSH in the basal diet.

Additionally, differentiated proteins involved in redox homeostasis pathways in
Table 3 showed that up-regulated proteins both in GSH2 vs. CON and GSH2 vs. ABX
were heat shock protein 90 kDa beta member 1 (Hsp90B1), heat shock protein family A
(Hsp70) member 4 (HspA4), glutathione peroxidase 4 (GPX4), sirtuin 1 (SIRT1), forkhead
box protein O1 (FoxO1), and serine/threonine kinase 1 (Akt1). However, cytochrome P450
4F3 (CYP4F3) and CYP2C42 were up-regulated but Akt1 was down-regulated in ABX vs.
CON. Furthermore, the qRT-PCR results (Figure 5) further verified that GSH2 significantly
increased the transcript abundances of GPX4, Hsp70, Hsp90, SIRT1, FoxO1, and Akt1 of the
jejunal mucosa compared with CON and ABX (p < 0.05). However, ABX increased Hsp90
abundance but decreased Akt1 abundance compared with CON (p < 0.05).

Table 3. Differentially redox-related proteins in the jejunal mucosa of weaned piglets.

Accession Protein Description Gene Name FC p-Value

GSH2 vs. CON
A0A287BL83 Carbonyl reductase (NADPH) NADPH 0.56 0.010

A0A5G2QH97 Voltage-dependent anion-selective channel protein 3 VDAC3 0.66 0.037
P51781 Glutathione S-transferase alpha M14 GSTAM14 0.57 0.001

A0A0K1TQQ0 Microsomal glutathione S-transferase 2 MGST2 0.41 0.019
A0A287B452 Voltage-dependent anion-selective channel protein 2 VDAC2 0.29 0.003

A0A287BGN0 Cytochrome c oxidase subunit COX6A1 0.38 0.001
P04175 NADPH-cytochrome P450 reductase POR 0.56 0.015
F1SDB7 Flavin-containing monooxygenase FMO5 0.66 0.009
Q29092 Endoplasmin heat shock protein 90 kDa beta member 1 Hsp90B1 1.69 0.004

A0A5G2R0T1 Heat shock protein family A (Hsp70) member 4 HspA4 2.67 0.047
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Table 3. Cont.

Accession Protein Description Gene Name FC p-Value

P36968 Phospholipid hydroperoxide glutathione peroxidase GPX4 1.51 0.001
A7LKB1 NAD-dependent protein deacetylase sirtuin-1 isoform a SIRT1 1.56 0.000
A4L7N3 Forkhead box protein O1 FOXO1 1.57 0.002

A0A287B2S5 Non-specific serine/threonine protein kinase Akt1 1.52 0.028
GSH2 vs. ABX

A0A287B452 Voltage-dependent anion-selective channel protein 2 VDAC2 0.46 0.015
A0A287BGN0 Cytochrome c oxidase subunit COX6A1 0.44 0.004
A0A287BL83 Carbonyl reductase (NADPH) NADPH 0.53 0.019
A0A5K1UL95 Aldo-keto reductase family 1, member C1 AKR1C3 0.43 0.045

P51781 Glutathione S-transferase alpha M14 GSTAM14 0.52 0.043
P81693 Low molecular weight phosphortyrosine protein phosphatase ACP1 2.97 0.017

A0A287BP39 Cytochrome P450 2C42 CYP2C42 0.57 0.039
F1S6B7 Flavin-containing monooxygenase FMO4 0.63 0.046
I6L6E1 Aldehyde dehydrogenase ALDH3B1 0.66 0.046
P04175 NADPH-cytochrome P450 reductase POR 0.60 0.039
Q29092 Endoplasmin Hsp90B1 1.73 0.005

A0A5G2R0T1 Heat shock protein family A (Hsp70) member 4 HspA4 2.80 0.041
P36968 Phospholipid hydroperoxide glutathione peroxidase GPX4 1.51 0.002

A7LKB1 NAD-dependent protein deacetylase sirtuin-1 isoform a SIRT1 1.57 0.002
A4L7N3 Forkhead box protein O1 FOXO1 1.56 0.001

A0A287B2S5 Non-specific serine/threonine protein kinase Akt1 1.52 <0.0001
ABX vs. CON

A0A287ANH8 H (+)-transporting two-sector ATPase ATPase 0.65 0.037
A0A287BMK6 Cytochrome P450 family 4 subfamily F member 3 CYP4F3 4.16 0.021

F1SC62 Cytochrome P450 2C42 CYP2C42 2.12 0.017
A0A287B2S5 Non-specific serine/threonine protein kinase Akt1 0.08 <0.0001

Only proteins with VIP > 1, FC > 1.5 or FC < 0.67, and p < 0.05 were defined as differentiated proteins. FC, fold
change. ABX, a basal diet supplemented with chlortetracycline; CON, basal diet; GSH1, a basal diet supplemented
with 50 mg/kg GSH; GSH2, a basal diet supplemented with 65 mg/kg GSH; GSH3, a basal diet supplemented
with 100 mg/kg GSH in the basal diet.
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Figure 5. Effect of reduced glutathione on oxidative stress-related genes in the jejunal mucosa of
weaned piglets. Note: Values are shown as mean ± SEM. * p < 0.05, ** p < 0.01, and *** p <0.001. ABX,
a basal diet supplemented with chlortetracycline; CON, basal diet; GSH1, a basal diet supplemented
with 50 mg/kg GSH; GSH2, a basal diet supplemented with 65 mg/kg GSH; GSH3, a basal diet
supplemented with 100 mg/kg GSH in the basal diet. GPX4, glutathione peroxidase 4; Hsp70, heat
shock protein 70 kDa; Hsp90, heat shock protein 90 kDa; SIRT1, sirtuin 1; FoxO1, forkhead box
protein O1; Akt1, serine/threonine kinase 1.

4. Discussion
Weaning stress is often accompanied by intestinal redox imbalance, which conse-

quently leads to intestinal damage and growth restriction [1,26]. Weaning-induced ox-



Antioxidants 2025, 14, 107 12 of 19

idative damages of villous architecture, integrity, and redox status affect the intestinal
health and growth of piglets [27,28]. Chlortetracycline as a feed additive was used to
promote growth performance of weaned piglets [3–6]; however, it is forbidden due to the
side-effects on animals, the ecological environment, and microbial resistance. GSH has
diverse benefits of detoxification, redox regulation, and antioxidant protection [10] and
has the potential to alleviate oxidative stress-induced diseases [13–16]. Previous studies
reported that GSH can protect against intestinal oxidative injury and growth restriction
induced by paraquat- or diquat in weaned piglets [20,21]. In this study, diets supplemented
with 50 and 65 mg/kg GSH promoted the growth performance, antioxidant capacity, the
jejunal mucosa morphology and barrier function of weaned piglets, and the effects of
65 mg/kg GSH on CAT activity, VH, VH/CD, ZO-1, Occludin, and Muc1 were superior to
chlortetracycline. It is therefore indicated that GSH could serve as an effective feed additive,
replace chlortetracycline, promote growth, and alleviate the weaning stress of piglets.

Blood biochemical parameters reflect nutrient metabolic characteristics and health
status in animals in response to internal or external environments [29]. Results of this study
showed that 65 mg/kg GSH supplementation improved plasma triglyceride and cholesterol
and reduced glucose compared with CON, which was in agreement with results of previous
studies stating that GSH improved triglyceride levels by regulating lipid metabolism [30]
and affected glucose levels by regulating glycometabolism [31]. Being the most favorable
amino acid source for protein synthesis, albumin is a criterion useful for evaluating the
body condition and is related to the immune system [32,33]. Increases in AST and AST/ALT
are closely related to liver injury [34]. In this study, 100 mg/kg GSH decreased albumin
content compared with CON and 65 mg/kg GSH, while chlortetracycline increased AST
and AST/ALT compared with CON and GSH supplementation. Data of this study are in
agreement with the results of previous studies, which state that antibiotics might cause
liver injury and reduce blood immunity, but that GSH supplementation has advantages
over antibiotics, leading to the improvement of nutrient metabolism, body condition, and
liver protection [35–37].

The intestine is more susceptible to weaning-induced oxidative stress than other
tissues, owing to the immature intestinal function, frequent renewal of enterocytes, and
continuous exposure to various stimuli from the intestinal tract in weaned piglets [27,38].
The lower CD, and higher VH as well as VH/CD indicate a faster cell maturation and the
stronger secretory function of the small intestine [20,39]. In this study, 50 or 65 mg/kg
GSH supplementation improved tight junction protein and the jejunal mucosa architecture
with higher VH, lower CD, and higher VH/CD, and the effect is superior to that of
chlortetracycline. These fundings indicate that exogenous GSH improves intestinal barrier
function. Liang et al. [21] found that dietary GSH attenuated diquat-induced intestinal
oxidative injury by increasing tight junction protein of ZO-1, occludin, and claudin 1 in
weaned piglets. Interestingly, 50 mg/kg GSH increased occludin expression compared with
CON and 65 mg/kg GSH supplementation improved the abundances of ZO-1, occludin, and
Muc1 compared with CON and chlortetracycline. Both chlortetracycline and 100 mg/kg
GSH increased Muc2 abundance but 100 mg/kg GSH did not affect the jejunal mucosa
architecture compared with CON. The intestinal epithelial barrier serves as the first line of
defense against microbial and toxin invasion or exposure to foreign antigens by regulating
the expression of tight junction proteins and mucins’ secretion. These findings suggest
that the appropriate dose of exogenous GSH relieved weaning-induced intestinal barrier
injury by improving the tight junction and Muc1 to restrict binding, colonization, and the
access of pathogens to enterocytes binding, colonization, and the access of pathogens to
enterocytes [40,41], which can be fully elucidated through further studies. The MLCK
pathway negatively regulates mucin secretion and the expression of tight junction proteins
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like ZO-1 and occludin [42,43], which was consistent with the effects of GSH in the present
study. Therefore, GSH might dose-dependently promote jejunal epithelial barrier function
by inhibiting MLCK to promote the expression of the tight junction and mucins.

GSH or its combination with other antioxidants like organic selenium, vitamins, and
quercetin ameliorated diquat-, deoxynivalenol-, and zearalenone-induced oxidative stress
by decreasing MDA content and by increasing GSH content and SOD activity to enhance
the antioxidant capacity in piglets [10,21]. de Oliveira et al. [44] found that treatment
with 1% GSH increased GSH content and T-AOC, but did not reduce MDA content and
lipoperoxidation in jejunum of rats. However, in the present study, diets supplemented
with GSH increased jejunal GSH content and decreased the MDA content as well as the
GPX activity of weaned piglets compared with CON. This inconsistency may be attributed
to differences in animal species, physiological status, diet, and stress factors. Additionally,
the GPX activity was activated and the CAT activity was inhibited with an increase in
exogenous GSH, which implies that antioxidants in the body are firstly invoked to clear cel-
lular ROS followed by stimulating antioxidant enzyme systems of the jejunal mucosa when
piglets are subjected to weaning-induced oxidative stress [11,12]. Interestingly, chlortetracy-
cline decreased the jejunal mucosa MDA and did not affect antioxidative enzyme systems
compared with CON, indicating that chlortetracycline relieves jejunal injury probably by
regulating gut microbiota due to its antimicrobial properties [3]. Therefore, the effects of 50
and 65 mg/kg GSH supplementation on the relief of weaning-induced oxidative stress was
superior to 100 mg/kg GSH supplementation for weaned piglets.

Proteomics has been applied to identify differential proteins and signal pathways
induced in response to different physiological or pathological states [45]. Here, we used an
4D-DIA quantitative proteomic approach to identify differentially expressed proteins in
the jejunal mucosa of piglets from the most effective dose of GSH (GSH2), ABX, and CON
groups. Regarding the KEGG pathway enrichment, differentiated proteins in response
to redox homeostasis were mainly enriched in glutathione metabolism, cytochrome P450,
the ROS metabolic pathway, the oxidative phosphorylation pathway, and the PI3K-Akt
pathway in GH2 vs. CON or in GSH2 vs. ABX. After analyzing differential proteins and
genes related to redox-homeostasis by proteomics and verifying by qRT-PCR, we found
that the expression of antioxidant-related proteins and genes such as Hsp90B1/Hsp90,
HspA4/Hsp70, GPX4, SIRT1, FoxO1, and Akt1 was up-regulated in GSH2 vs. CON or
GSH2 vs. ABX. Previous studies found that SIRT1 positively regulates Hsp70, Hsp90, and
FoxO1 deacetylation against oxidative stress [46–48], while antioxidants can attenuate ox-
idative stress via the SIRT1/FoxO1 and PI3K/Akt signaling pathways [49,50]. GSH and its
precursor substance, cysteine, induced GPX4 synthesis and the activation of the PI3K/Akt
pathway which attenuates cell injury via enhancing GPX4 expression [51–53]. Moreover,
GSH/GPX4 and HSPA5/GPX4 were involved in regulating oxidative stress [54,55]. There-
fore, exogenous GSH might ameliorate the jejunal oxidative damage of weaned piglets via
the PI3K/Akt pathway to enhance GPX4 expression and GSH metabolism as well as via
SIRT1 to regulate FoxO1, Hsp70, and Hsp90. Furthermore, the GSH precursors cysteine,
glutamate, and glycine exhibit antioxidant function [56,57]. The KEGG pathway analysis
revealed that GSH metabolism was enriched in GH2 vs. CON. Therefore, in addition to
GSH itself, its precursors produced by dietary GSH also play a role in alleviating oxidative
stress in the jejunal mucosa of weaned piglets. Additionally, Wu et al. [58] discovered that
SIRT1 inhibited the MLCK pathway by mediating deacetylation, which was consistent with
the tendency of SIRT1 and MLCK in this study, indicating that dietary GSH might promote
the expression of the tight junction and Muc1 by SIRT1 to inhibit the MLCK pathway.

In this study, differentiated proteins in response to redox homeostasis were mainly
enriched in the oxidative phosphorylation and PI3K-Akt pathway in ABX vs. CON. Fur-
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thermore, Akt expression was down-regulated and the expression of CYP2C42 and CYP4F3
expression was up-regulated in ABX vs. CON, suggesting that antibiotics probably inhib-
ited Akt activation and induced CYP expression and resulted in gut microbiota depletion
and anti-inflammation by increasing CYP4F3 and CYP2C [59–61]. However, increased
Hsp90 can relieve stress-induced endothelial cells’ injury by activating Akt [62], which is
inconsistent with the effects of chlortetracycline in this study. This inconsistency may be
attributed to the fact that chlortetracycline improves Hsp90 expression, thereby probably
resulting in the proteasomal degradation of Akt rather than regulating its conformational
maturation [61], a hypothesis which can be examined through further studies.

5. Conclusions
The supplementation with an optimal dose of GSH (65 mg/kg) promoted growth per-

formance, jejunal barrier function, and antioxidant function, and the effects on CAT activity,
VH, VH/CD, ZO-1, Occludin, and Muc1 are superior to chlortetracycline. The effects of
GSH on antioxidant function might be attributed to alleviating GSH dysregulation and the
activation of SIRTI and Akt pathways to regulate their downstream target genes GPX4, Hsp,
FoxO1, and MLCK in jejunal mucosa. Therefore, GSH can replace antibiotics in feedstuffs
for alleviating weaning-induced intestinal oxidative injury and the growth restriction of
piglets. However, the differentiated mechanism between GSH and chlortetracycline on
antioxidant function needs to be confirmed by microbiomics.
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Appendix A

Table A1. Composition and nutrient levels of diets (as-fed basis, %).

Ingredients 6–11 kg 11–25 kg

Corn 35.31 47.55
Extruded corn 15.00 13.00

Fermented soybean meal 9.00 8.50
Soybean meal —— 9.00
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Table A1. Cont.

Ingredients 6–11 kg 11–25 kg

Extruded soybean 10.00 6.00
Fish meal 4.00 4.00

Whey powder 11.00 6.00
Soybean hull 5.00 ——
Soybean oil 1.20 ——

Plasma protein powder 3.00 ——
White granulated sugar 2.00 2.00

50% Choline chloride 0.20 0.18
Sodium chloride 0.45 0.45

Calcium hydrophosphate 0.62 0.60
Limestone 0.65 0.74
Zinc oxide 0.30 ——

Copper sulfate —— 0.015
L-Lysine 0.60 0.54

DL-Methionine 0.22 0.2
L-Threonine 0.21 0.21
L-Trptophan 0.04 0.03

Premix compound A 1.50 1.00
Total 100.00 100.00

Nutrient levels B

DE (MJ/kg) 14.86 14.72
Crude protein 19.20 19.10
Total calcium 0.68 0.70

Total phosphorus 0.56 0.53
STTD phosphorus 0.39 0.34

SID Lysine 1.57 1.41
SID Methionine + Cysteine 0.89 0.81

SID Threonine 0.97 0.88
SID Trptophan 0.26 0.23

The values are expressed as percentage (%) except DE. DE: digestible energy; STTD: standard total intestinal
digestibility; SID: standardized ileal digestibility. A Premix provided these amounts of vitamins and minerals per
kilogram on an as-fed basis for piglets: vitamin A, 2400 IU; vitamin D3, 2800 IU; vitamin E, 200 IU; vitamin K3,
5 mg; vitamin B1, 3 mg; vitamin B2, 10 mg; vitamin B12, 40 µg; niacin, 40 mg; pantothenic acid, 15 mg; folic acid,
1 mg; vitamin B6, 8 mg; biotin, 0.08 mg; Fe, 120 mg as ferrous sulfate; Cu, 16 mg as copper sulfate; Mn, 70 mg as
manganese oxide; Zn, 120 mg as zinc oxide; I, 0.7 mg as potassium iodide; and Se, 0.48 mg as sodium selenite.
B Crude protein, total calcium, and total phosphorus were measured values according to the China National
Standard [63–65]. Whereas the others were calculated values from data provided by Feed Database in China [66].

Appendix B

Table A2. Primers sequences used for qRT-PCR analysis.

Gene Primer Sequence (5′→3′) Accession No.

β-Actin Forward: CACGCCATCCTGCGTCTGGA XM_003124280.4
Reverse: AGCACCGTGTTGGCGTAGAG

ZO-1 Forward: AGCCCGAGGCGTGTTT XM_013993251.1
Reverse: GGTGGGAGGATGCTGTTG

Claudin1 Forward: AAATCAGAACTTTGGAGGC NM_021101.4
Reverse: AAACAAGAGTGCTATGGGTC

Occludin Forward: GCACCCAGCAACGACAT NM_001163647.2
Reverse: CATAGACAGAATCCGAATCAC

Muc1 Forward: CGCCTGCCTGAATCTGTT NM_001018016.2
Reverse: GCTCTTGGTAGTAGTCGGTGC

Muc2 Forward: CTGCTCCGGGTCCTGTGGGA XM_007465997.1
Reverse: CCCGCTGGCTGGTGCGATAC

MLCK Forward: CTCCAAGGACCGGATGAA XM_001929078.6
Reverse: CCACTGAGCCCTGAGATCAT

GPX4 Forward: TGAGGCAAGACGGAGGTAAACT NM_214407
Reverse: TCCGTAAACCACACTCAGCATATC
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Table A2. Cont.

Gene Primer Sequence (5′→3′) Accession No.

Hsp70 Forward: GCCCTGAATCCGCAGAATA NM_001123127.1
Reverse: TCCCCACGGTAGGAAACG

Hsp90 Forward: AAGCCCTGAGAGACAACTCG U94395.1
Reverse: TGAAGCCAGAAGACAGCAGA

SIRT1 Forward: GTTAGGAGGTGAATATGCCAAG NM_001145750.2
Reverse: CAACTCTTTTTGTGTTCGTGGA

FoxO1 Forward: CCAGTCTTCACCAGGCACCA NM_214014.3
Reverse: GCCTCCGTAACTCGATTTGCT

Akt1 Forward: TCATGCAGCACCGTTTCTT NM_001159776.1
Reverse: AATACCTGGTGTCCGTCTCG

β-Actin Forward: CACGCCATCCTGCGTCTGGA XM_003124280.4
Reverse: AGCACCGTGTTGGCGTAGAG

ZO-1 Forward: AGCCCGAGGCGTGTTT XM_013993251.1
Reverse: GGTGGGAGGATGCTGTTG

Claudin1 Forward: AAATCAGAACTTTGGAGGC NM_021101.4
Reverse: AAACAAGAGTGCTATGGGTC

Occludin Forward: GCACCCAGCAACGACAT NM_001163647.2
Reverse: CATAGACAGAATCCGAATCAC

Muc1 Forward: CGCCTGCCTGAATCTGTT NM_001018016.2
ZO-1, zonula occludens-1; Muc, mucin; MLCK, myosin light chain kinas; GPX4, glutathione peroxidase 4; Hsp70,
heat shock protein 70 kDa; Hsp90, heat shock protein 90 kDa; SIRT1, sirtuin 1; FoxO1, forkhead box protein O1;
Akt1, serine/threonine kinase 1.
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