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Abstract: Normal tissues typically maintain partial oxygen pressure within a range of
3–10% oxygen, ensuring homeostasis through a well-regulated oxygen supply and respon-
sive vascular network. However, in solid tumors, rapid growth often outpaces angiogenesis,
creating a hypoxic microenvironment that fosters tumor progression, altered metabolism
and resistance to therapy. Hypoxic tumor regions experience uneven oxygen distribution
with severe hypoxia in the core due to poor vascularization and high metabolic oxygen
consumption. Cancer cells adapt to these conditions through metabolic shifts, predomi-
nantly relying on glycolysis, and by upregulating antioxidant defenses to mitigate reactive
oxygen species (ROS)-induced oxidative damage. Hypoxia-induced ROS, resulting from
mitochondrial dysfunction and enzyme activation, exacerbates genomic instability, tu-
mor aggressiveness, and therapy resistance. Overcoming hypoxia-induced ROS cancer
resistance requires a multifaceted approach that targets various aspects of tumor biology.
Emerging therapeutic strategies target hypoxia-induced resistance, focusing on hypoxia-
inducible factors, ROS levels, and tumor microenvironment subpopulations. Combining
innovative therapies with existing treatments holds promise for improving cancer outcomes
and overcoming resistance mechanisms.
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1. Introduction
Normal oxygen requirements are crucial for maintaining cellular homeostasis and

ensuring proper metabolic functions. Adequate oxygen levels guarantee efficient ATP pro-
duction in mitochondria, which supports energy-intensive processes and overall cell health.
Hypoxia, or insufficient oxygen, disrupts these processes, leading to altered metabolism,
increased oxidative stress, and impaired cellular functions, which can contribute to disease
states such as cancer. Each tissue and organ have specific oxygen needs and supply rates.
The variation in normal oxygen partial pressure (pO2) across different tissues and organs is
due to their distinct characteristics, such as vascular density, types of blood vessels, cellular
composition, extracellular matrix (ECM) components, and metabolic activity. Normal
tissues typically maintain pO2 within a range of 23–70 mmHg (3–10% oxygen) thanks
to a well-regulated oxygen supply mechanism and a responsive vascular network [1].
Hypoxic regions develop in about 90% of solid tumors due to several factors, leading to
an environment that supports cancer progression and resistance to therapy. The tumor
microenvironment (TME) is a continuously evolving entity formed by a complex collection
of various types of cells, cancer cells, tumor stromal cells including fibroblasts, endothelial
cells and immune cells and the components of ECM such as collagen, fibronectin, and
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others [2]. The quick and dysregulated expansion of tumors frequently surpasses the
formation of new blood vessels, leading to a deficient and disorganized system that fails
to deliver enough oxygen to all parts of the tumor [1]. This dysfunctional angiogenesis
contributes to uneven oxygen distribution and areas of chronic hypoxia within the tumor.
Tumor regions distant from blood vessels become increasingly hypoxic, while tumor areas
near blood vessels are well oxygenated. As O2 levels gradually decrease with distance,
hypoxic necrotic regions often develop at the tumor core. Additionally, the high metabolic
activity of cancer cells increases oxygen consumption, exacerbating hypoxic conditions,
especially in the tumor core [1]. The lack of oxygen necessarily causes cancer cells to change
their metabolism to rely more on glycolysis. Nevertheless, this oxidative-to-glycolytic
metabolic shift also occurs in cancer cells regardless of pO2 variations, as first observed
by Otto Warburg a century ago [3]. These adaptations allow cancer cells to thrive under
fluctuating microenvironmental conditions that would be detrimental to normal cells,
highlighting the complex interplay between metabolism and oxygen utilization in cancer.
Furthermore, the increased interstitial pressure within tumors compresses blood vessels,
impeding effective perfusion and oxygenation, which makes the penetration of drugs
difficult [4]. The combination of these factors resulting in a hypoxic microenvironment also
enhances tumor aggressiveness, metastasis, and resistance to traditional treatments.

During hypoxia, reactive oxygen species (ROS) are produced through several inter-
connected mechanisms, mainly mitochondrial dysfunctions and the activation of various
pro-oxidant enzymes. Under low oxygen conditions, the electron transport chain in mito-
chondria becomes disrupted, as oxygen availability is insufficient to accept electrons. This
disruption causes electron leakage, leading to the formation of superoxide [5]. In parallel,
hypoxia-inducible factors (HIFs), which are the master regulators of the hypoxia response,
also upregulate genes encoding ROS-generating enzymes such as NADPH oxidases (NOX;
NOX1 and NOX4), which transfer electrons from NADPH to oxygen [3,6]. Additionally,
xanthine oxidase activity can exacerbate ROS accumulation during hypoxia-reoxygenation
and inflammatory responses triggered by low oxygen conditions [7].

Hypoxia-induced ROS are highly associated with resistance to antitumor therapy [1].
The above-mentioned mechanisms involved in hypoxia-induced ROS production can con-
tribute to oxidative stress and influence cellular adaptation and resistance by inducing
genomic instability and mutations, changes in cell metabolism, modification of drug ef-
flux, and adjustments in the TME, thus encouraging tumor aggressiveness and metastasis
(Figure 1) [8,9]. ROS and hypoxia significantly influence the TME by promoting angiogen-
esis, immune suppression, and ECM remodeling, thereby enhancing tumor progression
and therapy resistance. Hypoxia-induced ROS stabilize HIFs, driving processes such as
disorganized angiogenesis and the recruitment of immunosuppressive cells, including
tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) [10].
These immune cells, along with adaptive T and B cells, are reprogrammed in the TME
to suppress antitumor immunity [11,12]. Additionally, ROS-mediated ECM remodeling
creates physical barriers to immune cell infiltration and drug delivery, emphasizing the
pivotal role of ROS in creating a tumor-supportive environment and highlighting the TME
as a critical target for therapeutic intervention [13].

The different mechanisms that cancer cells use to survive and proliferate despite oxida-
tive stress caused by hypoxia and ROS mainly rely on the stabilization of HIF transcription
factors, which trigger survival pathways, support blood vessel growth, and increase gly-
colysis, redirecting metabolism from processes that depend on oxygen [3,8,14]. They also
upregulate antioxidant defenses, such as glutathione (GSH) and superoxide dismutase
(SOD), to neutralize ROS and mitigate oxidative damage [15,16]. These adaptive responses
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enable cancer cells to withstand hypoxia and ROS, contributing also to resistance against
therapies by facilitating continued growth and survival.

Ongoing research and clinical trials are refining strategies to treat cancer and over-
come drug resistance. Drugs such as HIF inhibitors, antioxidants, and TME modulators
represent a diverse and promising class of therapies for overcoming hypoxia-induced
ROS cancer resistance with continued research and trials to determine their potential and
optimizing their use in cancer therapy. To effectively challenge this issue, a multifaceted
approach targeting multiple aspects of tumor biology is essential. Integrating novel thera-
pies with existing treatment modalities offers significant potential to enhance therapeutic
outcomes and counteract resistance mechanisms. This review aims to explore the critical
role of hypoxia-induced ROS in driving cancer resistance as well as to evaluate emerging
therapeutic strategies that can be designed to overcome this challenge.

2. Hypoxia-Induced ROS and Cancer Resistance Development
2.1. Genomic Instability and Mutagenesis

ROS are highly reactive and can cause significant damages to cell structures, such as
DNA. The genotoxic damage caused by ROS includes single- and double-strand breaks,
base alteration as 8-oxoguanine, and crosslinks. If the damage is not repaired adequately, it
may cause permanent mutations and increase the prevailing genomic instability, which
provides a conducive atmosphere for the occurrence of additional mutational events. The
loss of tumor suppressor genes, activation of oncogenes, and chromosome aberrations
lead to tumor growth promotion. Moreover, genetic mutations result in the establishment
of a heterogeneous tumor population, where cells in the same neoplasm have different
genetic traits [17]. This genetic diversity is critical because it enables the selection of
clones that are resistant to various therapies, including chemotherapy, radiation, and
targeted therapies [18] (Figure 1). This adaptability poses a significant challenge, as even
when a treatment is initially effective, resistant clones may survive, leading to relapse and
disease progression.

Understanding the role of hypoxia-induced ROS in driving genomic instability and
mutagenesis is crucial for developing more effective cancer therapies. Knowing the root
causes of resistance, such as the hypoxic environment and the resulting ROS generation,
could help minimize the chances of cancer relapse [17].

2.2. Cellular Adaptation and Survival

Hypoxia-induced ROS play a pivotal role in driving a wide range of cellular adapta-
tions and survival mechanisms in cancer cells, which contribute to cancer resistance. The
most relevant pathways activated by hypoxia-derived ROS are described hereafter.

2.2.1. HIF Pathway Activation

An important role in hypoxia response is played by HIF proteins, which are commonly
overexpressed in solid tumors. As already stated, the HIF pathway becomes active in low
oxygen environments and plays a critical role in how cancer cells adapt to hypoxia [8,14].
HIFs are transcription factors composed of two components: an oxygen-sensitive alpha
subunit (HIF-1α, HIF-2α, or HIF-3α) and a beta subunit (HIF-1β) that is always expressed.
Under normal oxygen levels, HIF-α subunits are degraded via the ubiquitin–proteasome
pathway following hydroxylation by prolyl hydroxylase (PHDs) enzymes. In contrast,
under hypoxic conditions, PHD activity is limited by low oxygen tension and ROS ac-
cumulation, leading to HIF-1α stabilization [19]. When stabilized, HIF-1α moves to the
nucleus, where it interacts with HIF-1β and activates the transcription of genes that support
cell survival and adaptation, such as those regulating glycolytic metabolism (e.g., glucose
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transporters) and the angiogenic process, including vascular endothelial growth factor
(VEGF) [8,19] (Figure 1). This activation allows cancer cells to thrive in hypoxic environ-
ments, making them also more resilient to therapies that depend on oxygen for efficacy.

2.2.2. Promotion of Cell Survival Mechanisms

Hypoxia-induced ROS have a great impact in cellular signaling pathways that improve
cancer cell survival and thus resistance to treatments. In low oxygen conditions, ROS can
trigger the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway, leading to
cell survival, growth, and resistance to apoptosis through activation of downstream pro-
survival and anti-apoptotic signals. The ROS-mediated stabilization of HIF-1α was also
shown to activate the PI3K/Akt pathway, promoting cancer cell adaptation and survival in
oxygen-deprived conditions [20]. Furthermore, hypoxia-induced ROS affect the mitogen-
activated protein kinase (MAPK) pathway, which is also responsible for controlling cell
growth, differentiation, and response to stress. This activation can result in increased
cellular resistance to therapies that impinge on MAPK signaling, including both targeted
and conventional treatments [21].

In parallel, hypoxia-induced ROS promote autophagy, enabling cancer cells to adjust
and thrive by removing harmed organelles/proteins and providing necessary nutrients
during periods of metabolic stress, leading to resistance to treatment and tumor progression.
Autophagy also protects cells against damages caused by ROS preventing the accumulation
of toxic cellular debris and avoiding cell death [22]. Hence, by modulating these pathways,
ROS contribute to cancer cell survival and therapy resistance in the hypoxic TME [23].

2.2.3. Activation of Defense Systems

Hypoxia-induced ROS improve the cancer cell detoxification mechanisms. One of the
main detoxification systems involves glutathione S-transferases (GSTs), which induce the
conjugation of anticancer drugs with GSH, forming water-soluble and less toxic compounds
that are easier for the cell to excrete. Under hypoxic conditions, the enzymes responsible
for GSH synthesis and GST activity are upregulated, which is partly due to HIF targeted
transcription [24]. Furthermore, ROS lead to the activation of the nuclear factor erythroid
2-related factor 2 (Nrf2) pathway, further contributing to the upregulation of detoxification
enzymes such as GSTs and NAD(P)H oxidoreductase 1 (NQO1). The Nrf2 pathway plays a
central role in cellular antioxidant defense and is also very important in the development
of cancer. Once released, Nrf2 translocates to the nucleus, where it binds to antioxidant
response elements (AREs) and stimulates the expression of antioxidant genes [25]. The
expression of a variety of antioxidant enzymes, including glutathione peroxidase, SOD
and catalase, scavenges ROS and diminishes oxidative burst (Figure 1). Nrf2 activation not
only suppresses oxidative damage but also supports cancer cells to escape apoptosis and to
resist to oxidative stress elicited by chemo- and radiotherapy [26].

In parallel, the elevated activity of NOX and xanthine oxidase in cancer cells has been
associated with increased tolerance to oxidative stress, promoting continuous cell growth
and survival [27,28]. Xanthine oxidase, a key enzyme in purine catabolism, generates
ROS during the oxidation of hypoxanthine to xanthine and xanthine to uric acid. These
ROS act as signaling molecules, activating MAPK and PI3K/AKT pathways, which are
crucial for cell proliferation, survival, and metastasis [29,30]. Under hypoxia, HIFs can
also upregulate xanthine oxidase expression, enhancing ROS production and supporting
cellular adaptation to oxygen deprivation [31]. Additionally, xanthine oxidase activity
facilitates DNA damage repair mechanisms by modulating redox-sensitive enzymes and
pathways, further enhancing cancer cell resistance to chemotherapy and radiotherapy [32].
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2.2.4. Induction of Epithelial-Mesenchymal Transition

Hypoxia and ROS are important in inducing epithelial–mesenchymal transition (EMT),
which enhances the migration and invasion of cancer cells. ROS activate essential signaling
pathways, including transforming growth factor-beta (TGF-β) and nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB), which are crucial for promoting EMT [33].
Recent studies indicate that ROS-induced TGF-β signaling increases the expression of
mesenchymal markers and disrupts epithelial cell adhesion, thereby enhancing cell mobility
and resistance to apoptosis [33] (Figure 1). Moreover, the activation of NF-κB by ROS also
promotes EMT by increasing the levels of genes that play a role in cell survival and
movement, which not only aid in metastasis but also in developing resistance to targeted
therapies and chemotherapy [34,35].

2.3. Altered Metabolism

Under low oxygen conditions, the main metabolic alteration observed in cancer cells
is the shift from oxidative phosphorylation to glycolysis. This shift occurs due to the
stabilization of HIF-1α, which upregulates the expression of genes associated with glycol-
ysis while repressing those involved in oxidative metabolism, such as the β-oxidation of
fatty acids [36]. Additionally, ROS can activate AMP-activated protein kinase (AMPK),
which is a key regulator of cellular energy balance that boosts glycolysis while inhibiting
fatty acid synthesis, supporting cell survival during metabolic stress [37,38]. By glycolysis,
cancer cells can produce ATP more quickly, albeit less efficiently, compared to oxidative
phosphorylation; this metabolic shift allows cancer cells to thrive in hypoxic tumor envi-
ronments by reducing their oxygen dependency [39]. Such metabolic adaptation not only
supports rapid cell growth and proliferation but also helps cancer cells in evading therapies
targeting oxidative metabolism by decreasing their dependence on oxygen [40] (Figure 1).
By relying on glycolysis, cancer cells produce large amounts of lactate, which is exported
by monocarboxylate transporters (MCTs), acidifying the TME [41]. This acidic environment
supports cancer cell survival by facilitating invasion and metastasis, impairing immune cell
function, and influencing pH-dependent enzymes and proteins involved in apoptosis [42].
In this way, cancer cells are able to evade immune detection and resist cell death.

Hypoxia and ROS-induced metabolic reprogramming also contribute to resistance
against apoptosis during cancer therapies, the shift toward glycolysis allows cancer cells
to maintain ATP production even when chemotherapy or radiation increases ROS lev-
els [43]. This adaptation reduces mitochondrial oxidative stress, ensuring continuous
energy production despite the oxidative damage caused by treatment. Moreover, the in-
creased glycolytic activity under hypoxia promotes survival pathways, such as HIF-1α and
AMPK, enhancing resistance to therapies [44]; consequently, cancer cells can survive and
resist the apoptotic signals that typically arise from ROS accumulation during treatment.

2.4. Drug Efflux and Detoxification

Hypoxia and ROS can enhance cancer resistance by upregulating drug efflux
pumps [45]. ATP-binding cassette (ABC) transporters actively expel chemotherapeutic
agents from cancer cells, reducing their intracellular levels. During hypoxia, cancer cells
often increase the expression of ABC transporters such as P-glycoprotein (P-gp/ABCB1),
multidrug resistance-associated proteins (MRPs), and breast cancer resistance protein
(BCRP/ABCG2) [46]. This upregulation is driven by stabilized HIFs that activate genes
encoding these transporters [45]. As a result, cancer cells reduce the intracellular con-
centration of chemotherapeutic agents to sublethal levels, allowing them to survive and
proliferate [47] (Figure 1).
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Additionally, hypoxia-induced ROS can further enhance the activity of drug efflux
pumps by modifying key signaling pathways. ROS activate NF-κB, which is also respon-
sible for increasing ABC transporters [48]. This pathway amplifies both the expression
and functionality of these pumps, improving drug-exporting capacity. The interplay of the
HIF transcriptional network and ROS-induced signaling creates a robust mechanism that
reduces drug accumulation in cancer cells, contributing to multidrug resistance (MDR) [45].

Furthermore, there is an interplay between drug efflux and detoxification mechanisms,
which creates a synergistic defense system within cancer cells. After chemotherapeutic
drugs are detoxified by GSH conjugation, the resulting drug conjugates often become sub-
strates for ABC transporters, such as MRPs, which then actively transport these conjugates
out of the cell [49]. This dual mechanism of detoxification followed by efflux significantly
reduces the intracellular concentration of active drugs, further enhancing resistance. This
system is particularly effective in maintaining the survival of cancer cells in the face of
chemotherapeutic stress, making it a major contributor to treatment failure [50].

2.5. Modulation of the Tumor Microenvironment

ROS influence different processes in the TME, including angiogenesis, immune sup-
pression, and ECM remodeling, thereby helping the tumor in evading treatment [51]. One
key consequence of hypoxia-induced ROS is the stimulation of angiogenesis, which is
the process of forming new blood vessels. In low-oxygen conditions, ROS stabilize HIFs,
leading to an increased expression of VEGF [1]. VEGF facilitates the growth of new blood
vessels, supplying tumors with oxygen/nutrients. Although these new vessels support
tumor growth, they are often disorganized and leaky, resulting in persistent hypoxic regions
within the tumor. This, in turn, sustains ROS production and alters the TME, ultimately
making it harder for drugs to be delivered effectively, leading to resistance [51] (Figure 1).

ROS also impact the recruitment and polarization of TAMs and sustain their suppres-
sive function via HIF and SIRT1-mediated regulation, contributing to immune evasion and
resistance to cancer therapies. These macrophages are skewed toward an M2-like pheno-
type under the influence of ROS, promoting tumor progression and immunosuppression
by secreting anti-inflammatory cytokines such as interleukin-10 (IL-10) and TGF-β [52].

Moreover, hypoxia-induced ROS significantly affect MDSCs, which is a heterogeneous
population of immature myeloid cells that expand in the TME. Hypoxia changes mediated
by HIF-1α and elevated ROS levels enhance the differentiation, recruitment, survival, and
immunosuppressive functions of MDSCs, fostering a tumor-supportive microenvironment
that promotes cancer progression, immune evasion, and therapy resistance. Hypoxic cancer
cells secrete cytokines (CCL26, G-CSF, IL-6) to attract MDSCs to the TME, where HIF-1α
drives the expression of ENTPD2, an enzyme that plays a key role in purinergic signaling
within the TME, ensuring their survival and maintenance within the TME [10,53]. This
supports their role in suppressing immune responses and promoting tumor progression, en-
suring MDSC survival and maintenance. Through the secretion of molecules like arginase-1,
nitric oxide, ROS, and TGF-β, MDSCs suppress T cell and NK cell activity, promote regula-
tory T cell expansion, and induce T cell exhaustion via programmed death-ligand 1 (PD-L1)
expression, which then binds to the PD-1 receptor on T cells, leading to reduced T cell
activity and immune evasion. Additionally, MDSC-derived exosomes carry suppressive
factors that inhibit cytotoxic T lymphocyte activity [54,55]. By supporting angiogenesis and
stromal remodeling, MDSCs further shield tumors from immune attacks and impede drug
delivery, making them a significant target for improving therapies.

Additionally, ROS influence the functionality of adaptive immune cells, such as B and
T cells. Hypoxia in the TME reprograms T cell metabolism, suppressing their effector func-
tions and promoting immunosuppressive mechanisms that foster tumor growth, immune
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evasion, and therapy resistance. Lactic acid accumulation acidifies the extracellular space,
impairing T cell activation, proliferation, and cytokine production [56]. Hypoxia further
reduces key effector molecules like IFN-γ, TNF-α, and granzyme B in CD8+ cytotoxic
and CD4+ helper T cells, weakening antitumor responses [57]. Additionally, it induces
mitochondrial dysfunction and increases ROS, contributing to T cell exhaustion and re-
sistance to PD-1/PD-L1 blockade therapies [58]. High levels of ROS in the TME impair T
cell receptor (TCR) signaling, leading to reduced T cell activation and effector functions.
Oxidative stress induced in T cells by ROS can trigger apoptosis and deplete the number of
CTLs essential for antitumor immunity [11].

Furthermore, B cells in the TME exhibit reduced antibody production and impaired
antigen presentation under oxidative stress conditions, which undermine their ability to
mediate antitumor effects. Hypoxia interferes on B cell functions, while elevated HIF-1α
activity disrupts early B cell development by impairing receptor expression and increasing
pro-apoptotic factors, hindering antigen-specific differentiation [12]. Therefore, it also
weakens long-term immunity by reducing germinal center formation and favoring low-
affinity antibodies. Finally, regulatory B cells, expanded under hypoxia, secrete IL-10 and
adenosine, suppressing inflammatory T cell activity and aiding immune evasion [59].

The remodeling of the ECM is another significant effect of hypoxia-induced ROS.
ROS trigger matrix metalloproteinases (MMPs), which break down ECM elements and
restructure it [60]. This remodeling process not only supports cancer cell invasion but
also changes the mechanical characteristics of the TME, increasing stiffness and, therefore,
creating a physical barrier around tumors that impedes immune cell infiltration and drug
delivery and improves cancer cell viability and ability to resist cell death [13].
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Figure 1. Mechanisms driven by hypoxia and ROS to induce cancer resistance. The hypoxic conditions
determined by the TME and the associated ROS burst in cancer cells elicit different types of survival
mechanisms that contribute to drug resistance. Oxidative stress-mediated DNA mutations and HIF-
dependent changes in cell metabolism, drug efflux, and TME immunosuppression influence cellular
adaptation and resistance to antitumor therapies, encouraging tumor aggressiveness and metastasis.
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3. Therapeutic Strategy to Overcome Cancer Resistance Related
to Hypoxia-Induced ROS
3.1. ROS Modulation

ROS include superoxide anion (O2•−), hydrogen peroxide (H2O2), and hydroxyl
radicals (•OH). In cancer cells, ROS levels are often dysregulated, contributing to tumor
development, progression, and resistance to treatments [61]. Cancer cells can exhibit both
elevated ROS production and enhanced antioxidant defenses to survive oxidative stress.
This dual characteristic enables them to utilize ROS for growth and survival while avoiding
excessive ROS-induced damage that might cause cell death [62]. Considering that hypoxic
conditions contribute to ROS production in cancer, strategies to overcome resistance and
improve the effectiveness of cancer treatments by modulating ROS balance will be here
presented. ROS modulators can be classified into ROS inducers and ROS scavengers
(Table 1).

3.1.1. ROS Inducers

Pro-oxidant therapies can overwhelm the antioxidant capacity of cancer cells by
further increasing ROS levels, pushing oxidative stress beyond the threshold that can
be tolerated and consequently leading to cell death. Some ROS inducers are able to
increase ROS specifically in cancer cells [63]. Recent studies have explored the use of
drugs like β-lapachone and Piperlongumine that selectively increase ROS levels in cancer
cells, inducing apoptosis, while sparing normal cells [64,65]. Another example are the
artemisinin derivatives, which are capable of inducing direct oxidative damage in cancer
cells by the forming of ROS such as hydroxyl and superoxide anion radicals [66].

ROS inducers can be used alone or in combination with other therapies to overcome
resistance. For example, combining ROS inducers with inhibitors of antioxidant systems
can synergistically increase oxidative stress and promote cancer cell death [62]. Moreover,
intensifying oxidative metabolism at the expense of glycolysis was shown to be effective in
exacerbating the anticancer activity of ROS-promoting cytotoxic drugs [67,68].

3.1.2. ROS Scavengers

Reducing ROS levels can also be beneficial, particularly in cancers where ROS-induced
signaling contributes to survival and resistance. Antioxidants that reduce ROS can inhibit
these pro-survival pathways.

• N-acetylcysteine (NAC): Known as a precursor of GSH and an efficient scavenger of
hydroxyl radicals, NAC has been studied for its potential to decrease ROS levels, to
inhibit cancer cell growth and overcome resistance when used in combination with
other therapies [69]. It was confirmed that NAC could reverse gefitinib resistance in
non-small cell lung cancer cells, also reversing EMT [70].

• Vitamin E is a lipid-soluble antioxidant that protects cell membranes from oxidative
damage by scavenging free radicals, particularly peroxyl radicals, which are involved
in lipid peroxidation. It has shown some potential in lowering ROS levels and over-
coming resistance in specific cancer types [71]. Used as an adjuvant therapy, it protects
normal cells during chemotherapy and radiotherapy, and it also reduces oxidative
damage without interfering significantly with the therapeutic effects on cancer cells. In
clinical studies, vitamin E has been explored for reducing the side effects of radiation
therapy, particularly in head and neck cancers [72,73].
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• Vitamin C is an antioxidant that scavenges ROS, reducing oxidative damage and
making cancer cells more sensible to chemotherapy and radiotherapy, particularly
in hypoxic tumors. Vitamin C can reduce HIF-1α activity, therefore reducing the
expression of pro-angiogenic factors such as VEGF, restricting tumor growth [74].

• Bardoxolone-Methyl is a semi-synthetic triterpenoid that activates the Nrf2 pathway to
increase ROS scavenging and reduce the side effects of cancer treatments by bolstering
the antioxidant defenses [75]. Additionally, bardoxolone-methyl demonstrated to
sensitize oral squamous cell carcinoma cells to radiotherapy, thus reducing tumor
growth [76].

• Resveratrol is a natural polyphenol with antioxidant properties that scavenges ROS
and modulates the activity of antioxidant enzymes, such as SOD and catalase [77].
It is able to reverse drug resistance in tumor cells by sensitizing them to chemother-
apeutic agents. As an adjuvant chemotherapy agent, it enhances drug anticancer
effects and decreases tumor volume by inhibiting cell proliferation and inducing
apoptosis [78–80].

• Manganese porphyrin-based SOD mimics (SODm): These novel compounds mimic
the properties of SOD enzymes, converting superoxide into H2O2 and O2 [81]. The
most promising compounds of this group are MnTnHex-2-PyP5+ and MnTnBuOE-
2-PyP5+ (BMX-001). These compounds are currently being explored for their ability
to mitigate radiation-induced damage while also reducing cell viability in different
types of cancer [82,83]. Additionally, these compounds have been shown to enhance
the effectiveness of chemotherapy and radiotherapy. Thus, early-phase clinical trials
are anticipated to further explore their therapeutic potential [84].

Challenges and future directions: ROS modulators are promising compounds to use
in combination with chemotherapy, targeted therapy, or immunotherapy to enhance the
antitumor response. Nevertheless, excessive ROS can damage normal tissues, leading to
side effects, and it is thus important to study the therapeutic window of ROS modulators,
as there is a fine line between therapeutic and toxic levels of ROS.

Table 1. In vitro, preclinical and clinical trial of ROS modulators as potential anticancer therapies.

Class Compound Type of Study Cancer Type Dose Outcome Ref.

R
O

S
In

du
ce

r

β-Lapachone

preclinical Liver 12.5 mg/kg/day for
five days

Tumor growth
inhibition [64]

in vivo
(phase I)

Advanced solid
tumors

MTD 390 mg/m2

every other week

Stable disease
or tumor
shrinkage

[85]

in vivo
(phase I) Pancreatic

MTD 156 mg/m2

(+ gemcitabine and
nab-paclitaxel)

Stable disease
in 53% [65]

Piperlonguimine

in vitro

Thyroid

10.68 µM (24 h)
5.68 µM (48 h)

Growth
inhibition,
apoptosis,
autophagy

[86]

in vitro,
preclinical

Single dose
10 mg/kg or

5 mg/kg

Good cytotoxic
potential/

safety
[87]
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Table 1. Cont.

Class Compound Type of Study Cancer Type Dose Outcome Ref.

R
O

S
Sc

av
en

ge
r

NAC

in vitro NCSLC NAC (5 mM) plus
gefitinib (2 µM)

Restored
gefitinib

sensitivity
[70]

clinical trial Breast

Once a week I.V.
(150 mg/kg) and
twice daily orally

(600 mg)

Reduced
carcinoma cell
proliferation.

[88]

Vitamin E in vivo (pilot) Head
and neck

100 IU (+500 mg
vitamin C) + RT

Protects against
RT effects [72]

Mouthwash with
0.2% vitamin E

Protects against
RT effects [73]

Vitamin C

in vivo
(pilot trial) Pancreatic

50–100 g three times
weekly +

gemcitabine or
erlotinib

7/9 patients
had stable

disease
[89]

in vivo
(pilot trial) Ovarian

75–100 g twice
weekly + Pacli-

taxel/carboplatin

Low chemother-
apeutic toxicity,
prolonged PFS

[90]

preclinical Ovarian,
pancreatic

Twice daily
4 g/kg body weight

Decreased
tumor growth [91]

in vitro Melanoma 100 µM Reduced
progression [74]

Bardoxolone Methyl

in vitro Oral squamous
cell

10 nM associated
with RT

Anti-cancer and
radio-

sensitizing
effects

[76]

in vivo
(phase I)

Solid tumors,
lymphomas

900 mg/day orally
once daily

Prolonged
stable disease
of 4 or more

months

[92]

Resveratrol

in vitro Breast 70 µM (+ sorafenib
6 µM)

Increased
apoptosis [78]

in vivo
(phase I) Colorectal 5 g daily for

10–21 days
Increased
apoptosis [93]

Manganese
Porphyrin

in vitro NCSLC
0.5 and 1 µM (alone

or + cisplatin
1–5 µM)

Increased cell
death and
cisplatin

cytotoxicity

[82]

in vitro Breast 5µM (+doxorubicin
0.5–20µM)

Reduced
collective cell
migration and

chemotaxis

[81]

in vitro High-grade
gliomas

28 mg loading +
14 mg maintenance

dose for
2 times/week

(+RT/temozolomide)

Promising early
results on

overall survival
[94]

MTD: maximum tolerated dose; RT: radiotherapy; I.V: intravenous; NCSLC: non-small cell lung cancer; PFS:
progression-free survival.



Antioxidants 2025, 14, 94 11 of 20

3.2. HIF Inhibitors

Inhibitors of HIF signaling are emerging as promising therapeutic strategies to over-
come cancer resistance induced by hypoxia and ROS (Table 2). These inhibitors aim to block
the activity of HIFs, thereby disrupting the hypoxic response and making tumors more
susceptible to treatment [95]. HIFs inhibitors can be classified into the following groups:

• Direct HIF inhibitors: These compounds directly target HIF-α subunits, preventing
their stabilization under hypoxic conditions. Some examples are PT2385 and PT2399,
inhibitors of HIF-2α, thus inhibiting the expression of its dependent genes such as
VEGF-A and cyclin D1, showing tumor regression in preclinical models for clear cell
renal cell carcinomas [96,97].

• Indirect HIF inhibitors: Indirect inhibitors may target upstream regulators of HIF-1α.
For example, EZN-2208, a pegylated form of irinotecan, indirectly inhibits HIF-1α by
decreasing its transcriptional activity. The results of clinical trials showed a reduced
tumor growth in patients with advanced solid tumors, and at the same time, it was
well tolerated [98,99]. Other examples are the histone deacetylase inhibitors, such as
vorinostat and romidepsin, which are novel drugs that decrease HIF-1α stabilization
by inducing its degradation [100,101].

Combination therapies with HIF inhibitors are also being tested. Combining HIF
inhibitors with chemotherapeutic agents such as doxorubicin demonstrated a synergistic
cytotoxic effect, making tumors more susceptible to treatment [102]. Moreover, as hypoxia
also makes tumor cells less responsive to radiotherapy, the use of HIF inhibitors can
decrease the cellular defense against ROS, thereby increasing DNA damage in cancer cells
and enhancing the effectiveness of radiation therapy [103].

Challenges and future directions: One major issue is the potential toxicity, since HIFs
also have vital functions in normal tissues. Developing inhibitors that specifically target
the TME is essential to reduce the occurrence of off-target effects. Moreover, tumors can
trigger alternative mechanisms that circumvent HIF inhibition, resulting in resistance to
treatment similar to other targeted therapies. It is important to understand the reasons
behind this resistance and develop strategies to overcome it, such as using combination
therapies or sequential treatment regimens. The efficacy of HIF inhibitors may differ on the
level of hypoxia and the type of tumor. Taking into consideration this diversity, customized
treatment approaches are expected to be more successful.

3.3. Metabolic Pathways Inhibitors

Targeting metabolic pathways has emerged as a potential therapeutic strategy (Table 2),
given the role of altered metabolism in promoting cancer resistance. Inhibitors of glycol-
ysis and inhibitors of lactate production or transport (such as MCT inhibitors) are being
explored [41,104].

• Glycolysis modulators: Deoxyglucose (2-DG) was studied in preclinical trials as an
adjuvant therapy with chemotherapy and demonstrated sensitization to cell death
and inhibition of tumor growth. Additionally, in early-phase clinical trials, it was
observed tolerable and with reversible adverse effects [105]. PFKFBs (phosphofructo-
2-kinase/fructose-2,6-bisphosphatase) are enzymes that regulate the transformation
between fructose-2, 6-bisphosphate, and fructose-6-phosphate in glucose metabolism.
PFKFB3 acts as a vital regulator of glycolysis that promotes cancer cell prolifera-
tion, migration, survival, metastasis, and resistance [106]. It catalyzes the production
of fructose-2,6-bisphosphate, a potent allosteric activator of phosphofructokinase
1 (PFK-1); therefore, it is involved in the enhancement of glycolytic activity [107].
PFKFB3 inhibitors, such as PFK-158, reduce glucose consumption and lactate pro-
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duction, impairing energy supply and growth, thus showing antitumor activity in
preclinical studies for melanoma, breast, and lung cancers [108].

• Glutaminolysis inhibitors: CB-839 (telaglenastat) shows anti-proliferative activity in
solid tumor models (breast cancer, non-small cell lung cancer, renal cell carcinoma)
both alone and in combination with other anti-cancer therapies in preclinical stud-
ies [109].

• Lipid metabolism inhibitors: Lipids are crucial for various cellular functions, includ-
ing membrane synthesis, energy storage, and signal transduction [110]. Targeting
lipid metabolism pathways has emerged as a promising strategy in cancer treatment.
Opaganib and TVB-2640 are some examples still under clinical trials [111,112].

• Inhibition of mitochondrial metabolism: Mitochondrial bioenergetics and signaling are
required for cancer initiation and survival [113]. Therefore, researchers have begun to
study the development of new antineoplastic agents that target the mitochondria [113].
Devimistat is a novel drug designed to inhibit mitochondrial metabolism. It specifically
targets enzymes within the Krebs cycle, such as the inactivation of PDH and KGDH,
which are crucial for energy production in cells [114,115].

Challenges and future directions: Metabolic inhibitors can also affect normal cells,
leading to off-target effects and toxicity in normal cells. Developing strategies to selectively
target cancer cells while protecting normal tissues is still a major difficulty. Metabolic
plasticity is the term given to the switch between different metabolic pathways to avoid the
effects of targeted inhibitors, therefore causing cell populations to use different metabolic
pathways to sustain their survival and growth, ultimately affecting their response to
therapies. In consequence, achieving sustained therapeutic responses with single-agent
metabolic inhibitors is difficult due to their adaptability. Therefore, the future of metabolic
inhibitors likely relies on their association with chemotherapeutic or immunotherapeutic
agents. Understanding the complexity between the cancer metabolic pathways and the
metabolic interactions will be key for developing effective therapeutic strategies.

Table 2. Preclinical, clinical and ongoing clinical trials of HIF inhibitors and metabolic inhibitors
in cancer.

Class Compound Type of Study Cancer Type Dose Outcome Ref.

H
IF

in
hi

bi
to

r

PT 2385
preclinical Clear cell

renal cell 30 or 100 mg/kg twice daily Tumor regressions in
mouse model [97]

in vivo
(phase I)

Clear cell
renal cell 100 to 1800 mg twice daily Favorable safety profile and

promising efficacy [116]

PT 2399 preclinical Clear cell
renal cell 30 mg/kg twice daily Tumor regression in

mouse model [96]

EZN-2208

preclinical Glioblastoma Single I.V. injection
30 mg/kg

Direct effects on the
tumor vasculature [98]

in vivo
(phase I) Advanced solid

I.V. 1.25 mg/m2 and
25 mg/m2 once every

21 days

Well-tolerated and
stable disease

in 41% of the patients
[99]

in vivo
(phase I) Refractory solid I.V. once every 21 days

(12–30 mg/m2)

Well-tolerated and
associated with clinical
benefit in patients with

neuroblastoma.

[117]

Vorinostat in vivo
(phase I/II)

Renal cell
carcinoma

Orally, 200 mg/twice a day
+ bevacizumab

Associated with
clinical benefit [100]

Romidepsin

in vivo
(phase II)

Carcinoma of the
head and neck

Infusion 13 mg/m2 on days
1, 8 and 15 of 28 days cycles

As a single agent has
limited activity [101]

Lymphoma Infusion 14 mg/m2 on days
8, 15, 22 of a 35-day cycle

Ongoing [118]
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Table 2. Cont.

Class Compound Type of Study Cancer Type Dose Outcome Ref.

M
et

ab
ol

ic
in

hi
bi

to
rs

2-DG in vivo
(phase I) Advanced solid Orally, once daily (2 mg/kg)

+ docetaxel

32% of patients had stable
disease, 3% had
partial response

[105]

CB-839

in vivo
(phase II)

Renal cell
carcinoma

Orally, 800 mg twice daily +
everolimus

Well-tolerated
and improved

progression-free survival
[109]

in vivo
(phase II) Advanced Cervical Orally, 800 mg twice per day

+ Chemoradiation Ongoing [119]

TVB-2640

in vivo
(phase II) Glioblastoma

100 mg/m2 daily +
bevacizumab 10 mg/kg

Well-tolerated and
improved overall

response rate
[112]

100 mg/m2 daily +
bevacizumab 10 mg/kg

Ongoing [120]

in vivo
(phase I) Prostate

100 mg + Enzalutamide
160 mg once daily for

28 days
Ongoing [121]

Opaganib in vivo
(phase II) Prostate

Orally 250/500 mg
twice a day +

(Abiraterone/enzalutamide)
Ongoing [111]

Devimistat

In vivo
(phase I) Biliary Tract Infusion of 2000 mg/m2 +

gemcitabine and cisplatin
Well-tolerated with an

acceptable safety profile [115]

In vivo
(phase I)

250 mg/m2; 500 mg/m2;
1000 mg/m2 Ongoing [122]

I.V: intravenous; PDAC: pancreatic adenocarcinoma.

3.4. Modulating TME

TME regulates tumor cell survival and function; therefore, modulating the TME seems
to be a promising therapeutic strategy to overcome hypoxia-induced resistance. Some
strategies include anti-angiogenic therapies with aim to normalize tumor vasculature,
targeting metabolic shift, reprogramming the immune microenvironment, and improving
oxygenation in the tumor [123].

• Normalizing tumor vasculature: Strategies to normalize the atypical tumor vasculature
can enhance oxygen delivery to the tumor, thereby reducing hypoxia and improving
the efficacy of therapies. Agents such as bevacizumab, aflibercept, and ramucirumab
are being studied for their potential to normalize blood vessels and reduce hypoxia-
induced resistance by targeting VEGF signaling [124,125].

• Reprogramming the immune microenvironment: therapies targeting tumor-associated
macrophages to shift them from a pro-tumorigenic and pro-angiogenic M2 phenotype
to an antitumor M1 phenotype using Toll-like receptor agonists with cytokines or
anti-CD47 are under research [126].

• Oxygen delivery systems: Innovative approaches to deliver oxygen directly to attenu-
ate tumor hypoxia and enhance cancer therapy are being studied. Oxygen-carrying
nanoparticles, hyperbaric oxygen therapy, and oxy-mimetics are some of the strategies
in research to increase oxygen levels within the TME. Thus, oxygen delivery systems
to improve cancer treatment hold great potential for future clinical translation [127].

Challenges and future directions: The high heterogeneity of the TME with variations
in oxygen levels, cell populations, and metabolic states complicates the development of
universal therapeutic strategies. Additionally, combination therapies are essential for
overcoming possible resistance to the therapeutic strategies, as cancer cells and the TME
can adapt.
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4. Conclusions
Hypoxia-induced ROS play a crucial role in promoting cancer progression, resistance

against therapies, and metastasis by modifying tumor cell metabolism, increasing genomic
instability, and establishing a favorable environment for the growth and survival of cancer
cells. The main difference between the impact of hypoxia-induced ROS and the ones
coming from other sources (e.g., chemotherapy itself) is the leading contribution of TME
derangement that elicits pro-oxidant conditions accompanied by an HIF-mediated adaptive
response. These complex interactions represent a challenge for effectively treating cancer;
advances in understanding the molecular mechanisms behind hypoxia and ROS have led
to the development of promising therapeutic strategies aimed at reducing their effects.
Emerging therapies such as HIF inhibitors, ROS modulators, metabolic pathways inhibitors
and TME modulators could be useful to enhance the efficacy of existing cancer therapies
and to overcoming resistance.

Targeting the TME and inhibiting HIF currently stand out as the most promising
strategies for overcoming cancer resistance. Approaches involving TME modulators aim to
adjust tumor vasculature, target metabolic shift, improve oxygenation in the tumor and
reprogram the immune landscape of tumors, reducing their immunosuppressive nature
and enhancing their responsiveness to immune checkpoint inhibitors. In parallel, targeting
the HIF pathway is gaining significant attention, as hypoxia and HIF are critical in cancer
progression and resistance, particularly by promoting angiogenesis. These multifaceted
therapeutic strategies disrupt such processes, increasing the tumor’s sensitivity to therapies,
especially when combined with chemotherapy or radiotherapy. However, further research
is needed to optimize their use for overcoming hypoxia-induced resistance and to ensure
efficacy and safety.
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