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Abstract: Natural phenolic compounds (NPCs) have been proven to effectively extend the
storage time of meat products in recent years. To promote the discovery of more NPCs and
their applications, this review examines recent progress in the classification, antioxidant,
and antibacterial mechanisms of NPCs used in meat products. These compounds are found
in both edible and inedible parts of plants, including fruits, vegetables, and trees. The
recycling of agricultural by-products aligns with green agricultural trends and serves as
a guideline for developing new sources of natural additives. Studies on the application
of NPCs in various livestock and poultry products, either directly mixed into the matrix
or indirectly contacted by preparation into bioactive films and packaging materials, has
highlighted the great potential of NPCs. The pro-oxidative effects of NPCs on proteins and
their interactions with biological macromolecules, such as proteins, provide new ideas for
in-depth research on antioxidant and antibacterial mechanisms.

Keywords: natural phenolic compounds; antioxidation mechanism; antibacterial
mechanism; pro-oxidant; meat products industry

1. Introduction
Pork, beef, chicken, rabbit meat, and other livestock and poultry are the major sources

of meat for human consumption. These meats are rich in nutrients, such as protein and
fat, but they are prone to oxidation and deterioration during processing, air-drying, and
storage, affecting consumer acceptance [1–4]. Traditionally, synthetic antioxidants and
antibacterial agents, such as propyl gallate (E-310), butylated hydroxyanisole (BHA; E-
320), and sodium nitrite (E-250), have been used to prevent meat and meat products’
spoilage [5]. However, there are concerns about their possible toxicological effects and
cancer risks [6]. Consequently, natural preservatives are increasingly used as alternatives
to synthetic ones [7]. For instance, rosemary and oregano are approved for use as spices by
the European Food Safety Authority (EFSA), meeting the food industry’s needs to reduce
or eliminate the use of synthetic food additives, improve consumer acceptance, and reduce
potential health risks [8,9]. NPCs derived from plants or plant by-products have received
considerable interest from meat producers, additive companies, and researchers [10].

The global market for plant extracts reached USD 31.14 billion in 2024, and is projected
to reach USD 615 billion by 2031 [11], in which fruit waste and agricultural by-products
are considered as potential sources of natural additives, supporting a green, circular econ-
omy [12,13]. The assessment of NPCs from 20 types of fruit, including tropical, subtropical,
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and temperate varieties, has shown beneficial antioxidative and antibacterial functions, as
well as improvements in color and flavor [14].

NPCs are natural, efficient, and environmentally friendly ingredients commonly used
in the food industry, particularly in clean-label foods [15,16]. Leveraging the bioactivity
of NPCs can address issues associated with the production and preservation of meat and
meat products by replacing synthetic additives [17]. To achieve the best preservation effect,
research focuses on exploring new sources of plant extracts, identifying bioactive compo-
nents, developing methods to maximize bioactivity, and evaluating preservation effects
and mechanisms [18–20]. With advances in active packaging materials and nanotechnology,
increasingly more studies are focusing on composite and nanoencapsulation active films
(coatings). Composite films prepared by adding pine needle extracts containing cedar
polyphenols showed a strong free radical scavenging ability, shown through the inhibi-
tion results of fat and protein for the model of high-fat cured meat [21]. Nanotechnology
can significantly improve the activity of naturally existing substances. Green tea extract,
horse berry extract, amaranth leaf extract, and various nanoliposome packaging materi-
als containing active plant ingredients have showed strong antioxidant and antibacterial
properties [22].

Most recent research on NPCs used in the meat industry has aimed at identifying new
sources of NPCs and extracts, revealing synergistic effects and improving the understanding
of the underlying mechanisms. This review aims to provide an overview of the main
sources, compositions, and functions of NPCs, a list of their applications and effectiveness
as antioxidants and antimicrobial compounds in meat and meat products, and a summary
of the antioxidant and antibacterial mechanisms. The emphasis is on the pro-oxidative
effect of NPCs on proteins, as well as the phenomenon of interactions with proteins or other
biomacromolecules affecting antioxidant and antimicrobial effects, providing a reference
for further research on the roles and mechanisms of NPCs in meat and meat products.

2. Natural Phenolic Compounds and Their Functions
2.1. Natural Phenolic Compounds Identified in Plant Extracts

NPCs are secondary plant metabolites with at least one aromatic ring and two hydroxyl
groups. They primarily include phenolic acids, flavonoids, glycosides, terpenoids, and their
derivatives, depending on their chemical structures [23,24]. NPCs are abundant, diverse,
and widespread, arising from both edible and nonedible plant materials, such as vegetables,
fruits, medicinal plants, grains, woody resources, bean sprouts, and roots [25,26]. NPCs are
present in various plant parts, including leaves, turbs, peels, seeds, roots, husks, and fruits,
as well as by-products of processing, such as wastewater and slag (Table 1). NPCs are
concentrated forms of natural bioactive compounds that can be effective in small amounts.
To leverage their biological activity and high added value, effective extraction technology,
the effective use of agro-industrial by-products, and environmentally friendly, sustainable
green processing technologies are future priorities [27,28].
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Table 1. Natural phenolic compounds identified in plant extracts.

Sources
Phenolic Compounds Reference

Name Part

Oregano (Origanum vulgare
ssp. Hirtum) Flowering aerial part

Phenolic acids (rosmarinic, chlorogenic, cinnamic, caffeic, syringic,
benzoic, vanillic, gallic, chicoric, and 2,4-dihydroxybenzoic acids),

flavonoids (quercetin, apigenin, luteolin, naringenin, and kaempferol),
and coumarin

[18]

Cistus creticus Flower Quercetin and gallic acid [29]

Flacourtia flavescens Willd Leaves

Caffeic acid, apigenin, luteolin, kaempferol, quercetin, gyrophoric acid,
luteolin-7-O-β-D-glucopyranoside, luteolin-4′-O-β-D-glucopyranoside,

kaempferol-7-O-α-L-rhamnopyranoside, kaempferol-3-O-β-D-
glucopyranosyl-(1→6)-O-α-L-rhamnopyranoside, and

kaempferol-3,7-O-α-L-dirhamnopyranoside

[30]

Inga stipularis DC. (fabaceae) Leaves Ucryphin, neoastilbin, astilbin, neoisoastilbin, isoastilbin, quercitrin,
engeletin, and isoengeletin [31]

Fagus sylvatica
(European beech) Leaves

Hydroxycinnamic acids (ferulic, caffeic, and p-coumaric acid esters) and
flavonoids (apigenin, kaempferol, naringenin, quercetin derivatives,
3′′,6′′-di-O-coumaroylkaempferol derivatives, chrysin, taxifolin, and

(epi)catechin derivatives)

[32]

Sweet potato (Ipomoea batata
L.; Lam.)

Leaves
Phenolic acids: caffeoylquinic acids, esculin, protocatechualdehyde, CA,

7-hydroxycoumarin, and ethyl caffeate
[33]

Flavonoids: isomeric caffeoylquinic acids, esculin,
protocatechualdehyde, CA, 7-hydroxycoumarin, and ethyl caffeate’

Tubers
Phenolic acids: caffeic acid, chlorogenic acid, and caffeoylquinic

acid derivatives
[34]

Flavonoids: quercetin, myricetin, luteolin, kaempferol, apigenin,
and anthocyanins

Dioscorea persimilis Tubers
2,4,6,7-tetrahydroxy-9,10-dihydrophenanthrene, aerosin, gastrodin,

2-phenylethyl-β-d-glucopyranoside, afzelechin, catechin, eucomic acid,
and vanillic acid (VA)-4-O-β-d-glucopyranoside

[35]

Olive Processing wastewater

Phenolic acids: oleocanthalic acid, caffeic acid, p-coumaric acid, ferulic
acid, and VA

Flavonoids: hydroxytyrosol, tyrosol, oleocanthal, vanillin, verbascoside,
luteolin 7 glucoside, pinoresinol, oleuropein, oleacein, and

1-acetoxypinoresinol

[36]

Pomegranate Peels
Flavonoids (anthocyanins, catechins, and other complexed flavonoids),
hydrolyzable tannins (punicalin, pedunculagin, punicalagin), gallic and

ellagic acids
[37]

Ginger Peels Zingerone, rutin, quercetin, naringenin, kaempferol, and 6-gingerone [38]

Tomato (Solanum
pimpinellifolium PI365967 and
S. lycopersicum Moneymaker)

Fruits

4 chlorogenic acid isomers, caffeic acid-3-O-glucoside, dihydrosinapic
acid-4-O-glucoside, quercetin-5-sophoroside,

quercetin-3-O-arabinoside-5-O-rutinoside,
isorhamnetin-3-O-glucoside-5-O-salicylate, caffeic acid 3-sophoroside,

naringenin-5-O-glucoside, naringenin-7-O-galactoside, and
naringenin-4′-O-glucoside

[39]

Mulberry (Morus alba) Fruits Cyanidin-3-O-glucoside, cyanidin-3-O-rutinoside, rutin, isoquercitrin,
resveratrol, and caffeic acid [40]

Chia (Salvia hispanica L.) Seeds Apigenin 4′-O-glucoside and rosmarinic and caffeic acid [41]

Avocado Seeds
Flavonoids (luteolin and quercetin), phenolic aldehyde (ethylvainillin
and vanillin), and phenolic acids (phthalic acid, ferulic acid, salycilic

acid, and p-coumaric acid)
[42]

Baobab (Adansonia digitata) Seeds Terpenoids, sterols, flavonols, and vitamins [43]

Tea (Camellia sinensis L.)
O. Ktze. Seed oil

Naringenin, 3,4-dihydroxyphenyl glycol, gentisic acid,
hydroxytyrosol, 7-hydroxy coumarine, homovanillic acid, pyrocatechol,

p-coumaraldehyde, p-hydroxy phenylacetic acid, and
trans-cinnamic acid

[44]

Hemp (Cannabis sativa L.) Seeds 4-hydroxybenzoic acid (4-HBA), VA, protocatechuic acid (PA), syringic
acid (SGA), and ellagic acid (EA) [45]
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Table 1. Cont.

Sources
Phenolic Compounds Reference

Name Part

Rumex
dentatus L. Roots

Musizin-8-O-β-D-(6′-O-malonyl-3′′-methoxy) glucopyranoside,
2-acetyl-3-methyl-1,4-naphtho-quinone-8-O-β-D-glucopyranoside,

(2′R)-7-hydroxy-2-(2′-hydroxypropyl)-5-methyl acetate chromone, and
2,8-dimethyl-3,6-dihydroxyxanthone

[46]

Coffea Arabica variety
Caturra and Catuaí Husks Flavonoids, such as anthocyanins (cyanidin-3-glucoside and cyanidin

3-o-ruthinoside), and phenolic acids, such as chlorogenic acid [47]

Rosemary (Rosmarinus
officinalis L.) Shrubs

Phenolic acids (salvianic acid, caffeic acid, rosmarinic acid, and
salvianolic acid A), flavonoids (luteolin-7-O-rutinoxide,

luteolin-7-glucoronide, hesperidin, luteolin, apigenin, hispidulin,
cirsimaritin, genkwanin, and salvigenin), and diterpenes (rosmadial,

7-CH3-rosmanol, carnosol, carnosic, and 12-CH3-carnosic acid)

[48]

2.2. Functions of Natural Phenolic Compounds

The chemical structure of NPCs influences the diversity of their biofunctional proper-
ties, including antioxidation, antibacterial, anti-inflammatory, and certain pharmacological
properties, making them potentially useful in both the pharmaceutical and food indus-
tries [24]. In the meat products industry, they are applied to ham, dry fermented sausage,
and frankfurter sausages to inhibit microbial growth, delay lipid rancidity, inhibit myo-
globin oxidation, and stabilize meat color [49,50]. Tea polyphenol/kojic acid chitosan
nanoparticle films prepared using the ion gel method significantly inhibited microbial
spoilage of air-dried chicken [51]. In addition to antioxidation and antibacterial effects,
1% Alpinia katsumadai Hayata (containing cardamonin, alpinetin, and pinocembrin) and
0.01% curcumin can inhibit acrolein, which is highly toxic to cells during meat heating [52],
and slightly higher levels of quercetin also maintain the gel properties of myofibrillar
proteins (MPs) by influencing moderate crosslinking and aggregation of MPs resulting
from covalent and noncovalent connections [51]. A mulberry polyphenol extract with
312.3 ± 11.67 mg gallic acid equivalent per gram significantly improved the pork MP
digestibility and antioxidant activity of digestive fluids [53]. Extracts from broccoli, aspara-
gus, and ginger have also improved beef tenderness [54]. The sensory acceptability of aged
mutton can be enhanced with the application of crude water extracts from Menthapiperitae
folium and Zingiber officinale. In particular, this improves the overall sensory properties and
fatty acid composition while eliminating the adverse lamb flavor and producing a more
stable color and high tenderness score [55]. As a result, NPCs are increasingly prominent
as food additives due to the increasing functional properties.

Research on the effect of “natural antioxidants” or “natural antibacterial agents” on
meat or meat products is obviously increasing, as the application of NPCs can improve
the functionality of meat products and produce clean-label foods that meet consumer
demands [27]. However, there are research and application limitations. The source of
these natural additives is crucial, considering factors like cost, effectiveness, and potential
toxicity. Higher amounts of antioxidants can be harmful due to their tendency to oxidize
easily [56]. NPCs are generally less active than synthetic ones and their effectiveness
largely depends on the food matrix, as the unsaturation level of fatty acids in different meat
matrices and the interaction between meat components (such as lipids and proteins), as
well as the difference in the rate of change of fatty acid composition in different matrices
during storage, can affect the activity of NPCs [57]. Therefore, there are still many areas
that need breakthroughs in the application and mechanism research of NPCs.
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2.2.1. Antioxidation Effect

Numerous studies have focused on the application of NPCs on different kinds of
meat and meat products (Table 2), including fresh meat, sausage, hamburger, patties, paste,
meatball, dry-cured meat, slices, and others from pork, chicken, beef, duck, lamb, and
rabbit. NPCs can inhibit lipid–protein oxidation, prevent the development of adverse
flavors, improve the sensory properties of products, and more by directly adding phenolic
monomers, mixtures, or complex compounds, or indirectly by preparing into bioactive
membranes or packaging bags [58–60].

In terms of direct addition, monomer compounds like phytic acid and tea polyphe-
nols were employed in chicken wings. The anti-free-radical properties of polyphenols
can inhibit the oxidation of carbonyl derivatives that affect meat flavor. They can also
significantly impact the flavor of seasoned chicken wings, and significantly reduce some
volatile compounds [61]. The addition of chlorogenic acid can significantly inhibit lipid
oxidation in roasted lamb [62]. Natural phenolic mixtures or complex compounds are
mainly derived from plant extracts. For example, phenolic acids and flavonoids isolated
from Olive (Olea europaea L.) leaves and olive by-products (wastewater and pomace) can
be used as natural food additives to improve safety and quality [63–65]. The bioflavonoid
complex from black chokeberry and black currant extracts can delay fat peroxidation in
smoked sausage storage, and 0.2–0.5% black bilberry extract can stabilize oxidation by-
products in high-fat smoked sausages [66]. Proanthocyanidins were isolated from litchi
peel using optimized liposome encapsulation technology and they demonstrated much
stronger antioxidant activity than the control group (which only contained oligomeric
procyanidins and not encapsulation) [67], while films containing a mixture of pectin and
polyphenols from watermelon peel considerably reduced TBARs and TVB-N [68]. Baobab
seed (Adansonia digitata) extract containing NPCs of terpenes and flavonoids exhibited
antioxidant properties against beef patties [43]. In addition to mixing directly with minced
meat, the meat can also be soaked in a preservative solution. Chilled pork meat was soaked
in a preservation solution prepared from sea buckthorn seeds, exhibiting significant an-
tibacterial properties against Staphylococcus aureus (S. aureus) and the capacity to scavenge
hydroxyl free radicals (·OH), 2,2′-Azinobis-3-ethylbenzthiazoline-6-sulphonate (ABTS),
and 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH), equivalent to that of VC (p < 0.05) [69].

On the other hand, NPCs can be employed as natural additives or active components in
films to limit lipid–protein oxidation and microorganism development during production
and storage, thus extending the shelf life [17,70]. For example, active films containing
watermelon rind polyphenols or rosehip extracts had better mechanical properties and
significantly reduced TBARs in chilled lamb and chicken breast, respectively [58,68]. Active
films treated with nanotechnology have better physical properties, biological activity,
and stability and are receiving more attention. For instance, nanoemulsion films loaded
with curcumin polyphenols showed antimicrobial activity against Salmonella typhimurium
(S. typhimurium) and Escherichia coli (E. coli) and extended the shelf life of fresh chicken
to 17 days, which may be attributed to the fact that Gram-negative (G–) bacteria are
more sensitive to silver nanoparticles [71]. The DPPH free radical scavenging activity
of pomegranate peel nanoparticles was significantly enhanced. When applied to pork
meatballs, the POV, TBARS, and TVB-N of the product were significantly lower than those
of pomegranate peel extract without nanoparticles, as reducing the particle size to nanoscale
can increase the surface area and promote the release of phenols [72]. The bioavailability
and stability of active edible films loaded with eugenol nanoparticles were significantly
improved, extending the shelf life of chicken breast meat without adversely affecting color,
texture, and sensory qualities. The free radical scavenging effect of eugenol-containing
hydroxyl groups and gelatin-containing aromatic amino acids improved the antioxidant
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activity, while gelatinase secreted by S. aureus accelerated the release of eugenol from
the membrane at 37 ◦C [73]. Therefore, active packaging technology combines barrier
properties and bioactivity to improve the bioavailability and controlled release of NPCs.
Exploring biodegradable films based on natural biopolymers from plant by-products is the
research focus of future food packaging technology [59,74]. Considering that consumers
prefer meat-based products with fewer (or no) additives, NPCs are released through active
packaging to interact with the food matrix. This indirect addition strategy has greater
market prospects in the meat industry.
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Table 2. The application of natural phenolic compounds as antioxidants in the meat products industry.

Plant Sources Phenolic Compounds Object Processing Application Effects References

Sea buckthorn seed
polyphenols (SBS)

Prodelidin, epigallocatechin,
gallocatechin, and anthocyanidin

(epicatechin and catechin)
Fresh pork meat

Soaked in the composite (2.5% free phenol, 2.25%
chitosan, and 0.15% VE), single preservation

solution (2.5% SBS), and 2.5% tea polyphenols for
15 s. Placed in a sterilized ziplock bag and

refrigerated at 4 ◦C

The maximum scavenging rates of free
phenol and bound phenol to DPPH free

radicals were 83.14 ± 0.12% and
81.09 ± 0.19%

[69]

Date seed of cultivar Deglet Nour
(Kébili region) extract Flavonoids and anthocyanin Fresh chicken breast

C (no antioxidant), BHT (legal limit of 100
mg/kg), DSEE1 (0.156% (v/w)), DSEE2 (0.312%
(w/v)), and DSEE4 (0.625 (w/v)); 14 days at 4 ◦C

DSEE delayed the primary oxidation; the
lower TBARS value was in the

DSEE4 sample
[75]

Lepidium sativum seed mucilage and
Satureja hortensis L. essential oil Isopropyl Myristate and Carvacrol Fresh lamb meat

A control sample, mucilage-coated (LSSM),
mucilage-coated +0.5% SHEO (LSSM + 0.5% S),

mucilage-coated +1% SHEO (LSSM + 1% S), and
mucilage-coated + 1.5% SHEO (LSSM + 1.5% S),

during storage for 18 days at 4 ◦C

The lowest TBA and POV levels were for
the lamb meat coated with LSSM + 1.5% S [76]

Curcuma longa (CL), Myristica fragrans
(MF), Zingiber officinale (ZO),

Cymbopogon citratus (CC), and Thymus
vulgaris (TV), as well as their mixture

Eugenol, turmerone, ar-turmerone,
and carvacrol thymol Fresh rabbit meat

The aqueous extracts (CL, CC, MF, ZO, TV, and
mixture) were added (0.2 gm/100 gm rabbit

meat), with a negative control (NC, no extracts)
and positive control (PC, 0.2 BHT/100 gm

sample), and refrigerated at 4 ± 2 ◦C for 16 days

The lowest TBARS values were detected for
the samples treated with 0.2% of the

extracts mixture
[77]

Ethanol extract
from lotus seed peel powder

Five flavonoids: catechin,
epicatechin, rutin, phlorizin, and
quercetin; three phenolic acids:

gallic acid, ferulic acid, and
caffeic acid

Pork sausage

0.10% EEL (LD), 0.15% EEL (MD), 0.20% EEL
(HD), and 0% EEL (BC), roasted for 25 min at

80 ◦C, cooked at 80 ◦C in a water bath for 20 min,
pasteurized with hot water at 85 ◦C for 2 min, and

stored at 25 ◦C for 18 days

EEL and NaNO2 significantly reduced the
TVB-N, while the TBARS value of each EEL

group did not change significantly in the
range of 7.12–8.55 g/100 g

[78]

Grape skin flour (Vitis vinifera
Var. Tempranillo) Anthocyanins and tannins Beef burger

HT (BF + 0.01 g BHT/100 g fat), WBM0.5 (0.5 g
WBM/100 g BF), WBM1.0 (1.0 g WBM/100 g BF),

WBM1.5 (1.5 g WBM/100 g BF), and WBM2.0
(2.0 g WBM/100 g BF), stored under freezing

(−20 ± 2 ◦C) for 120 days

Used at up to 1 g/100 g to replace BHT as a
natural antioxidant in frozen beef burgers [79]

D.O.Valle del Jerte cherries (Pico negro
variety) extract - Lamb burger

C: no natural additive, CH2: 2% cherries (w/w),
CH6: 6% cherries (w/w), and CH10: 10%

cherries (w/w)

Total antioxidant activity increased with
increasing cherry content [80]

Aqueous coriander extract - Chicken patties BHT (100 ppm) and aqueous coriander extract
(1%), refrigerated for 9 days

The formation of peroxides, TBARS, total
carbonyls, and metmyoglobin was reduced [81]

Olive leaf extract (OLE), thyme leaf
extract (TLE), and their combination - Lamb patties

Untreated (control),
1% olive leaf extract (T1),

0.05% thyme leaves extract (T2),
1% OLE plus 0.05% TLE (T3), and 0.5% OLE plus

0.025% TLE (T4),
stored for 12 days at 4 ◦C or at −18 ◦C for

120 days

OLE, TLE, and their combination are
effective in retardation of

oxidative rancidity
[82]
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Table 2. Cont.

Plant Sources Phenolic Compounds Object Processing Application Effects References

Açaí extract powder

Flavonoids, such as orientin,
homoorientin, vitexin, luteolin,

chrysoeriol, quercetin,
and dihydrokaempferol

Pork patties

No antioxidant (CON), sodium erythorbate
500 mg/kg(ERY), açaí extract: 250 (AEL), 500

(AEM), and 750 mg/kg (AEH), packed in
nylon-polyethylene bags, sealed without vacuum,

and stored at 2 ± 1 ◦C for 10 days in the dark

250 mg/kg of açaí extract can be used as a
natural antioxidant to decrease

lipid oxidation
[83]

Piper chaba (Khulna, Bangladesh)
stem extracts

Catechin hydrate, vanillin, syringic
acid, caffeic acid, chlorogenic acid,

rutin hydrate, tannic acid, and
quercetin hydrate

Beef patties

Control (contained only spices), PEE (contained
spices and 0.2% ethanol extract but no BHT), and

PCP (contained spices and 0.1% BHT but no
ethanol extract), refrigerated at 4 ◦C ± 1 ◦C for

33 days.

The fat content of the PEE and PCP
degraded at a slower rate than the control,

and both PCP and PEE had increased
antioxidant capacity

[84]

Manuka (MO), rosemary (RO), and
kānuka (KO) oils - Beef paste MO 1, 2, and 3 (5%, 25%, and 40%), RO, and KO The MO addition led to a significant

reduction of lipid oxidation [85]

Olive (Olea europaea L.) leaf extract - Mutton meatball

T0 (0), T1 (0.1), T2 (0.2), and T3 (0.3%),
respectively, based on olive leaf extract

supplementation, preserved at 4 ◦C for up to
10 days

0.3% olive leaf extract is suitable to act as a
source of natural antioxidant [86]

Clove essential oil (CEO)
using nanoemulsions - Chicken meatball

No CEO (C), 10 mL nanoemulsion containing 2.5%
CEO (T1), and 15 mL nanoemulsion containing

2.5% CEO (T2), boiled in steam at 80 ◦C, packaged
in LDPE pouches, and then stored at 4 ◦C

The increase in TBARS values in the T1 and
T2 groups was significantly lower than that

in the control group
[87]

Tea polyphenol (TP), apple
polyphenol (AP), and cinnamon

polyphenol (CP)
- Dry-cured bacon

Additives (AA, TP, AP, and CP) with different
concentrations (0, 100, 300, and 500 mg/kg),

pre-heated at 200 ◦C, and roasted for 90 s without
oil, then frozen at −25 ◦C until analysis

Bacon containing 300 mg/kg AP produced
less TBARS and carbonyl contents [88]

Clove extract Eugenol, fatty acids, and flavonoids Dry-cured duck
Traditional dry-cured duck (3% salt), with the

clove treatment (3% salt and 0.1% clove extract),
stored for 180 days

The POV and acid value declined
significantly, and the shelf life extended to

6 months
[89]

Mulberry polyphenols (MP) Anthocyanins and flavonoids Pork slices
1.01 g MP per kg mixture (68 mg C3GE/kg),

without MP as a control, vacuum-packed and
stored at room temperature for 7 days

MP delays the formation of carbonyl and
S-S groups [90]

Black garlic extract (Haenafood Co.
(Seoul, Republic of Korea)) - Cooked chicken

breast

12 treatment groups containing fresh BG extract
(1:4, w/v; positive control), distilled water

(negative control), oven-dried BG, and
encapsulated BG extract

Maltodextrin-encapsulated extract
prolonged the protection of the antioxidant

BG compounds
[91]
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2.2.2. Antibacterial Effects

NPCs are antibacterial agents shown to inhibit food spoilage by microorganisms
and food-borne pathogens [23]. Previous studies also focused on the antimicrobial and
antifungal effects of NPCs on different kinds of meat and meat products (Table 3). Basil,
thyme, and tarragon had antibacterial effects against Salmonella Abony in sausage, where
the highest inhibition was caused by basil (97%), followed by tarragon (95%), with thyme
showing the smallest decrease (90.2%) [92]. Ephedra alata aqueous extract (EAE) is rich in
flavonoids and anthocyanins, and has shown antibacterial activity against E. coli ATCC
8739, S. aureus ATCC 6538, Listeria monocytogenes (L. monocytogenes) ATCC 19117, and
Salmonella enteric ATCC 14028, with minimum inhibitory concentrations (MICs) of 3.12,
1.56, 1.56, and 3.12, respectively. Mangosteen peel extract was most effective in reducing E.
coli and S. aureus [19]. However, when applied to minced beef refrigerated for two weeks, it
showed different antibacterial efficiency in situ, where the effect of 0.624% EAE (equivalent
to 4 × MIC) on the Enterobacteriaceae count was not significantly different from that of
0.156 and 0.312 EAE (p > 0.05). This may be due to the interaction of proteins or fatty acids
with ingredients in Ephedra alata, affecting the cell membrane structure and function [93,94].
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Table 3. The application of natural phenolic compounds as antibacterial agents in the meat products industry.

Plant Sources Phenolic Compounds Object Processing Application Effects References

Sea buckthorn seed polyphenols
Prodelidin, epigallocatechin,

gallocatechin, and anthocyanidin
(epicatechin and catechin)

Fresh pork meat

Soaked in the optimal composite (2.5% free phenol,
2.25% chitosan, and 0.15% VE), single preservation
solution (2.5% sea buckthorn seed free phenol), and
2.5% tea polyphenols for 15 s, placed in a sterilized

ziplock bag, and refrigerated at 4 ◦C

The antibacterial effect of free phenol on S.
aureus (30.54 ± 0.53 mm) was better than
that of bound phenol (22.18 ± 0.04 mm),

and significantly different from tea
polyphenols (34.45 ± 0.16 mm)

[69]

Ephedra alata aqueous extract (EAE) Phenolic, flavonoid, and anthocyanins Fresh beef meat
Lot 1 and lot 2 (0.01% BHT) as controls, 0.156%

(EAE1), 0.312% (EAE2), and 0.624% (EAE3), stored
at 4 ◦C for 14 days

The addition of EAE led to a significant
(p < 0.05) decrease in aerobic plate count
(APC), psychrotrophic total count (PTC),
and Enterobacteriaceae count growth rates

[94]

Date seed of cultivar Deglet Nour
(Kébili region) extract (DSEE) Phenolic, flavonoid, and anthocyanins Fresh chicken

breast

C (no antioxidant), BHT (legal limit of 100
mg/kg),DSEE1 (0.156% (v/w)), DSEE2 (0.312%
(w/v)), andDSEE4 (0.625 (w/v)); 14 days at 4 ◦C

PTC decreased significantly with the
increment of the DSEE concentration, and
the Enterobacteriaceae count (EC) of the

treated samples was the lowest

[75]

Lepidium sativum seed mucilage
(LSSM) and Satureja hortensis L.

essential oil (SHEO)
Isopropyl Myristate and Carvacrol Fresh lamb meat

A control sample, mucilage-coated (LSSM),
mucilage-coated +0.5% SHEO (LSSM + 0.5% S),

mucilage-coated +1% SHEO (LSSM + 1%S ), and
mucilage-coated + 1.5% SHEO (LSSM + 1.5% S)

during storage for 18 days at (4 ◦C)

The coating with 1.5% of S. hortensis (LSSM
+ 1.5% S) showed a noteworthy reduction in

total viable counts and was the most
efficient for the inhibition of the growth of

psychrophilic bacteria

[76]

Cistus creticus extract
(Mediterranean region of

Turkey, CCE)

Quercetin, gallic acid, rutin trihydrate,
and caffeic acid Beef sausage

Control: 0.02% ascorbic acid and 0.05% sodium
ascorbate (C), 0.05% CCE (CC1), 0.07% CCE (CC2),
and 0.1% CCE (CC3), cooked at 80 ◦C and packed in

a modified package for 11 weeks at 4 ◦C

Sausages formulated with 0.1% Cistus
extract had the lowest microbial growth

during the storage period and improved the
shelf life by 1 week

[29]

Cinnamon powder (CIN-P) - Beef burger
Four treatments (0 g CIN–P, 0.5 g CIN–P, 1 g CIN–P,

and 2 g CIN–P/100 g burger) with four storage
intervals (0, 7, 14, and 21 days)

At 100 µg/disc, the CIN–P effectively
prevented the growth of both G+ and

G– bacteria
[95]

Ginger (Zingiber officinale)
peel extracts

6-shogaol, 6-gingerol, quercetin,
zingerone, kaempferol, rutin, ferric
acid, hyperoside, chlorogenic acid,

caffeic acid, and naringenin

Beef patties Control (no antioxidants), T1: 1% GPE, T2: 2% GPE,
and T3: 3% GPE

The GPE-treated samples had a lower total
plate count throughout the 24 days

of storage
[38]

Aqueous coriander extract - Chicken patties BHT (100 ppm) and aqueous coriander extract (1%),
refrigerated for 9 days

Inhibited the growth of microorganisms,
and had the lowest total plate count

(1.3–2.4 CFU/g)
[81]

Clove essential oil (CEO)
using nanoemulsions - Chicken meatball

No CEO (C), 10 mL nanoemulsion containing 2.5%
CEO (T1), and 15 mL nanoemulsion containing 2.5%

CEO (T2), boiled in steam at 80 ◦C, packaged in
LDPE pouches, and then stored at 4 ◦C

The TVC values of the T1 and T2 samples
were lower than the control group [87]

Clove extract Eugenol, fatty acids, and flavonoids Dry-cured duck
Traditional dry-cured duck (3% salt), with the clove
treatment (3% salt and 0.1% clove extract), stored for

180 days

The total bacterial colony count declined
significantly, and the shelf life extended

from 3 months to 6 months
[89]
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3. Mechanisms
3.1. Antioxidative Mechanism
3.1.1. Lipid

The free radical mechanism (Figure 1) is the primary process of lipid oxidation that
occurs in meat and meat products, typically involving the interaction between molecule-
level oxygen and unsaturated fatty acids, and the metabolites involved in the reaction
include fatty acids as precursor compounds, hydroperoxides as the primary metabolites,
and small molecular volatile flavor compounds as the secondary metabolites [1]. Lipolysis
increases lipid oxidation, decreasing product quality and promoting flavor formation to
some extent, leading to a conflicting effect of lipolysis on lipid oxidation in meat and meat
products [96]. The release of free radicals and the action of metal ions and enzymes are
the main factors affecting lipid oxidation. NPCs can be used as natural antioxidants to
remove free radicals and reactive oxygen species, decrease the generation of oxidation
metabolites, and act as metal chelating agents (such as iron and copper ions). In terms
of enzyme inhibition, they can inhibit various enzymes, including free-radical-forming
oxidases, peroxidases, antioxidant enzymes activated by peroxidases, and superoxide
dismutase [23] (Figure 2). Direct multi-hydrogen and hydrophobic bonding can achieve
the inhibitory effect of polyphenols on proteases to affect the structure of protease and the
activity of lipid-oxidation-related enzymes [97].
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The sensitivity of meat to oxidation is more related to unsaturated fatty acids than to
total fat content; for example, polyunsaturated fatty acids in meats, such as chicken and
beef, can be oxidized to different hydroperoxides, which are further degraded into different
small-molecule compounds [98,99]. The presence of NPCs can significantly influence
the variation in fatty acid composition of inner muscle fat throughout meat preservation,
but it mostly depends on the meat matrix [57]. In addition, NPC modification of the
protein structure, especially changes in the secondary structure, affects the adsorption and
release of lipid oxidation products (Figure 2). For instance, adding mushroom polyphenols
to beef can enhance the interaction between sarcoplasmic proteins with lipid oxidation
products, thereby reducing the flavor compounds after lipid oxidation [100]. Green tea
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phenolic compounds can bind near His 64 on the myoglobin surface, blocking the potential
combination of aldehydes with this specific histidine [101].
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The antioxidant effects—single or synergistic—depend on the nature of the active
molecules. Different extracts with similar mechanisms of action, like grape seed and
pine bark extracts containing NPCs, such as polyphenolic acid, caffeic acid, catechins,
epicatechins, and resveratrol, can significantly improve antioxidation of cooked beef by
scavenging free radicals [102]. One extract may have multiple mechanisms of action.
Oleuropein and oleuropein derivatives with hydroxytyrosol as the main component in
olive processing wastewater by-products, quercetin, luteolin, 7-glucoside, and phenolic
aldehydes in olive leaves, as well as hydroxytyrosol in olive dregs, can decrease the presence
of transition metals and free radical scavenging effects [103–105]. Therefore, direct addition
of an olive leaf extract can significantly inhibit the oxidation and microbial activity in patties
and meatballs [82,86].

3.1.2. Proteins

The pathway of protein oxidation is similar to that of lipid oxidation, a free radical
chain reaction (Figure 1), but more complex and with more oxidation products. It is a
covalent modification caused by the change in the protein structure after lipid peroxidation
induced by oxidative stress active compounds (H2O2, metal catalysts such as Fe and Cu,
and reactive oxygen species). This change involves the irreversible synthesis of carbonyl
groups and the reversible removal of thiol groups [106]. Thiol groups are targets of protein
oxidation in meat, producing sulfur-containing compounds, such as disulfides and sulfenic
acid; further, the interaction between protein side chains and secondary metabolites, such
as ketones and aldehydes, also modifies MPs, affecting their functional properties [107].
Lysine oxidation products, particularly α-aminoadipate and Schiff bases, as well as the loss
of tryptophan, can be used to assess protein oxidation [108,109].
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The antioxidative mechanism of NPCs on proteins is similar to that on lipids, but not
exactly the same, since NPCs have a pro-oxidative effect on proteins (Figure 2). NPCs have
pro-oxidative activity, which indicates the complexity of the antioxidative mechanisms for
proteins. Bologna-type sausages with green tea or rosemary extract had a lower content of
TBARS and protein carbonyls. In contrast, the increase in thiol loss was inhibited by a green
tea extract. NPCs can be oxidized to form quinone compounds, which interact with protein
thiol groups, enhancing protein polymerization to produce phenol-mediated protein poly-
merization, and free radical strength increases in sausages, attributed to protein-bound
phenoxy free radicals that prevent other oxidation-induced protein modifications [56,110].
Gallic acid is considered to be an oxidant of tryptophan, and quercetin promotes the oxi-
dation of tryptophan, which promotes the oxidation of pork patties [111,112]. In addition,
rosemary had a significant effect on scavenging free radicals in a pork model system, as
well as pro-oxidant effects on thiols in the OXHydro system [107]. In general, strong
oxidation-promoting effects are only found with high-dose phenolic compounds [110].

On the other hand, interactions between NPCs and proteins may modify the protein
structure and function. For instance, in the electrostatic interaction between quercetin and
quercitrin with myofibrillar protein (MP), the hydrogen bonding between tannic acid and
gallic acid with MP enhanced the oxidative stability of proteins and significantly improved
the texture and antioxidant properties of pork meatballs [113]. Molecular docking results
also showed that hydrogen bonding, hydrophobic interaction, and electrostatic interaction
were the main molecular forces between phenolic compounds in pine needle extract (PNE)
from Cedrus deodara and salted bacon myofibrillar protein [114]. Similarly, the interaction
between chlorogenic acid and lipoxygenase is mainly manifested by hydrogen bonds,
hydrophobic interactions, and van der Waals forces [115]. The hydroxyl groups on NPCs
can serve as hydrogen donors to interact with amino acid residues in proteins, and the
number of hydroxyl groups significantly affects the biological activity of NPC–protein
complexes [116,117].

3.2. Antibacterial Mechanism

The antibacterial mechanism of NPCs mainly involves destroying cell membranes
and cell walls, inhibiting DNA synthesis, affecting enzyme activity, interfering with energy
metabolism, and the effect of free radicals on reactive oxygen species (ROS). For example,
phenolic compounds from black currant (Ribes nigrum L.) achieved bacteriostasis against
S. aureus, E. coli, and S. typhimurium by inhibiting biofilm formation and DNA synthesis,
destroying cell walls and membranes [118]. Rosmarinic acid (RosA) exhibited antibacterial
activity against E. coli, S. aureus, Salmonella, and Bacillus subtilis by destroying bacterial cells
and cell proteins and inhibiting the activity of intracellular Na/K-ATP-ase [119]. The an-
tibacterial mechanism of hawthorn extract against S. aureus includes inhibiting intracellular
enzyme activity, destroying the integrity of the cell wall and cell membrane, increasing
ROS, and changing the expression of related genes [120]. Other studies have found that the
interaction between flavonoids and isoflavonoids in red propolis extract and amino acid
residues in the casein matrix enhanced the absorption of active compounds by biofilm and
exhibited antibacterial activity against S. aureus and Pseudomonas aeruginosa [121].

However, among the antibacterial mechanisms based on the interaction between NPCs
and biomacromolecules, such as cell membrane proteins, lipid bilayers, and ATP synthase,
hydroxyl and hydrophobic interactions are the most focused on. The interactions between
polyphenols and cell membranes include hydrogen bonds and hydrophobic interactions,
in which the hydroxyl groups have the possibility to act as hydrogen bond donors or
acceptors [122]. Green tea catechins formed hydrogen bonds and hydrophobic interactions
with the target bacteria, showing antibacterial activity [20]. Dietary pomegranate phenolics
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bound to the ATP synthase in E. coli and significantly reduced the enzymatic activity, af-
fecting microbial metabolism [123]. Dietary ginger powder (DGP) interacted with residues
of the α, β, and γ subunits of ATP synthase to inhibit its antimicrobial activity [124]. The
increased hydrophobicity of modified carboxylic acid can enhance its interaction with the
hydrophobic lipid cell membrane on E. coli, improving its antibacterial activity [125]. The
antimicrobial activity of NPCs against G+ and G− bacteria is related to hydroxyl groups in
the lipid bilayer of the lipophilic outer membrane, which was confirmed in the study of six
phenolic acids against Lactobacillus rhamnosus and E. coli [126]. In addition, the interaction
between carvacrol and myoglobin led to a decrease in the antibacterial activity of carvacrol,
and hydrogen bonding was the main force in the interaction [127].

The number of hydroxyl groups and the polymerization degree in polyphenol struc-
tures appear to have a direct correlation with antimicrobial activity. For instance, the
difference in the number of hydroxyl groups in White Wormwood (Artemisia herba-alba)
extracts resulted in different antimicrobial activities against G+ (Bacillus cereus and S. aureus)
and G– (E. coli and Proteus vulgaris) microorganisms [128]. Four bioflavonoids from fruits of
the Brazilian peppertree (Schinus terebinthifolius Raddi) have diverse antimicrobial activity
due to the diverse connection modes of flavonoids and the saturation degree of the C-ring.
In particular, this shows the importance of methoxyl or hydroxyl groups in microbial
inhibition [129]. The inhibitory effect of date palm seed extracts on target bacteria may be
related to the quantity and orientation of hydroxyl compounds in the phenol ring, causing
membrane disruption and/or metal chelation by flavonoids [75].

4. Conclusions
NPCs or extracts from various sources, including roots, stems, leaves, and other

parts of fruits, vegetables, and trees, offer significant antibacterial, antioxidant, and other
bioactive properties. Using fruit peels and other agricultural waste as sources provides
market solutions to reduce application costs and aligns with green agricultural practices, as
biodegradable and bioactive packaging based on plant and processing by-product sources
is more in line with market demand. As natural antioxidants, NPCs inhibit protein and lipid
oxidation by scavenging free radicals, removing metal ions, and slowing down enzyme
activity, and high doses of active molecules can promote protein oxidation. They also act as
natural antibacterial agents by disrupting cell membranes, chelating metal ions, inducing
cell death, and chemically reacting with bacterial proteins or enzymes. In addition, the
observed interactions between NPCs with myofibrillar proteins affect the functional prop-
erties of proteins, while the interaction with biomacromolecules (membrane proteins, lipid
bilayers, ATP synthase, etc.) affects the antimicrobial activity. In particular, the presence of
hydroxyl groups and their role in hydrophobic interactions or hydrogen bonds have not
been clearly elucidated. Therefore, understanding the potential mechanisms of interactions
between NPCs and biomacromolecules, such as proteins, remains a considerable area
of research.
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