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Abstract: Obesity represents a complex interplay between genetics, nutrition, and life-
style. This study aimed to elucidate the intricate relationship between genetic variants, 
energy intake, and bioactive compounds in influencing obesity risk, particularly in low 
energy intake, to reveal how dietary intake modulates molecular-level interactions. We 
analyzed 53,117 participants stratified by obesity status and energy intake levels. Genome-
wide association studies explored the genetic variants associated with obesity risk in low-
energy- and high-energy-intake subgroups. Advanced computational approaches, includ-
ing molecular docking, k-means clustering, and uniform manifold approximation and 
projection (UMAP), were employed to analyze interactions between missense variants 
and natural compounds. Ten genetic variants were significantly associated with obesity, 
particularly in participants with low energy intake. The most prominent variants included 
brain-derived neurotrophic factor (BDNF) Val66Met polymorphism (rs6265). Molecular 
docking identified 152 bioactive compounds with strong binding affinity to BDNF 
Val66Met, including 107 compounds binding to both wild and mutant types. Citrus fruits 
and green vegetables showed selective binding to the mutant type. Antioxidant nutrient 
intake (anthocyanins, isoflavonoids, vitamins C and E, selenium) was higher in lean ver-
sus obese individuals in the high-energy-intake group. Alcohol consumption and sele-
nium intake modulated polygenic risk scores’ influence on obesity risk in high-energy-
intake individuals. Notably, citrus fruit intake correlated with lower BMI across all BDNF 
rs6265 genotypes. In conclusion, energy intake-specific genetic associations with obesity 
and identifies potential bioactive compounds for targeted interventions. The findings sug-
gest that antioxidant nutrient intake, particularly from citrus fruits, may help manage 
obesity risk, especially in individuals with specific genetic variants. 
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1. Introduction 
Obesity is a global public health crisis characterized by an imbalance in energy ho-

meostasis, where energy intake exceeds energy expenditure over an extended period [1]. 
This disturbance in the delicate balance between caloric intake and caloric utilization 
leads to the accumulation of excess body fat, which can impact an individual’s long-term 
health and well-being [1]. However, some individuals develop obesity even when their 
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energy intake is lower than their estimated energy requirement (EER), while others can 
maintain a healthy weight despite consuming more calories than their EER, suggesting 
the role of genetic factors [2]. This heterogeneity in the development of obesity highlights 
the need for a better understanding of the interplay between genetic factors, energy intake 
patterns, and the role of bioactive nutrients [3]. Previously, animal studies have demon-
strated that increased fat deposition is associated with below-normal levels of antioxi-
dants [4,5]. 

The primary approaches to obesity management have focused on negative energy 
balance through lifestyle interventions, such as dietary modifications and physical activity 
[6]. While these strategies can be effective for some individuals, they often fail to produce 
sustainable weight loss, especially in those with a strong genetic predisposition to obesity. 
The activation or inhibition of the genes linked to food intake and energy expenditure can 
promote weight loss through enhanced satiety signaling and delayed gastric emptying 
[7]. There is a growing interest in the potential of natural bioactive compounds, particu-
larly flavonoids (including anthocyanins), that act on obesity-related genes in obesity pre-
vention and management [4,8,9]. These plant-derived phytochemicals have demonstrated 
promise concerning their anti-inflammatory and antioxidant effects and role in metabolic 
regulation that may interact with obesity-associated genetic variants to mitigate the risk 
of weight gain. 

Numerous genome-wide association studies (GWASs) have identified several ge-
netic variants associated with obesity. However, most of these studies have focused on 
the direct relationship between genetic factors and obesity, primarily using body mass 
index (BMI), waist circumference, and body fat percentage [10,11]. While these studies 
have revealed interactions between polygenic risk scores (PRSs) and energy intake in in-
fluencing obesity [10,11], there remains a significant gap in understanding the genetic var-
iants specific to obesity and their interaction with energy intake. Understanding how ge-
netic factors interact with nutritional factors, especially bioactive compounds like flavo-
noids, is crucial to developing more personalized approaches to obesity prevention and 
management [12,13]. Despite the potential importance of these interactions, few studies 
have comprehensively explored the genetic variants related to obesity in the context of 
individual energy intake levels. 

To address this gap, this study aimed to investigate the complex interplay between 
genetic variants, energy intake levels, and bioactive compounds on obesity risk. We aimed 
to reveal how molecular-level interactions can be modified by dietary intake. Specifically, 
the study sought to achieve the following: (1) identifying the genetic variants associated 
with obesity risk in individuals with a lower energy intake than their EER; (2) providing 
a molecular-level understanding of how bioactive compounds interact with genetic vari-
ants; and (3) evaluating the potential of targeted nutritional interventions to modulate 
genetic obesity risk. The findings of this study have important implications for managing 
the global obesity epidemic by developing more personalized and effective approaches to 
obesity prevention and treatment. Ultimately, this knowledge can potentially improve 
public health outcomes and reduce the burden of obesity-related comorbidities. 

2. Methods 
2.1. Participants 

This study recruited Korean adults aged over 40 years from a hospital-based urban 
cohort (n = 58,630) as part of the Korean Genome and Epidemiology Study (KoGES) con-
ducted between 2004 and 2013. Participants with medical histories potentially influencing 
energy metabolism, including cancers, thyroid diseases, chronic kidney disease, and 
brain-related diseases, were systematically excluded (n = 5513). The study protocols were 
approved by the Institutional Review Board of the Korea National Institute of Health 
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(KNIH; KBP-2015-055) and Hoseo University (1041231-150811-HR-034-01), with all par-
ticipants providing written informed consent. 

2.2. Demographic, Anthropometric, and Biochemical Data Collection 

A trained technician conducted comprehensive interviews to gather detailed demo-
graphic information, including age, gender, area of residence, education, income, occupa-
tion, alcohol consumption status, smoking status, and exercise habits. Socioeconomic fac-
tors were stratified: household income was categorized into very low, low, intermediate, 
and high levels, while education status was classified as less than high school, high school, 
or college and above [14]. 

Participants underwent standardized anthropometric assessments, including meas-
urements of body weight, height, and waist circumference. Body mass index (BMI) was 
calculated by dividing the weight (kg) by squared height (m2). Advanced machine learn-
ing techniques were applied to predict skeletal muscle mass and body fat content, utiliz-
ing data from the Ansan/Ansung cohort as a training dataset [15,16]. Skeletal muscle index 
(SMI) was determined by dividing the skeletal muscle mass measured with an Inbody 
body composition analyzer (Seoul, Republic of Korea) by height (m2). Blood pressure was 
measured under controlled conditions, with participants seated and rested for over 20 
min. 

Biochemical analyses were performed on blood samples collected after a 12 h fast. 
Lipid profiles, glucose, and creatinine concentrations were measured with automated 
clinical chemistry analyzers (Hitachi 7600 Automatic Analyzer; Tokyo, Japan). White and 
RBC blood cell counts were analyzed with Hematology analyzers (DxH 900, Beckman 
Coulter; Indianapolis, IN, USA). The measurements of Hemoglobin A1c and high-sensi-
tive C-reactive protein levels were conducted using a VARIANT II Turbo (Bio-Rad Labor-
atories; Hercules, CA, USA) and specialized enzyme-linked immunosorbent assay 
(ELISA) kits, respectively. 

2.3. Obesity Definition and Grouping According to Energy Intake 

Obesity was defined using the World Health Organization’s Asian-specific criteria: a 
BMI of ≥25 kg/m2 and a waist circumference of ≥90 cm for men and ≥85 cm for women 
[10]. Participants were divided into four distinct groups based on their obesity status and 
daily energy intake about their estimated energy requirement (EER) [17]. Energy intake 
was classified as low or high, with the cutoff set at 100% of the EER. The groups were as 
follows: (1) low energy intake and lean (L-EN-Lean, n = 24,483); (2) low energy intake and 
obese (L-EN-Obs, n = 11,729); (3) high energy intake and lean (H-EN-Lean, n = 11,382); 
and (4) high energy intake and obese (H-EN-Obs, n = 5523). 

2.4. Dietary Assessment and Nutritional Analysis 

Dietary intake was assessed using a semi-quantitative food frequency questionnaire 
(SQFFQ) developed specifically for the Korean population. The SQFFQ captured details 
of the intake of 106 food items over the previous six months. Nutrient intake was calcu-
lated using CAN-Pro version 3.0 (a computer-aided nutritional analysis program, devel-
oped by the Korean Nutrition Society). The intake of nutrients, specifically antioxidants, 
and bioactive compounds was estimated. 

Factor analysis with principal component analysis (PCA) and varimax rotation iden-
tified four distinct dietary patterns. The study used eigenvalues >1.5 and factor-loading 
values ≥0.40 to determine significant dietary pattern contributions [14]. The identified pat-
terns included the Korean balanced diet (KBD), plant-based diet (PBD), Western-style diet 
(WSD), and rice-based diet (RBD), characterized by specific food group compositions. 
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2.5. Genotyping and Genetic Variant Analysis 

Genomic DNA was extracted from the whole blood samples of participants and gen-
otyped using the Korean Chip (Affymetrix, Santa Clara, CA, USA), which focuses on dis-
ease-related single nucleotide polymorphisms (SNPs). Stringent quality control measures 
were applied, ensuring a genotyping accuracy of >98%, missing call rates of <4%, and ad-
herence to the Hardy–Weinberg equilibrium (HWE, p > 0.05) with a minor allele frequency 
(MAF) >1% [10]. 

A GWAS was conducted to identify the genetic variants associated with obesity risk, 
stratified by energy intake levels. The analysis utilized multiple bioinformatics tools, in-
cluding PLINK version 2.0 for genetic variant analysis, g:Profiler for gene annotation, and 
the Human Genome Epidemiology (HuGE) Navigator for literature-based gene selection. 

2.6. Genetic Interaction and Risk Score Modeling 

A sophisticated approach was employed to identify and validate genetic interactions 
using generalized multifactor dimensionality reduction (GMDR) [10]. The analysis se-
lected potential SNP interactions through a rigorous process that included ten-fold cross-
validation and consideration of multiple covariates, such as age, gender, lifestyle, and en-
vironmental factors. 

A polygenic risk score (PRS) was developed to quantify the genetic predisposition to 
obesity. The scoring methodology involved summing the number of risk alleles across the 
selected SNPs, with participants categorized into low-, moderate-, and high-risk groups 
based on their cumulative genetic risk profile [14]. 

2.7. Collection and Screening of Bioactive Compounds from Foods with Low Binding Energy 
with Brain-Derived Neurotrophic Factor (BDNF) rs6265 

A comprehensive investigation of the BDNF gene variant rs6265 (also called 
‘Val66Met’) was conducted to focus on its missense mutation. Protein structural analysis 
was performed by obtaining the wild-type protein structure from the UniProt database. 
Using the Swiss-Protein Data Bank (PDB) Viewer (SPDBV) program, we generated a mu-
tant protein model by precisely introducing the specific amino acid change associated 
with the genetic variant. A comprehensive molecular database was assembled using the 
FooDB platform, encompassing approximately 20,000 food-derived compounds as poten-
tial ligands [18]. Molecular preparation involved sophisticated computational techniques 
implemented through MGLTools 1.5.6, a companion software for AutoDock Vina ver-
sion1.1.2. The preparation process integrated critical molecular modification steps, includ-
ing hydrogenation of molecular structures, assignment of Kolman charges to nonpolar 
hydrogen atoms, and conversion of standard PDB file formats to the Protein Data Bank 
with Partial Charge (Q) and Atom Type (T) (PDBQT) format to ensure optimal compati-
bility with molecular docking software [18]. Active site identification was performed me-
ticulously using the ProteinsPlus web platform (https://proteins.plus, accessed on 10 
March 2024), with a specific focus on the functional pocket containing the mutation site. 
Molecular docking procedures were executed systematically, screening each food-derived 
compound against both wild-type and mutated BDNF protein structures. A stringent 
binding energy threshold of less than −10 kcal/mol was applied to identify the most prom-
ising molecular interactions, with lower binding energies indicating more favorable pro-
tein–ligand interactions [18]. 

2.8. Clustering of the Natural Compounds with Lower Binding Energy 

Natural compounds with low binding energy were subjected to advanced clustering 
techniques to explore their structural and functional relationships. We employed two 
complementary clustering approaches: K-means and uniform manifold approximation 
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and projection (UMAP) [19]. The optimal number of clusters was determined using the 
elbow method and silhouette score analysis. To identify the most representative natural 
compounds (NCs) within each cluster, we utilized the maximum common substructure 
(MCS) method, which allowed us to extract the most characteristic molecular features 
from each identified cluster [19]. 

In the final analysis, the UMAP-learn package (version 0.2.0) for advanced data vis-
ualization and pattern recognition was utilized. The bioactivity data were carefully nor-
malized to ensure equal feature contribution, with the analysis configured to capture local 
data structures while maintaining global relationships [19]. Specific parameters included 
15 nearest neighbors, a minimum distance of 0.1, and projection into a two-dimensional 
space. Euclidean distance metrics were employed to calculate inter-point distances, ena-
bling a comprehensive visualization that revealed clusters and patterns among natural 
compounds based on their binding characteristics with wild-type and mutated BDNF pro-
teins. 

2.9. Statistical Analysis 

Statistical analyses were performed using SAS software (version 9.3; SAS Institute, 
Cary, NC, USA). Two distinct group classifications were utilized to investigate the study 
objectives comprehensively: (1) four groups stratified by energy intake (low and high, 
based on EER) and obesity status (lean and obese) and (2) three groups categorized by 
polygenic risk scores (PRSs: low, medium, and high). For the four-group analysis based 
on energy intake and obesity status, categorical variables such as gender, education level, 
and smoking status were assessed using frequency distribution analysis, with statistical 
significance evaluated via chi-squared tests. Continuous variables (e.g., age, biochemical 
markers) were presented as means with standard deviations, stratified by the four groups. 
Group differences were analyzed using a two-way analysis of variance (ANOVA), with 
covariate adjustments to account for potential confounding factors. Post hoc multiple 
comparisons were performed using Tukey’s test to identify specific intergroup differ-
ences. 

The three PRS groups were analyzed using one-way ANOVA to examine differences 
in continuous variables across low-, medium-, and high-PRS categories. Post hoc pairwise 
comparisons between PRS groups were also conducted using Tukey’s test. 

Logistic regression models were employed to assess the association between PRS and 
obesity risk, with stratification by energy intake. The first model was adjusted for demo-
graphic covariates, including gender, age, residential area, education level, and income. 
The second model further included lifestyle factors such as smoking status, alcohol con-
sumption, daily energy intake, exercise habits, and medication use for metabolic diseases. 

A multivariate interaction model was constructed to evaluate potential interactions 
between PRS and antioxidant nutrient intake, with participants dichotomized into high- 
and low-intake groups based on predefined classification criteria. Comprehensive covari-
ate adjustments were applied. Adjusted odds ratios (ORs) and 95% confidence intervals 
(CIs) were calculated to elucidate the relationships between genetic risk, nutrient intake, 
and obesity outcomes. 

3. Results 
3.1. Baseline Characteristics of the Participants 

BMI was significantly higher in the obesity groups (L-EN-Obs and H-EN-Obs; 27.0–
27.2 kg/m2) than in the lean groups (L-EN-Lean and H-EN-Lean; 22.4 kg/m2), regardless 
of energy intake. Energy intake was significantly higher in the H-EN-Lean and H-EN-Obs 
groups (128% and 130% of EER, respectively) than in the L-EN-Lean and L-EN-Obs 
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groups (80.3% and 81.6% of the EER, respectively). Participants in the low-energy-intake 
groups were younger (52.2 and 52.9 years for lean and obese groups) than those in the 
high-energy-intake groups (56.2 and 57.3 years) (Table 1). The L-EN-Lean group had the 
highest proportion of men (52.2%), while educational attainment and income levels were 
consistently higher in the lean groups than in the obese groups, regardless of energy in-
take. Smoking prevalence was higher in the obese groups than in the lean groups, with 
4.61% of participants in the L-EN-Obs group and 2.63% in the H-EN-Obs group. Alcohol 
consumption was greatest in the H-EN-Obs group, with an average intake of 132 g/week, 
followed by the H-EN-Lean group (123 g/week), and the lowest in the L-EN-Lean group 
(101 g/week). Exercise levels were similar between the L-EN-Lean and L-EN-Obs groups 
(53.4%) but were significantly lower in the H-EN-Obs group than in the H-EN-Lean group 
(Table 1). 

Table 1. General characteristics and body composition of the participants according to energy intake 
and obesity status. 

 L-EN-Lean  
(n = 24,483) 

L-EN-Obs  
(n = 11,729) 

H-EN-Lean  
(n = 11,382) 

H-EN-Obs  
(n = 5523) 

BMI (kg/m2) 22.4 ± 0.01 c 27 ± 0.02 b 22.4 ± 0.02 c 27.2 ± 0.03 a**+++## 
Energy intake (EER %) 80.3 ± 0.13 d 81.6 ± 0.19 c 128.4 ± 0.19 b 130.2 ± 0.28 a***+++# 
Age (years) 52.2 ± 0.05 d 52.9 ± 0.07 c 56.2 ± 0.08 b 57.3 ± 0.11 a*** 
Gender (male %) 9599 (39.2) 6117 (52.2) 1930 (17.0) 1510 (27.3) *** 
Education (N, %) 
<High school  
High school 
College and over  

 
3171 (18.1) 

 
2065 (24.0) 

 
1294 (15.7) 

 
1036 (24.2) $$$ 

12,978 (74.1) 5955 (69.3) 6362 (77.0) 2942 (69.3)  
1361 (7.77) 576 (6.7) 611 (7.39) 270 (6.36) 

Monthly income (N, %) 
≤USD 2000 

 
2416 (10.4) 

 
1312 (11.9) 

 
847 (7.89) 

 
574 (11.2) $$$ 

USD 2000–4000 9882 (42.5) 4749 (43.0) 4864 (45.3) 2333 (44.7) 
>USD 4000 10,967(47.1) 4975 (45.1) 5018 (46.8) 2309 (44.3) 
Non-Smoking (N, %) 22,290 (91.1) 10,338 (88.2) 10,940 (96.2) 5169 (93.6) $$$ 
Former smoking 1224 (5.0) 847 (7.22) 248 (2.18) 206 (3.73) 
Current smoking 964 (3.94) 541 (4.61) 188 (1.65) 145 (2.63) 
Alcohol (g/week) 101 ± 2.16 c 123 ± 3 b 104 ± 3.48 c 132 ± 4.6 a+++ 
Exercise (Yes: N, %) 13,042 (53.4) 6254 (53.4) 6552 (57.7) 3013 (54.7) $$$ 
Values represent adjusted means ± standard errors or number (N) and percentage. L-EN-Lean, en-
ergy intake lower than estimated energy requirement and lean; L-EN-Obe, low energy intake and 
obese; H-EN-Lean, high energy intake and lean; H-EN-Obe, high energy intake and obese. EER, 
estimated energy requirement. The covariates included age, gender, energy intake, residence area, 
education, metabolic syndrome, smoking, alcohol intake, fat intake, physical activity, and any med-
ication for metabolic diseases. An independent variable was eliminated from the covariates. +++ Sig-
nificant difference with obesity by two-way ANOVA at p < 0.001. ** Significant difference with en-
ergy intake by two-way ANOVA at p < 0.01 and *** at p < 0.001. # Significant interaction between 
energy intake and obesity by two-way ANOVA at p < 0.05 and ## at p < 0.01. a–d Different superscript 
letters indicated significant differences among the groups by Tukey test at p < 0.05. $$$ Significantly 
different among four groups by chi-square test at p < 0.05. 

3.2. Anthropometric Association 

Body fat percentage was markedly higher in the obesity groups (32.1–32.3%) than in 
the lean groups (26.6%) (Table 2). Waist and hip circumferences demonstrated notable 
differences between the lean and obesity groups, while the variations between low- and 
high-energy-intake subgroups were minimal. After adjusting for covariates (covariate 2), 
waist circumference, fat mass, and fat mass index were significantly associated with obe-
sity in both low and high-energy-intake subgroups. Specifically, waist circumference was 
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17.5- and 18.6-fold higher in the L-EN-Obs and H-EN-Obs groups than the L-EN-Lean 
group, respectively, while fat mass was 4.558- and 5.24-fold higher in the same groups 
(Figure 1A). In contrast, SMI exhibited an inverse relationship with fat mass, showing sig-
nificantly lower values in the L-EN-Obs and H-EN-Obs groups than the L-EN-Lean 
group, with reductions of 0.137- and 0.152-fold, respectively, after adjusting for covariate 
2. No significant associations were observed for waist circumference, fat mass, or SMI in 
the H-EN-Lean group relative to the L-EN-Lean group (Figure 1A). These results under-
scored the critical role of obesity status in driving anthropometric differences over energy 
intake variations. 

Table 2. Body composition of the participants according to energy intake and obesity status. 

 
L-EN-Lean  
(n = 24,483) 

L-EN-Obs  
(n = 11,729) 

H-EN-Lean  
(n = 11,382) 

H-EN-Obs  
(n = 5523) 

Skeletal muscle mass index (kg/m2) 7.16 ± 0.004 b 6.67 ± 0.005 a 7.16 ± 0.006 b 6.63 ± 0.008 a+++# 
Fat mass index (kg/m2) 10.4 ± 0.01 c 12.5 ± 0.01 b 10.4 ± 0.01 c 12.7 ± 0.02 a*+++# 
Body fat (%) 26.6 ± 0.02 c 32.1 ± 0.02 b 26.6 ± 0.03 c 32.3 ± 0.04 a**+++## 
Waist circumferences (cm) 77.5 ± 0.04 c 87.4 ± 0.06 b 77.6 ± 0.07 c 87.8 ± 0.09 a**+++# 
Hip circumferences (cm) 91.9 ± 0.03 c 98.5 ± 0.05 b 92 ± 0.05 c 98.8 ± 0.07 a**+++## 
WHR 0.84 ± 0.0004 0.89 ± 0.0005 0.844 ± 0.0001 0.89 ± 0.0008 +++ 

Values represent adjusted means ± standard errors. L-EN-Lean, energy intake lower than estimated 
energy requirement and lean; L-EN-Obe, low energy intake and obese; H-EN-Lean, high energy 
intake and lean; H-EN-Obe, high energy intake and obese. WHR, the ratio of waist circumference 
and hip circumference. The covariates included age, gender, energy intake, residence area, body 
mass index, education, metabolic syndrome, smoking, alcohol intake, fat intake, physical activity, 
and any medication for metabolic diseases. An independent variable was eliminated from the co-
variates. +++ Significant difference with obesity by two-way ANOVA at p < 0.001. * Significant differ-
ence with energy intake by two-way ANOVA at p < 0.05 and ** at p < 0.01. # Significant interaction 
between energy intake and obesity by two-way ANOVA at p < 0.05 and ## at p < 0.01. a–c Different 
superscript letters indicated significant differences among the groups by Tukey test at p < 0.05. 

 
(A) (B) 
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Figure 1. (A) Association of body composition in obese and lean individuals based on energy intake. 
(B) Association of metabolic syndrome (MetS) and its components in lean and obese individuals 
according to energy intake. L-EN-Lean, energy intake lower than estimated energy requirement and 
lean; L-EN-Obe, low energy intake and obese; H-EN-Lean, high energy intake and lean; H-EN-Obe, 
high energy intake and obese. Cutoffs: waist circumference > 90 cm for men and > 85 cm for women; 
ratio of waist circumference and hip circumference (WHR) > 0.9 for men and > 0.85 for women; 
skeletal muscle index (SMI) < 0.789 for men and < 0.512 for women; fat mass; fat mass 25% for men 
and 35% for women; serum triglyceride (TG) >150 mg/dL; serum HDL < 40 mg/dL for men and HDL 
< 50 mg/dL for women; serum LDL > 160 mg/dL; BP, either of SBP > 140 mmHg or DBP > 90 mmHg; 
insulin resistance (IR) determined by HOMA-IR > 2.5. OR, odds ratio; CI, confidence intervals; Co-
variates: Residence area, gender, age, and education for covariate set 1 and the covariates 1 plus 
energy intake, alcohol intake, physical activity, smoking status, and medication for metabolic dis-
eases for covariate 2. 

3.3. Risk of Metabolic Syndrome 

The L-EN-Obs (OR = 4.94) and H-EN-Obs (OR = 4.92) groups exhibited significantly 
higher adjusted ORs for MetS than the L-EN-Lean group. In contrast, the OR for the H-
EN-Lean group did not significantly differ from that of the L-EN-Lean group (Figure 1B). 
These findings suggest that obesity, irrespective of energy intake levels, was a stronger 
determinant of MetS risk than energy intake alone. Further analysis revealed that the L-
EN-Obs and H-EN-Obs groups were significantly associated with all MetS components 
compared to the L-EN-Lean group. These included waist circumference (17.0- and 18.6-
fold higher, respectively), serum glucose (1.47- and 1.41-fold higher, respectively), hypo-
HDL cholesterol (1.76- and 1.68-fold higher, respectively), LDL cholesterol (1.33- and 1.41- 
fold higher, respectively), triglyceride concentrations (1.91- and 2.01-fold higher, respec-
tively), insulin resistance (3.49- and 3.81-fold higher, respectively), and blood pressure 
(2.11- and 2.0-fold higher, respectively) (Figure 1B). Notably, there were no significant 
associations between the H-EN-Lean and L-EN-Lean groups for MetS or its components. 

3.4. Intake of Antioxidant Nutrients and Bioactive Compounds 

Energy intake was significantly higher in the H-EN-Lean and H-EN-Obs groups 
(80.3% and 81.6% of the EER, respectively) than in the L-EN-Lean and L-EN-Obs groups 
(128% and 130% of EER, respectively) (Table 3). Obese participants had slightly higher 
energy intake than their lean counterparts within both the low- and high-energy-intake 
groups. Interestingly, obesity incidence was lower among individuals with a higher intake 
of plant-based diets (PBDs), regardless of energy intake levels (Table 3). The intake of an-
tioxidant nutrients, including vitamins C, E, and D, and selenium, was significantly higher 
in the obese groups than the lean groups, particularly in the comparison between the H-
EN-Lean and H-EN-Obs groups. Regarding bioactive compounds, the intake of total an-
thocyanins (a sum of cyanidin, delphinidin, malvidin, pelargonidin, peonidin, and pe-
tunidin), especially cyanidin, was higher in the lean groups than in the obese groups, with 
the H-EN-Lean group consuming more than the L-EN-Obs group (Table 3). Conversely, 
the intake of flavonoids (a sum of quercetin, luteolin, kaempferol, and apigenin) was sig-
nificantly higher in the L-EN-Obs group than in the L-EN-Lean group. Isoflavonoid intake 
varied according to energy intake levels but showed no significant differences between 
obese and lean groups (Table 3). 

  



Antioxidants 2025, 14, 170 9 of 25 
 

 

Table 3. Participants’ nutrient intake according to energy intake and obesity status. 

 
L-EN-Lean  
(n = 24,483) 

L-EN-Obs  
(n = 11,729) 

H-EN-Lean  
(n = 11,382) 

H-EN-Obs  
(n = 5523) 

Energy intake (EER %) 80.3 ± 0.13 d 81.6 ± 0.19 c 128.4 ± 0.19 b 130.2 ± 0.28 a***+++# 
Plant-based diet (Yes, N, %) 5892 (24.1) 2303 (19.6) 6817 (59.9) 2857 (51.7) $$$ 
Dietary fiber (g/day) 14.6 ± 0.06 b 14.8 ± 0.08 ab 14.7 ± 0.09 b 15.1 ± 0.12 a*++ 
Vitamin C (mg/day) 103 ± 0.39 c 104 ± 0.54 c 112 ± 0.62 a 108 ± 0.82 b***++### 
Vitamin D (μg/day) 6.33 ± 0.034 c 6.25 ± 0.048 c 6.73 ± 0.055 a 6.53 ± 0.073 b***++ 
Vitamin E (mg/day) 8.02 ± 0.054 a 7.89 ± 0.075 ab 7.84 ± 0.087 ab 7.58 ± 0.115 b*# 
Selenium (μg/day) 15.1 ± 0.15 a 15.1 ± 0.2 a 13.5 ± 0.24 b 13.4 ± 0.31 b*** 
Cyanidin (μg/day) 21.8 ± 0.17 c 21.4 ± 0.23 c 24.9 ± 0.27 a 22.8 ± 0.35 b*** 
DII −19.8 ± 0.1 −20 ± 0.13 −20.1 ± 0.15 −20.2 ± 0.2 
Total anthocyanins (μg/day) 24.9 ± 0.2 c 24.8 ± 0.28 c 43.1 ± 0.28 a 41.0 ± 0.40 b***+++### 
Flavonoids (μg/day) 8.54 ± 0.05 c 8.82 ± 0.07 a 14.6 ± 0.08 a 14.7 ± 0.11 a***+ 
Isoflavonoids (μg/day) 6.70 ± 0.04 b 6.88 ± 0.07 b 11.6 ± 0.07 a 11.5 ± 0.09 b*** 

Values represent adjusted means and standard errors after adjusting for covariates of age, gender, 
energy intake, residence area, education, smoking, alcohol intake, and physical activity. An inde-
pendent variable was eliminated from the covariates. L-EN-Lean, energy intake lower than esti-
mated energy requirement and lean; L-EN-Obe, low energy intake and obese; H-EN-Lean, high en-
ergy intake and lean; H-EN-Obe, high energy intake and obese. EER, estimated energy requirement; 
DII, dietary inflammatory index; flavonoids = quercetin + luteolin+ kaempferol + apigenin; total an-
thocyanins = cyanidin + delphinidin + malvidin + pelargonidin + peonidin + petunidin; isoflavonoids 
= genistein + daidzein + genistein. ++ Significant difference with obesity by two-way ANOVA at p < 
0.01 and +++ at p < 0.01. * Significant difference with energy intake by two-way ANOVA at p < 0.05 
and *** at p < 0.001 . # Significant interaction between energy intake and obesity by two-way ANOVA 
at p < 0.05 and ### at p < 0.001. a–d Different letters indicated significant differences among the groups 
by Tukey test at p < 0.05. $$$ Significantly different among four groups by chi-square test at p < 0.05. 

3.5. Genetic Impact 

The statistically significant association of genetic variants with obesity in participants 
with low energy intake is shown in a Manhattan plot. Significant genetic variants existed 
in chromosomes 1, 11, 16, and 18 (Figure S1A). A Q-Q plot (Figure S1B) shows the quantile 
distribution of the log of observed p values versus the log of expected p values. The 
lambda value was 1.134. However, there were no genetic variants significantly associated 
with high energy intake participants (p < 5 × 10−8). Ten genetic variants with the interac-
tions are presented in Table 4. The genetic variants significantly associated with obesity 
and low energy intake included SEC16 homolog B, endoplasmic reticulum export factor 
(SEC16B rs506589), brain-derived neurotrophic factor (BDNF rs6265), FTO (rs1421085), 
gastric inhibitory polypeptide receptor (GIPR rs1444988703), and BDNF Antisense RNA 
(BDNF-AS rs925947) (p < 5 × 10−8). To make the PRS model satisfy the criteria, adenylate 
cyclase 3 (ADCY3 rs1965122), polybromo 1(PBRM1 rs73078824), glutaminyl-peptide cy-
clotransferase like (QPCTL rs9636135), symplekin scaffold protein (SYMPK rs10408067), 
and divergent-paired related homeobox (DPRX rs796090051) were added in the PRS 
model at liberal significance (P5 × 10−7) (Table 4). They met the conditions of MAF > 1% 
and p-value for HWE > 0.05. 
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Table 4. Characteristics of the ten genetic variants used for the generalized multifactor dimension-
ality reduction analysis. 

CHR SNP Gene Names BP A1 A2 OR SE p MAF HWE_P Location 
1 rs506589 SEC16B 177894287 C T 1.131 0.01786 5.56×10−12 0.2845 0.5099 Intron 
2 rs1965122 ADCY3 25052450 T C 1.085 0.01634 3.65×10−7 0.4477 0.5591 Intron 
3 rs73078824 PBRM1 52624387 T G 0.9055 0.01989 4.07×10−7 0.2188 0.3341 Nmd transcript 

11 rs925947 BDNF-AS 27667367 T G 0.9128 0.01637 2.47×10−8 0.457 0.2032 Intron  
11 rs6265 BDNF 27679916 T C 0.9121 0.01637 1.87×10−8 0.4588 0.1481 Missense  
16 rs1421085 FTO 53800954 C T 1.166 0.02412 2.07×10−10 0.1245 0.4604 Nmd transcript 
19 rs1444988703 GIPR 46175046 A T 1.109 0.01649 3.76×10−10 0.4066 0.4414 Nmd transcript 
19 rs9636135 QPCTL 46200776 T C 0.9195 0.01653 3.79×10−7 0.4197 0.5474 Nmd transcript 
19 rs10408067 SYMPK 46363536 G A 0.9216 0.0165 4.56×10−7 0.4193 0.3214 Intron 
19 rs796090051 DPRX 54111540 A C 0.9015 0.02041 3.74×10−7 0.2042 0.585 Intron 

CHR, chromosome; SNP, single-nucleotide polymorphism; BP, position of SNP in chromosome. A1, 
minor allele; A2, major allele; MAF, minor allele frequency; HWE_P, p value for Hardy–Weinberg 
equilibrium. OR, odds ratios for serum LDL concentration in the reference of the major allele; p, p 
value for OR adjusted for residence area, gender, age, energy intake, alcohol intake, activity, smoke, 
education, and medication for metabolic diseases. 

The best models with interactions between the genetic variants influencing obesity 
with low energy intake were selected when satisfying p-value < 0.05 for the sign test of 
testing balanced accuracy (TEBA) and cross-validation consistency (CVC) 10/10. The mod-
els to meet the criteria included 9- and 10-SNPs (Supplementary Table S1). The PRS with 
9 and 10 genetic variants showed similar patterns, but the PRS with 9 genetic variants 
showed greater ORs for BMI (1.59), fat mass (1.30), and waist circumferences (1.38) com-
pared to those with 10 genetic variants. The SMI had an inverse association with the PRS 
with 9 and 10 genetic variants (Figure 2A). The PRS with nine SNPs showed that BMI, 
waist and hip circumferences, and WHR were significantly higher in the high-PRS group 
than in the low-PRS groups. In contrast, the SMI was lower in the high-PRS group than in 
the low-PRS group. Among MetS and its components, MetS incidence, systolic blood pres-
sure (SBP), and diastolic blood pressure (DBP) were higher in the high-PRS group than in 
the low-PRS group. 

Since BDNF rs6265 was a missense mutation, it was used for further analysis to find 
bioactive compounds. BMI, waist circumference, and body fat mass were higher in the 
risk allele group than in the non-risk allele group. On the other hand, SMI was lower in 
the risk allele group than in the non-risk allele group (Table 5). The BDNF rs6265 non-risk 
allele was positively associated with BMI, waist circumference, and body fat mass; heter-
ozygotes and minor alleles were positively associated and SMI was inversely associated 
with obesity (Figure 2B). 
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(A) (B) 

Figure 2. (A) Association of body composition with genetic variants and their polygenic risk score 
(PRS) with 9 genetic variants. (B) Association of body composition with brain-derived neurotrophic 
factor (BDNF) rs6265 genetic variants. OR, odds ratio; CI, confidence intervals; covariates: residence 
area, gender, age, and education for covariate set 1 and the covariates 1 plus energy intake, alcohol 
intake, physical activity, smoke, and medication for metabolic diseases for covariate 2. The cutoffs 
of BMI, SMI, fat mass, and waist circumferences were used shown in the Figure 1 legend.  

Table 5. (A) Body composition and metabolic syndrome (MetS) and its components according to 
the PRS with 9 genetic variants linked to obesity risk in low energy intake. (B) Body composition 
and metabolic syndrome (MetS) and its components according to the brain-derived neurotrophic 
factor (BDNF) rs6265 genetic variants linked to obesity risk in low energy intake. 

(A) 
 Low PRS (n = 13,638) Medium PRS (n = 17,698) High PRS (n = 4876) 
BMI (kg/m2) 23.6 ± 0.02 c 24 ± 0.02 b 24.3 ± 0.04 a*** 
Skeletal muscle mass index (kg/m2) 7.03 ± 0.005 a 7 ± 0.004 b 6.96 ± 0.009 c*** 
Body fat (%) 27.3 ± 0.03 c 27.7 ± 0.03 b 28.1 ± 0.05 a*** 
Waist circumferences (cm) 80.6 ± 0.07 c 81.3 ± 0.06 b 82 ± 0.11 a*** 
Hip circumferences (cm) 93.8 ± 0.05 c 94.2 ± 0.04 b 94.7 ± 0.08 a*** 
WHR 0.859 ± 0.0005 c 0.863 ± 0.0004 b 0.865 ± 0.0008 a*** 
Serum triglyceride (mg/dL) 127.1 ± 0.76 128.1 ± 0.67 129.7 ± 1.28 
Serum glucose (mg/dL) 95.8 ± 0.18 95.8 ± 0.16 96.3 ± 0.3 
Serum HDL (mg/dL)  53.2 ± 0.11 53 ± 0.1 53.1 ± 0.18 
SBP (mmHg) 122.5 ± 0.12 b 123 ± 0.11 a 123.4 ± 0.21 a** 
DBP (mmHg) 75.9 ± 0.08 b 76.2 ± 0.07 a 76.4 ± 0.14 a** 
MetS (Yes, N, %) 1822 (13.4) 2622 (14.8) 774 (15.9)*** 

(B) 
 Risk Allele (n = 10,579) Heterozygotes (n = 18,066) Non-Risk Allele (n = 7567) 
Body mass index (kg/m2) 24.1 ± 0.03 a 23.9 ± 0.02 b 23.7 ± 0.03 c*** 
Skeletal muscle mass index (kg/m2) 6.99 ± 0.006 b 7 ± 0.004 ab 7.02 ± 0.007 a* 
Body fat (%) 27.8 ± 0.04 a 27.6 ± 0.03 b 27.4 ± 0.04 c*** 
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Waist circumferences (cm) 81.4 ± 0.08 a 81.1 ± 0.06 b 80.8 ± 0.09 c*** 
Hip circumferences (cm) 94.3 ± 0.06 a 94.1 ± 0.04 b 93.9 ± 0.07 c*** 
WHR 0.86 ± 0.001 0.86 ± 0 0.86 ± 0.001 
Serum triglyceride (mg/dL) 128 ± 0.87 128 ± 0.66 127.7 ± 1.03 
Serum glucose (mg/dL) 96.1 ± 0.2 95.7 ± 0.16 95.7 ± 0.24 
Serum HDL (mg/dL)  53 ± 0.12 53.1 ± 0.1 53.1 ± 0.15 
Serum LDL (mg/dL) 118.9 ± 0.27 118.9 ± 0.20 118.5 ± 0.32 
SBP (mmHg) 122.9 ± 0.14 122.9 ± 0.11 122.7 ± 0.17 
DBP (mmHg) 76.1 ± 0.09 76.1 ± 0.07 76 ± 0.11 
MetS (Yes, N, %) 1559 (14.7) 2616 (14.5) 1043 (13.9) 

Values represent adjusted means ± standard errors. The covariates included age, gender, energy 
intake, residence area, education, smoking, alcohol intake, fat intake, physical activity, and any med-
ication for metabolic diseases. An independent variable was eliminated from the covariates. PRS, 
polygenic risk score; WHR, ratio of waist circumference and hip circumference; HDL, high-density 
lipoprotein; SBP, systolic blood pressure; DBP, diastolic blood pressure; Low-PRS 0–8, Medium-PRS 
9–12 high-PRS ≥ 13. * Significant difference among the PRS in A or BDNF rs6265 alleles in B by one-
way ANOVA at p < 0.05, ** at p < 0.01, and *** at p < 0.001. a–c Different letters indicated significant 
differences among the groups by Tukey test at p < 0.05. 

3.6. Interaction of BNDF Val66Met Polymorphisms with Food Intake Influencing Obesity 

Consistent with the binding energy analysis of BNDF Val66Met WT and MT with 
bioactive compounds, BMI was lower in the high-fruit-intake group compared to the low-
fruit-intake group (<2.5 serving/day, including fruit juice) (p < 0.01; Figure 3A), regardless 
of BDNF Val66Met, after adjusting for age, gender, education, income, alcohol intake, 
smoking status, and exercise. Citrus fruit intake with a cutoff of 1 serving/day showed a 
trend similar to fruit intake (Figure 3B). BMI did not differ with green vegetable intake in 
both BDNF Val66Met WT and MT. However, BMI and green vegetable intake interacted 
with BDNF Val66Met WT and MT (Figure 3C). In high-green-vegetable-intake (≥1 serv-
ing/day) subjects, BMI was similar among the BNDF alleles, while BMI was lower in sub-
jects with the non-risk allele than in those with the risk allele in the low-vegetable-intake 
group (Figure 3C). 

 
(A) (B) 

 

 

(C)  
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Figure 3. Body mass index interacting brain-derived neurotrophic factor (BDNF) rs6265 with anti-
oxidants in participants with low energy intake. (A) Fruit intake (cutoff: 2.5 servings/day, including 
fruit juice). (B) Citrus fruits (cutoff: 1 serving/day). (C) Green vegetables (green_veg; cutoff: 1 serv-
ing/day). * Significantly different by fruit intake at p < 0.05. ** Significant difference by citrus fruit 
intake at p < 0.01. ### Significantly different by BDNF rs6265 alleles. $ Significant interaction between 
green vegetable (veg) intake and BDNF rs6265 at p < 0.05. a–c Different letters on the bar indicated 
significant differences among the groups by Tukey test at p < 0.05. 

3.7. Bioactive Compounds with Low Binding Energy with Wild-Type (WT) and Mutant-Type 
(MT) BDNF Val66Met (rs6265) 

We evaluated the binding energies of the WT and MT polymorphisms of BDNF 
Val66Met with 197 bioactive compounds to determine their potential for modulating 
BDNF activity. Among the tested compounds, 107 showed strong binding (<−10 kcal/mol) 
to both wild-type and mutant variants, while 45 compounds bound selectively to WT and 
another 45 to MT. Each selected compound was characterized by unique structural fea-
tures, offering insights into the molecular basis of their interaction with BDNF. The bioac-
tive compounds with binding energy <−10 kcal/mol were categorized into three groups: 
those binding to both wild-type (WT) and mutant-type (MT), WT only, or MT only. Table 
6 and Figure 4 present the UMAP clustering with MCS analysis results for each group. In 
the NC lowering binding energy with both WT and MT (Figure 4 A, B), cluster 1 (binding 
energy <−11 kcal/mol) comprised bioactive compounds including valolaginic acid, 1-O-
galloylpedunculagin, potentillin, casuarinin, and pipercyclobutanamide B (Figure 4A). 
These compounds were predominantly found in guava, pomegranate, herbs, spices, and 
fruits. The specific chemical structures of these NCs, as revealed by the MCS analysis, 
suggest unique molecular interactions with the BDNF protein (Table 6 and Figure 4A). 
The profile was expanded in cluster 2 to include trisjuglone, casuarinin, stachyurin, aster-
lingulatoside D, fagopyrin, and others, with additional sources such as common buck-
wheat, common walnut, and nuts (Table 6 and Figure 4A). Cluster 3 mainly included com-
pounds with a binding energy of −10.1 to −10.2 kcal/mol, such as kaempferol 3-O-rham-
nosyl-rhamnosyl-glucoside, punicafolin, torvoside D, cyanidin 3-O-(2″-xylosyl-6″-(6‴-p-
coumaroyl-glucosyl)-galactoside), and others. Cluster 4 included compounds with a bind-
ing energy of −10 kcal/mol, such as luteolin 7-O-diglucuronide, ophiopogonin C′, theafla-
vin 3,3′-gallate, anigorootin, and others (Table 6 and Figure 4A). 1-O-galloylpedunculagin 
had 8 hydrogens around the BDNF WT and MT (Figure 4B). 
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Figure 4. Uniform manifold approximation and projection (UMAP) analysis of natural compounds 
with a binding energy of lower than −10 kcal/mol to brain-derived neurotrophic factor (BDNF) 
Val66 Met (rs 6265) and maximum common substructures of each cluster. (A) Natural compounds 
(NCs) lower than −10 kcal/mol in both wild-type (WT) and mutated type (MT) of BDNF Val66Met. 
(B) Diagrammatic representation and 2D depiction of 1-O-galloylpedunculagin (ball and stick 
model) binding with WT (upper) and MT proteins (lower) of BDNF Val66Met. (C) NCs lower than 
−10 kcal/mol in the WT of BDNF Val66. (D) Diagrammatic representation and 2D depiction of epi-
catechin-(4beta->8)-epicatechin-(4beta->6)-catechin binding with WT (upper) and MT proteins 
(lower) of BDNF Val66Met. (E) NCs lower than −10 kcal/mol in the MT of BDNF 66Met. (F) Dia-
grammatic representation and 2D depiction of chakaflavonoside A binding with WT (upper) and 
MT (lower) proteins of BDNF Val66Met.  
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Table 6. Bioactive compounds to lower binding energy with BDNF Val66Met WT and MT protein. 

Name WT_BE 
(kcal/mol) 

MT_BE 
(kcal/mol) 

Type for 
Low BE 

Cluster by
UMP Food Source 

Valolaginic acid −11.6 −11.6 Common C−3 guava 
Torvoside C −11.4 −10.3 Common C−3 fruits 
Casuariin −11.3 −11.3 Common C−3 cloves, pomegranate 
Pipercyclobutanamide B −11.3 −11.3 Common C−3 herbs, spices 
Putranjivain A −11.1 −11 Common C−0 fruits 
Trisjuglone −10.7 −10.7 Common C−0 common walnut, nuts 

Casuarinin −10.7 −10.7 Common C−0 
Malabar plum, feijoa, herbs, 
spices, pomegranate 

Stachyurin −10.7 −10.7 Common C−0 guava 
Asterlingulatoside D −10.7 −10.6 Common C−0 Aster lingulatus 

Fagopyrin −10.6 −10.3 Common C−0 
common buckwheat, cereals, 
cereal products 

Kaempferol 3-O-rhamnosyl-rhamnosyl-glucoside −10.1 −10.1 Common C−1 
rosemary, common thyme, 
capers, common sage 

Torvoside D −10.1 −10.1 Common C−1 fruits 
Punicafolin −10.1 −10.1 Common C−1 pomegranate 
Luteolin 7-O-diglucuronide −10 −10 Common C−2 common verbena, lemon verbena 
Ophiopogonin C′ −10 −10 Common C−2 onion family vegetables 
(3b,16a)-Dihydroxy-12-oleanen-28-oic acid 3-
[glucosyl-(1->2)-arabinoside] 28-[rhamnosyl-(1->4)-
glucosyl-(1->4)-glucosyl] ester 

−10.9 −8.5 WT only C-1 fruits 

(Cyanidin 3-O-beta-glucoside)(kaempferol 3-O-(2-O-
beta-glucosyl-beta-glucoside)-7-O-beta-
glucosiduronic acid) malonate 

−10.8 −8.7 WT only C-1 chives 

Pitheduloside K −10.8 −7.8 WT only C-1 seeds of Pithecellobium dulce 
(Cyanidin 3-O-(3-O-acetyl-beta-glucoside) 
(kaempferol 3-O-(2-O-beta-glucosyl-beta-glucoside)-
7-O-beta-glucosiduronic acid) malonate 

−10.7 −8.4 WT only C-1 chives 

Epicatechin-(4beta->8)-epicatechin-(4beta->6)-
catechin 

−10.7 −9 WT only C-1 common grape 

Kaempferol 3-rhamnosyl-(1->3)-rhamnosyl-(1->6)-
glucoside 

−10.1 −9.6 WT only C-0 tea 

Dioscin −10 −9 WT only C-0 fenugreek, yam 
Cyanidin 3-(3-glucosyl-6-malonyl glucoside) 4′-
glucoside 

−10 −9.4 WT only C-0 garden onion 

beta1-Chaconine −10 −9 WT only C-0 alcoholic beverages, potato 
Hesperidin −10 −9.6 WT only C-0 citrus fruits, Mentha longifolia 

alpha-Viniferin −9.9 −11.6 MT only C-1 
alcoholic beverages, common 
grape 

Quillaic acid 3-[galactosyl-(1->2)-[rhamnosyl-(1->3)]-
glucuronide] 28-[6-acetyl-glucosyl-(1->3)-[xylosyl-
(1->4)-rhamnosyl-(1->2)]-4-acetyl-fucosyl] ester 

−8.5 −10.7 MT only C-1 
bark of the Chilean indigenous tree 
(Quillaja saponaria) 

Tragopogonsaponin Q −8.8 −10.7 MT only C-1 green vegetables 

Ceposide D −9.5 −10.6 MT only C-1 
garden onion, onion-family 
vegetables 

Eleutheroside M −8.7 −10.6 MT only C-1 tea 

Cinnamtannin A2 −8.7 −10.6 MT only C-1 
cocoa bean, Chinese cinnamon, 
chocolate 

Chakaflavonoside A −8.9 −10.4 MT only C-1 tea 

Epicatechin-(4beta->8)-epicatechin 3′-gallate −9.6 −10 MT only C-0 
common buckwheat, common 
grape, tea 

Epicatechin-(2alpha->7,4alpha->8)-epicatechin 3-
galactoside 

−9.5 −10 MT only C-0 cocoa bean 

Acutoside G −9.6 −10 MT only C-0 green vegetables 
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BE, binding energy with BDNF protein; WT, wild type (Val66); MT, mutated type (66Met); UMP, 
uniform manifold approximation and projection. 

Our analysis of natural compounds for WT only identified several specific bioactive 
compounds with low binding energy with BDNF WT protein (Val66) (Figure 4C). They 
had similar binding energy with BDNF WT and MT protein of between −10 and −10.9 
kcal/mol and they were clustered into two clusters with UMAP (Table 6; Figure 4C). These 
compounds were cyanidin and epicatechin, kaempferol and its glycosides, pitheduloside 
K, and others in cluster 1, and kaempferol 3-rhamnosyl-(1->3)-rhamnosyl-(1->6)-gluco-
side, dioscin, hesperidin, beta1-chaconine, and others in cluster 2 (Table 6; Figure 4C). 
These compounds originated from diverse sources, such as the common grape, citrus 
fruits, onion, yam, pithecellobium dulce seeds, and chives. In Figure 4D, the binding en-
ergy between epicatechin-(4beta->8)-epicatechin-(4beta->6)-catechin and the BDNF WT 
protein (six hydrogen bonds near the BDNF WT) was lower, with more hydrogen bonds 
than the MT protein (four hydrogen bonds but less tight to the BDNF MT). 

In contrast, compounds with lowering binding energy between −13.9 and −10 
kcal/mol exclusively with the BDNF MT polymorphism (66Met) were also identified (Fig-
ure 4E). These were alpha-viniferin, quillaic acid and its glycosides, tragopogonsaponin 
Q, ceposide D, eleutheroside M, cinnamtannin A2, and chakaflavonoside A in cluster 1. 
Epicatechin glycated compounds and acutoside G were in cluster 2 in the UMAP clusters 
(Table 6; Figure 4E). These compounds were detected in common grapes, green vegeta-
bles, onion, cocoa beans, cinnamon, tea, and buckwheat. In Figure 4F, the binding energy 
between chakaflavonoside A and the BDNF MT protein (eight hydrogen bonds near the 
BDNF MT) was lower, with more hydrogen bonds than the WT (six hydrogen bonds but 
less tight to the BDNF WT). MCS analysis of the UMAP clusters not only identified these 
compounds but also provided visual representations of their specific chemical structures. 
This structural visualization is crucial for understanding the potential molecular mecha-
nisms of the BDNF interaction with the natural compounds, highlighting the unique 
chemical features that may contribute to their binding properties. This approach provides 
a comprehensive understanding of the structural determinants driving compound–pro-
tein interactions, surpassing conventional binding energy analysis by elucidating the mo-
lecular mechanisms underlying these interactions. 

Food sources with the most diverse bioactive compounds affecting the BDNF 
Val66Met binding energy were carefully mapped. Fruits, especially guava and pomegran-
ate, along with herbs and spices, demonstrated low binding energy with both WT and MT 
protein variants (Figure 5). Interestingly, chives showed low binding energy with WT pro-
tein but not MT, while tea, common grapes, green vegetables, and cocoa beans exhibited 
low binding energy with MT protein but not with WT. These comprehensive findings 
suggest that certain fruits, particularly guava and pomegranate, could potentially modu-
late BDNF protein binding, potentially influencing BDNF activity and the related physio-
logical processes. The intricate interactions revealed through the MCS analysis high-
lighted the complex role of dietary components in molecular interactions and potential 
neurobiological mechanisms shown in the previous studies [20,21]. 
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Figure 5. Distribution and overlap of natural compounds in various food sources. 

4. Discussion 
Although numerous genetic variants linked to obesity risk have been identified 

[10,22,23], translating this knowledge into clinical practice and public health prevention 
strategies remains challenging. Managing energy balance is fundamental to body weight 
regulation. However, individual variability in response to energy intake highlights the 
role of genetic predisposition. Previous studies have shown that genetic variants in anti-
oxidant-related pathways significantly influence metabolic outcomes, with polymor-
phisms in oxidative stress genes (such as superoxide dismutase 2 and glutathione perox-
idase) modifying the relationship between dietary components and MetS risk factors [24–
26]. These genetic variations can affect how individuals respond to different dietary pat-
terns and dietary bioactive components, particularly in BMI and MetS components. 

The present study offers novel insights into how the interaction of genetic predispo-
sition, energy intake, and nutrient intake influences obesity risk. Notably, our demo-
graphic analysis revealed that lean groups showed higher educational attainment and in-
come levels regardless of energy intake, consistent with previous research on social deter-
minants of obesity. Higher socioeconomic status is often associated with better nutritional 
knowledge, access to healthier food options, and greater resources for physical activity 
[27]. The higher proportion of males in the L-EN-Lean group may reflect sex-specific dif-
ferences in energy metabolism, body composition, dietary patterns, physical activity, and 
alcohol drinks [28,29]. Beyond these sociodemographic factors, we observed that genetic 
variants such as BDNF rs6265 had a greater impact on obesity in individuals with a lower 
energy intake, while their effects diminished in those with a higher energy intake. Molec-
ular docking revealed the reduced binding energy of BDNF Val66Met with bioactive com-
pounds in citrus fruits, green vegetables, cocoa beans, and herbs, suggesting a potential 
mechanism for the modulation of genetic factors through the diets. Cohort analyses fur-
ther validated these interactions. The intake of citrus fruits and green vegetables was in-
versely associated with obesity risk in participants carrying the BDNF rs6265 variant. In 
the high-energy-intake group, antioxidant-rich diets—particularly those containing com-
pounds such as cyanidin and epicatechin—were inversely associated with obesity, inde-
pendent of genetic predisposition. These findings underscore the intricate relationships 
between genetics, diet, and lifestyle and highlight the potential for personalized dietary 
interventions targeting genetic susceptibilities to mitigate obesity risk. 

Obesity is a complex polygenic trait, influenced by numerous genetic variants, each 
having a small effect that interacts with lifestyle factors. One of the highlights of our study 
is that genetic predisposition to obesity was primarily evident in individuals with low 
energy intake, as no significant genetic associations were observed in the high-energy-
intake group at a threshold of p < 5 × 10⁻8. This suggests that genetic variants, such as 
BDNF rs6265, FTO rs1421085, and SEC16B rs506589, are more likely to predispose 
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individuals to obesity when their energy intake is below the EER. These findings align 
with previous studies demonstrating the role of FTO in energy expenditure, with its re-
duced activity leading to decreased adiposity independent of energy intake [30], and 
BDNF in mediating fat utilization via the sympathetic nervous system, impacting energy 
expenditure [31]. 

Notably, in the low-energy-intake group, the genetic variants associated with obesity 
overlapped with those identified in broader population-based studies [10,11]. However, 
their effects were diminished in individuals with high energy intake, indicating that life-
style factors, such as energy intake and physical activity, may mitigate genetic risk. FTO 
rs1421085 has been shown to interact with physical activity to modulate obesity risk in 
Caucasian populations [32], and BDNF rs6265 influences dietary preferences and satiety 
regulation [33]. Additionally, SEC16B variants are associated with impaired lipid absorp-
tion, which may protect against high-fat-diet-induced obesity [23,34], consistent with our 
observations in the low-energy-intake group. 

While PRSs that incorporate significant and moderately significant variants did not 
show interactions with nutrient intake or lifestyle factors in the low-energy-intake group, 
they demonstrated interactions with lifestyle factors such as physical activity, alcohol in-
take, and plant-based diets in the broader cohort. This supports findings from previous 
studies that emphasize the importance of gene–environment interactions in obesity risk 
modulation [11,35]. Collectively, our findings highlight the complex interplay of genetic 
predispositions, energy intake, and lifestyle factors in determining obesity risk, providing 
valuable insights for personalized prevention strategies. 

Genetic insights from gene discovery efforts are increasingly applied to precision 
medicine, particularly for predicting obesity risk and identifying potential therapeutic tar-
gets [23]. While monogenic obesity treatments, such as injectable melanocortin-4 receptor 
(MC4R) agonists, have shown efficacy in addressing mutations like those in leptin recep-
tors (LEPR), such interventions are less applicable to polygenic obesity, which involves 
numerous variants with small cumulative effects [23]. For polygenic variants, oral treat-
ments or dietary interventions tailored to genetic predispositions may offer a more feasi-
ble and effective approach [36]. Our findings highlight the potential of BDNF rs6265, a 
missense mutation, as a critical target for dietary interventions. We identified 107 bioac-
tive compounds with strong binding affinity (binding energy < −10 kcal/mol) to both wild-
type and mutant variants of BDNF Val66Met, many of which are present in commonly 
consumed foods such as citrus fruits (e.g., pomegranate, orange, lemon), guava, herbs, 
and spices. Previous studies have demonstrated that pomegranate extract significantly 
increases BDNF expression in hippocampal neurons [37], while guava’s polyphenolic 
compounds have been shown to enhance BDNF signaling pathways in preclinical models 
[38,39]. The neuroprotective effects of these fruits have been attributed to their rich content 
of specific flavonoids including anthocyanins that can cross the blood–brain barrier and 
directly modulate BDNF expression [40]. Interestingly, compounds found in green vege-
tables, grapes, and cocoa beans exhibited a stronger binding affinity specifically to the 
mutant variant. These results align with prior research [41] suggesting that BDNF plays a 
central role in energy expenditure, neuronal plasticity, and fat utilization through the 
sympathetic nervous system. 

Importantly, our findings highlight the context-dependent nature of genetic impact. 
While genetic variants like BDNF rs6265 significantly influenced the obesity risk in indi-
viduals with a lower energy intake, their effects were negligible in the high-energy-intake 
groups. This observation emphasizes the importance of stratifying populations by dietary 
energy intake when exploring gene–environment interactions, a key factor often over-
looked in prior studies [36]. Moreover, our study supports the growing evidence for diet-
gene interactions, building upon previous work that highlights the role of polygenic 
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variants in modulating obesity risk through mechanisms such as energy expenditure, li-
pid absorption, and energy intake [22,23,35]. By demonstrating that natural compounds 
can influence the function of BDNF rs6265, our findings pave the way for genotype-in-
formed dietary interventions. This approach could complement existing treatments, of-
fering a personalized and practical strategy to mitigate obesity risk, particularly in popu-
lations with specific genetic predispositions. 

Validation of in silico findings with cohort data is critical for translating molecular 
insights into actionable health strategies. While prior studies have highlighted the meta-
bolic benefits of citrus fruits, green vegetables, and other antioxidant-rich foods due to 
their anti-inflammatory and antioxidant properties [8,9,42], few have directly linked these 
dietary components to specific genetic factors associated with obesity [43]. Our study 
bridges this gap by demonstrating that natural compounds such as valolaginic acid, tor-
voside C, citrusin II, and rugosin E (with binding energies below −11 kcal/mol) interact 
with both WT and MT BDNF proteins in silico. These compounds were identified in foods 
such as citrus fruits, guava, herbs, and spices for WT and MT and in common grapes, 
green vegetables, and cocoa beans for MT alone. Notably, our findings differ from prior 
studies, such as those reporting weaker binding affinities (−4.5 to −6.7 kcal/mol) for com-
pounds like vitamin D3, curcumin, vitamin C, and quercetin with BDNF protein [44]. We 
excluded these compounds due to their higher binding energy, focusing instead on those 
meeting our stricter criteria. Through this approach, we identified citrus fruits and green 
vegetables as the most promising dietary sources for influencing BDNF rs6265, findings 
validated through city-based cohort data. In the cohort, green vegetable and citrus fruit 
intake was inversely associated with obesity risk, particularly in individuals carrying the 
BDNF rs6265 variant, consistent with the molecular docking results. These results extend 
the prior research on BDNF rs6265, which has shown its role in modulating energy ex-
penditure and fat metabolism, by providing robust evidence for dietary modulation of its 
effects [45,46]. This integration of molecular and cohort data underscores the potential for 
personalized dietary interventions targeting the genetic risk factors for obesity. 

Further, our study demonstrated that BDNF rs6265 exhibits variant-specific binding 
affinity to antioxidant compounds. Green vegetable-derived compounds showed stronger 
interactions with the mutant allele, aligning with cohort data, where green vegetable in-
take was inversely associated with obesity risk in carriers of the mutant allele, specifically 
within the low-energy-intake group. This finding suggests a gene–diet interaction that 
modulates obesity risk under restricted energy intake. In contrast, no genetic impact was 
observed in the high-energy-intake group. However, in this group, higher antioxidant in-
take—specifically vitamin C, vitamin D, vitamin E, total anthocyanins, and isoflavo-
noids—was associated with leanness. These findings align with prior studies [47,48] 
which showed that antioxidants mitigate oxidative stress and inflammation, which are the 
key drivers of obesity by increasing adipocyte number and size, promoting lipogenesis, 
and stimulating preadipocyte differentiation under conditions of elevated oxidative 
stress, such as high energy intake. Our study adds to this body of literature by demon-
strating that genetic susceptibility to obesity may be masked in high-energy environ-
ments, where the protective effects of antioxidant-rich diets dominate. These findings 
highlight the importance of tailoring dietary recommendations based on both genetic pre-
dispositions and energy intake levels. By highlighting gene–diet interactions, particularly 
under varying energy intakes, this study provides a foundation for developing personal-
ized dietary interventions to optimize obesity prevention and management strategies. 

This study provides novel insights into the interplay between genetic predisposition, 
energy intake, and antioxidant-rich diets in modulating obesity risk. Specifically, it high-
lights that genetic variants such as BDNF rs6265 and FTO rs1421085 are primarily associ-
ated with obesity risk in individuals with low energy intake. Antioxidant nutrients, such 
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as vitamins C, D, and E, and bioactive compounds like anthocyanins and isoflavonoids, 
are more relevant in the context of high energy intake. Using molecular docking to iden-
tify variant-specific binding affinities of bioactive compounds, validated with cohort data, 
represents a novel approach linking in silico findings to real-world dietary and genetic 
interactions. However, the study has limitations, including the observational nature of the 
cohort analysis, which limits causal inference, and the lack of experimental validation of 
the identified effects of bioactive compounds on genetic pathways. Additionally, the reli-
ance on self-reported dietary data may introduce measurement bias, even though the 
KNIH research team carefully designed, collected, and managed the data with the help of 
skilled technicians. The findings may not be generalizable to populations with different 
genetic and dietary backgrounds. Future studies should include functional assays and 
randomized trials to confirm these interactions and explore the mechanisms further. 

5. Conclusions 
Our study highlights the importance of gene–diet interactions in obesity, particularly 

those involving the BDNF rs6265 variant. Molecular docking and cohort data revealed 
that polyphenols, particularly flavonoids, in citrus fruits, green vegetables, and cocoa 
beans demonstrated high binding affinities to BDNF Val66Met, with stronger associations 
in individuals carrying the mutant allele. These findings suggest that dietary interven-
tions, especially antioxidant intake, tailored to genetic profiles could mitigate obesity risk, 
especially under restricted energy intake conditions. In contrast, when the energy intake 
is high, antioxidant-rich diets appeared to play a more dominant role in reducing obesity 
risk, independent of genetic predisposition. Future research should validate these find-
ings across diverse populations and investigate the long-term effects of personalized die-
tary interventions in clinical trials. By bridging molecular insights with practical dietary 
recommendations, our study provides a foundation for advancing precision medicine in 
obesity prevention and management. 
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