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Abstract: The effectiveness of photodynamic therapy (PDT) for cancer treatment relies
on the generation of cytotoxic singlet oxygen (1O2) in type II PDT. Hence, monitoring
of 1O2 generation during PDT enables optimal treatment delivery to the tumor target
with reduced off-target effects. Direct 1O2 observation by measuring its luminescence
at 1270 nm remains challenging due to the very weak signal. This study presents 1O2

luminescence measurements using a time-resolved singlet oxygen luminescence detection
system (TSOLD) applied to protoporphyrin IX (PpIX) in different solvents (ethanol and
acetone) and biological media (bovine serum albumin and agarose-based solid phantom).
The compact experimental setup includes a nanosecond diode laser with a function gen-
erator, a cuvette with photosensitizer solution, optical filtering and mirrors, an InGaAs
single-photon avalanche diode detector, and time-tagger electronics. Increasing the concen-
tration of PpIX in these media from 1 to 10 µg/g resulted in a 3–5 × increase in the 1O2

luminescence signal. Furthermore, increasing light scattering in the sample using Intralipid
from 0.1 to 1% led to a decrease in the 1O2 luminescence signal and lifetime. These results
confirm the marked effect of the microenvironment on the 1O2 signal and, hence, on the
photodynamic efficacy.

Keywords: reactive oxygen species; singlet oxygen; photodynamic therapy; protoporphyrin
IX; time-resolved singlet oxygen luminescence detection

1. Introduction
Photodynamic therapy (PDT) is a minimally invasive therapeutic modality that has

been used for a variety of malignant and non-malignant conditions [1–3]. PDT for cancer
treatment utilizes light, a photosensitizer (PS) and molecular oxygen to induce localized
cell death by multiple mechanisms such as cell death by immune response [3–5]. In the so-
called Type I pathway, the photoexcited triplet-state photosensitizer interacts with cellular
substrates, most commonly membranes, to produce free radicals and reactive oxygen
species (ROS) such as superoxide, hydroxyl radicals and hydrogen peroxide [6,7]. As shown
in Figure 1, in the Type II pathway that pertains to most clinical photosensitizers, the excited
triplet-state PS transfers energy to triplet ground-state molecular oxygen (3O2), generating
highly reactive singlet oxygen (1O2) [8–10]. Hence, sensitive monitoring of 1O2 during
PDT should enable optimal treatment delivery to the tumor target with reduced off-target
effects [3]. A variety of approaches have been investigated for PDT dosimetry, including
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biophysical/biological tissue response monitoring, explicit dosimetry in which the light,
photosensitizer and tissue oxygenation are measured and combined into a biophysical
model, and implicit dosimetry in which a surrogate measure such as photosensitizer
photobleaching is used [4,10,11].
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Figure 1. Jablonski diagram illustrating the generation of the 1270 nm near-infrared luminescence
emission of singlet oxygen (1O2) and triplet-state photosensitizer luminescence.

The direct technique of singlet oxygen luminescence dosimetry (SOLD) uses observa-
tion of the 1270 nm near-infrared luminescence emission of the 1O2 → 3O2 transition [12–14].
Since this directly quantifies the concentration of cytotoxic species, it can be considered the
“gold standard” for PDT dosimetry. However, measurement is challenging due to the very
low signal and the short half-life in biological media. Detection is significantly improved
by the use of single-photon counting using NIR photomultiplier tubes (PMTs), InGaAs
single-photon avalanche diodes (SPADs) and superconducting nanowire single-photon
detectors (SNSPDs) [15–18]. Time-resolved single-photon counting (TSOLD) and gating
allow for the subtraction of the contribution of the substantial background due to photosen-
sitizer fluorescence and phosphorescence [13,17,19–21], while fitting the temporal spectrum
yields the singlet oxygen and PS triplet-state lifetimes. Typically, measurements are made
on and at wavelengths either side of the 1270 nm peak to subtract the residual background
after long-pass filtering of the total emission. TSOLD has been validated through multiple
in vitro and in vivo studies in cells, tumors and normal tissues [13,22].

TSOLD can be implemented using commercially available SPADs and SNSPDs with
low dark count rates, low timing jitter and free-running operation. Here, we developed
a versatile TSOLD testbed that incorporates a nanosecond diode excitation laser with a
function generator that provides external triggering to select a suitable repetition rate, a
cuvette containing the photosensitizer solution, custom optical filtering and mirrors, an
InGaAs SPAD detector and time-resolved electronics.

The choice of photosensitizer plays a critical role in the efficacy and specificity of
PDT treatments. An ideal photosensitizer should possess a high 1O2 quantum yield,
strong absorption in the therapeutic window (~600–800 nm) and selective accumulation
in the target cells/tissues [2,23]. Porphyrin-based compounds, such as porfimer sodium
(Photofrin®), and protoporphyrin IX (PpIX) synthesized in target cells by administration of
aminolevulinic acid, were among the first photosensitizers approved for clinical use [24,25].
However, there is a gap in knowledge of the lifetime and efficacy of 1O2 produced by PpIX
photoactivation in various microenvironments [26]. Here, we performed a comprehensive
study utilizing our in-house TSOLD system with PpIX in ethanol, acetone, bovine serum
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albumin (BSA) and agarose-based solid phantoms. The impact of light scattering on the
1O2 generation was determined by adding the lipoprotein Intralipid with either ethanol or
methanol solvents to mimic a tissue-like microenvironment. This study of 1O2 luminescence
detection by PpIX in various solvents and biological media is the first set towards future
applications such as dosimetry for PDT.

2. Materials and Methods
2.1. Time-Resolved 1O2 Luminescence System

The system (Figure 2) is designed to measure the near-infrared singlet oxygen lumi-
nescence that comprises a nanosecond diode excitation laser with a function generator, a
quartz cuvette (CV10Q35, Thorlabs, Newton, NJ, USA) containing photosensitizer solution,
customized optical filtering and mirrors, a single-photon avalanche diode (SPAD) detector,
and time-tagger electronics for time-correlated single-photon counting (TCSPC).
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Figure 2. (a) Schematic and optical setup of the TSOLD experiment (upper). An optical beam from a
nanosecond diode laser with a function generator illuminates the photosensitizer cuvette through
a parabolic mirror and short-pass filters. The collected 1270 nm luminescence emission is coupled
into an InGaAs-SPAD. TCSPC then generates time histograms of the 1O2 luminescence signal. (b) A
photograph of the optical setup is shown (lower).
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The 6–129 ns pulse-width tunable diode laser (NPL52C: Thorlabs, Newton, NJ, USA)
has a broad spectral output of 515–525 nm and a variable repetition rate up to 50 kHz.
The wavelength of the illuminated laser (520 nm) was selected corresponding to the
secondary absorption region of PpIX. The output is coupled into a multimode optical
fiber (core diameter 400 µm, 0.22 numerical aperture (M146L01, Thorlabs, Newton, NJ,
USA)) connected to a collimation system consisting of a parabolic mirror (RC04FC-P01,
Thorlabs, Newton, NJ, USA) and 25 mm diameter short-pass (optical density OD = 5.0 at
>950 nm) (FESH0950, Thorlabs, Newton, NJ, USA) and band-pass (304–785 nm: out-of-
band OD = 4.0) (FGS550, Thorlabs, Newton, NJ, USA) filters to produce a 4 mm collimated
beam that is reflected by a dichroic mirror (DMLP950, Thorlabs, Newton, NJ, USA) and
focused into the cuvette using a parabolic mirror to illuminate the sample. The 1270 nm
luminescence emission passes through a dichroic mirror and the combination of long-
pass (OD = 5.0 at <1200 nm: FELH1200, Thorlabs) and band-pass filters (bandwidth
1260–1280 nm, out-of-band OD = 6.0) (1270BP20, Omega Optical, Brattleboro, VT, USA).
The beam is then coupled to a multimodal, 65 µm core diameter fiber to the SPAD detector
(ID230, IDQ, Geneva, Switzerland) using a parabolic mirror. The TCSPC module (Time
Tagger Ultra, Swabian Instruments, Stuttgart, Germany) counts the input signals from
the function generator, sending a START signal through an electrical synchronization
pulse, and the detector output then provides the STOP signal. Temporal histograms are
thereby generated from single-photon detection events. Pulse pile-up can cause errors in
the determination of the 1O2 lifetime so that the detection count rate is kept below 5% of
the excitation laser pulse rate.

2.2. Photosensitizer in Various Media

The photosensitizer solutions were prepared by dissolving protoporphyrin IX (PpIX)
(P8293, Sigma Aldrich, St. Louis, MO, USA) powder in ethanol or acetone. The molecular
weight of PpIX is 562.66 g/mol and its molecular structure is shown in Figure 3. For
the bovine serum albumin (BSA) and solid phantoms, the PpIX was dissolved first in
dimethyl sulfoxide (DMSO). A 50 µg/g BSA solution was prepared by dissolving BSA
powder (A9647, Sigma Aldrich) in phosphate-buffered saline (PBS). The solid phantoms
were prepared using 1% agarose (A9539, Sigma Aldrich, St. Louis, MO, USA) dissolved
in deionized water as the base material [27], mixed with the PpIX-DMSO solution and
maintained at room temperature (20–25 ◦C) to solidify. For each TSOLD experiment, the
PpIX was used at 1, 3, 5, 8 and 10 µg/g concentrations in 1 mL samples.
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2.3. Determination of Singlet Oxygen Lifetime

Singlet oxygen generation occurs due to energy transfer from a triplet-state photosen-
sitizer exchanging energy with triplet ground-state oxygen (3O2). For short pulse activation
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(≤100 ns), the lifetime of singlet oxygen and triplet-state photosensitizers at time t following
the pulse is given by Refs. [12,29]:

[
1O2

]
(t) = Nσ[S0]φD.

τD

τT − τD

(
exp

(
−t
τT

)
− exp

(
−t
τD

))
(1)

where [1O2] (t) is the singlet oxygen concentration, N is the number of photons per pulse,
σ is the photosensitizer absorption cross-section at the excitation wavelength, [S0] is the
photosensitizer concentration, φD is the photosensitizer singlet oxygen quantum yield,
and τD and τT are the lifetimes of the singlet oxygen and triplet-state photosensitizer,
respectively. After subtracting the background signal due to other sources of near-infrared
emission, the measured time histograms were fitted using Equation (1) to calculate the
two lifetimes.

2.4. Validation of TSOLD System

Before measuring the 1O2 luminescence signature from PpIX in different microenvi-
ronments, the TSOLD system performance was validated against measurements made
with a set of 20 nm bandwidth band-pass filters centered at 1200, 1240, 1270, 1300 and
1340 nm. A solution of 10 µg/g PpIX in ethanol was illuminated by the 520 nm laser beam
(520 nm ± 7.5 nm, 129 ns at 25 kHz) with a beam waist of 0.2 mm and an average intensity
of 32 mW.mm−2. Signal acquisition was conducted with the SPAD, operating with 10%
single-photon detection efficiency and a 41 µs dead time.

2.5. 1O2 Luminescence from PpIX in Ethanol and Acetone

Measurements were made using 10 min signal integration with 1–10 µg/g PpIX
solution in 1 mL cuvettes with a path length of 10 mm, using a 1 mm diameter beam at
520 nm ± 7.5 nm, at 20 or 3.2 mW.mm−2 in ethanol and acetone, respectively. The SPAD
was operated at 10% efficiency with 41 µs dead time to avoid pulse pile-up. Histograms
were generated with 610 bins with a 65 ns width. These were fitted using Equation 1 using
the Levenberg–Marquardt algorithm.

2.6. 1O2 Luminescence from PpIX in Biological Media

Measurement of singlet oxygen generation in cells and tissues is of value for dosimetry
in photodynamic therapy. BSA and tissue-mimicking phantoms were excited by a 2 mm
diameter laser beam at 5.5 mW.mm−2, 129 ns pulse width and 30 kHz repetition rate. The
luminescence was measured after passing through a 1270 nm, 20 nm bandwidth filter
using a SPAD with 25% efficiency and 34 µs dead time. Time histograms of 520 bins
with a bin width of 65 ns were generated by capturing single-photon arrival events using
the Time Tagger. These plots were fitted with Equation 1, used to calculate the 1O2 and
photosensitizer triplet-state lifetimes.

2.7. Impact of Scattering on Singlet Oxygen Generation and Luminescence Lifetime

The scattering properties of a sample can affect the production of singlet oxygen [30]
due to altered light fluence in the sample. Intralipid emulsion is commonly used as a
light-scattering medium [31]. Here, 20% Intralipid (I141, Sigma Aldrich, St. Louis, MO,
USA) diluted to 0.1–1% (after accounting for the 20% concentration of the stock commercial
material) was added to a solution of 10 µg/g PpIX in 100% pure ethanol or acetone.

3. Results and Discussion
Figure 4 shows the results of measuring the singlet oxygen luminescence of 10 µg/g

PpIX in ethanol using the multiple band-pass filters.
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Figure 4. TCSPC histograms for 10 µg/g PpIX in ethanol with 10 min acquisition time using discrete
band-pass filters showing the 1270 nm 1O2 luminescence peak and signal decay.

Figure 5 shows the 1270 nm luminescence over time data for PpIX at different concen-
trations in ethanol and acetone. The derived 1O2 and photosensitizer triplet-state lifetimes
are summarized in Table 1.
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Figure 5. TSOLD single-photon counting time curves (measured dots, fitted lines) at 1270 nm for
1–10 µg/g PpIX in (a) ethanol and (b) acetone. 10 min integration.

Table 1. Singlet oxygen and photosensitizer triplet-state PpIX lifetimes in ethanol and acetone.

PpIX
Concentration

(µg/g)

PpIX in Ethanol PpIX in Acetone

Singlet
Oxygen
Lifetime

(µs)

PpIX
Triplet-State

Lifetime
(µs)

Singlet
Oxygen
Lifetime

(µs)

PpIX
Triplet-State

Lifetime
(µs)

1 13.8 0.10 47.9 0.16
3 14.4 0.13 48.2 0.21
5 14.6 0.14 48.3 0.27
8 14.4 0.18 48.4 0.17

10 14.6 0.22 48.6 0.25

As expected, increasing the PpIX concentration had a minimal effect on the 1O2 life-
time in both solvents, but markedly increased the triplet-state lifetimes. The concentration-
dependent triplet-state lifetime trend is consistent with previously reported data by Gem-
mell et al. [19] and is due to the high dose of PpIX.
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The corresponding time histograms for PpIX in BSA and the solid phantom with
different mass concentrations are shown in Figure 6.
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From Figure 6, it is evident that the optimized SPAD efficiency and setup allow time-
resolved detection of PpIX in biological-type media, despite the very weak signal. The total
time-integrated counts increased 5–6-fold as the PpIX concentration increased from 1 to
10 µg/g. The corresponding 1O2 and triplet-state lifetimes are shown in Table 2.

Table 2. Singlet oxygen and photosensitizer triplet-state PpIX lifetimes in BSA and solid agarose, as
per Table 1.

PpIX Concentration
(µg/g)

PpIX in BSA PpIX in Agarose-Based Solid Phantoms

Singlet Oxygen
Lifetime (µs)

PpIX Triplet-State
Lifetime (µs)

Singlet Oxygen
Lifetime (µs)

PpIX Triplet-State
Lifetime (µs)

1 18.9 0.51 21.1 0.54
3 23.0 0.20 25.4 0.44
5 26.9 0.19 27.5 0.38
8 28.4 0.17 28.8 0.36
10 28.5 0.16 28.9 0.34

The concentration of PpIX in agarose solid phantom directly impacts the 1O2 and
triplet-state lifetimes. As the concentration of PpIX increases, excitonic interactions result-
ing from PPIX stacking and self-absorption become more pronounced, which causes a
reduced triplet-state lifetime due to increased quenching and energy dissipation among
closely packed PpIX molecules [32–34]. Meanwhile, the 1O2 lifetime increases with con-
centration in both BSA and agarose due to more efficient energy transfer to oxygen and
potentially reduced non-radiative decay in the denser PpIX environment [35]. The photo-
physical properties and hydrophobicity of the surrounding medium are influenced by the
specific interactions of PpIX with its microenvironment, such as protein binding in BSA
or the gel matrix in agarose phantoms [36]. These effects are absent in the non-biological
solvents. Also, the increase in viscosity of agar can impede the diffusion of singlet oxygen,
consequently impacting its longevity and transport mechanisms. The reported studies
showed that an increase in viscosity results in a decreased diffusion coefficient for singlet
oxygen, thereby reducing diffusion distances and modifying its reactivity [37].

The time curves and fits by using Equation 1 for 10 µg/g PpIX in ethanol and acetone
with different concentrations of added Intralipid are shown in Figure 7. The 1O2 lumines-
cence counts decreased with increasing Intralipid concentration by ~5-fold and ~1.5-fold
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in ethanol and acetone, respectively. Qualitatively, this can be attributed to the increased
scattering of the medium the excitation, and collected light reduces 1O2 luminescence
detection [17,38]. The corresponding 1O2 and PpIX triplet-state lifetimes are shown in
Table 3.
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Table 3. Singlet oxygen and PpIX triplet-state lifetimes for 10 µg/g PpIX in ethanol and acetone with
varying Intralipid concentration.

Intralipid
Concentration

(%)

PpIX in Ethanol PpIX in Acetone

Singlet
Oxygen

Lifetime (µs)

PpIX
Triplet-State
Lifetime (µs)

Singlet
Oxygen

Lifetime (µs)

PpIX
Triplet-State
Lifetime (µs)

0 14.6 0.30 48.6 0.18
0.1 14.4 0.32 48.0 0.24
0.3 14.2 0.34 45.9 0.25
0.5 13.8 0.36 42.1 0.28
0.8 13.3 0.51 40.4 0.31
1.0 12.7 0.55 38.7 0.33

The addition of Intralipid has only a minor impact on the lifetime of singlet oxygen,
except for some concentration-dependent reduction with acetone. Also, the PpIX binding to
lipoproteins can alter the lifetime of singlet oxygen, which may occur due to the quenching
of singlet oxygen by lipoprotein [39,40]. The PpIX triplet-state lifetime is significantly higher
in ethanol in the presence of Intralipid and increases markedly with Intralipid concentration,
while this effect is much less pronounced with acetone. Increased scattering can result in
a prolonged residence time of the triplet state in the excited state, leading to diminished
energy transfer efficiency and an extension of the triplet lifetime [41]. Due to different
solubility properties of Intralipid in ethanol and acetone, variations in triplet-state lifetime
are observed [42]. The residence time of the triplet state in the excited state can range from
100 ns to 10 s, contingent upon intrinsic factors, such as molecular photophysics, as well as
extrinsic factors including environmental conditions and quenching agents [43]. Although
the scattering properties of the solution do not exert a direct influence on the lifetime,
they may affect measurements indirectly by altering signal detection within the scattering
medium. Furthermore, variations in oxygen concentration can have a pronounced effect on
triplet decay, as this can lead to quenching of the triplet state of protoporphyrin IX (PPIX),
resulting in a reduced lifetime through chemical or collisional interactions.
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The illumination laser diode (520 nm) wavelength was selected corresponding to the
secondary absorption region of PpIX, which allows more effective excitation as well as min-
imizing background autofluorescence as compared to blue light. Also, the corresponding
absorption coefficients of PpIX are higher at 520 nm than red wavelength which makes a
better choice for studies such as optimizing singlet oxygen generation and detection under
specific experimental conditions.

Finally, we note that, as with other reactive oxygen species, antioxidants can quench
1O2. This is used, for example, as a protective mechanism against oxidative damage in
plants [44]. In mammalian cells, Soares et al. [45] have reported that the local oxidative stress
produced by 1O2 during PDT can be mitigated through three main antioxidant mechanisms,
namely superoxide dismutase, catalase and glutathione, and that the magnitude of this
protective effect is cell type-dependent because of different endogenous levels of these
reactants. An important translational issue is whether the “therapeutic window” for PDT
damage to tumor versus normal tissues is impacted by their having different concentrations
of antioxidants or could be enhanced by the tissue-specific administration of antioxidants.
Direct 1O2 luminescence, as presented here, provides an excellent tool for studying these
antioxidant effects directly and quantitatively without the potentially confounding use of
secondary fluorescent reporters such as 1O2 sensor green.

4. Conclusions
The above results showed that the singlet oxygen (1O2) lifetime in PpIX photosensi-

tizer is solvent- and microenvironment-dependent, ranging from ~14, ~49, ~29 and ~29 µs
in ethanol, acetone, BSA and solid agarose, respectively. Acetone generally exhibits fewer
non-radiative decay pathways for singlet oxygen in comparison to ethanol and biolog-
ical media. This is attributed to the absence of hydrogen bonding, thereby leading to
an extended lifetime [46–48]. The longer lifetime of 1O2 in BSA and agarose phantom,
compared to ethanol, can be attributed to a combination of factors, including quenching
interactions facilitated by protective protein interactions, viscosity, restricted diffusion due
to the presence of hydrophilic and hydrophobic grooves, and physical properties (air-filled
porosity, bulk density, shrinkage, etc.) of the biological media [49–51]. The singlet oxygen
is highly reactive and short-lived; therefore, a small variation in 1O2 lifetime alters its
reactivity and diffusivity. Esben Skovsen et al. (2005) demonstrated that singlet oxygen
can have a surprisingly long lifetime within cells, allowing it to diffuse over considerable
distances [52]. Also, a shorter lifetime of triplet-state photosensitizers such as 0.16 µs has
been reported in BSA compared to agarose or ethanol due to quenching interactions with
the protein and the complex microenvironment within BSA [51,53].

In the context of Intralipid studies, it has been observed that the binding of PpIX to
lipoproteins has the potential to modify the lifetime of singlet oxygen. This modification
arises from the possible quenching of singlet oxygen by lipoproteins [40]. The phenomenon
of increased scattering can lead to a prolonged residence time of the triplet state in the
excited state. Consequently, this can result in diminished energy transfer efficiency and
an extension of the triplet lifetime [41]. Overall, the effects on the measurement are
altered due to light scattering and possible binding/interactions of the PpIX with the
Intralipid lipoproteins.

The TSOLD system used in this study is a significant advance over earlier instru-
ments [16,17], featuring a nanosecond pulsed diode laser with a tunable pulse width and
pulse rate capabilities. Notably, this system is considerably more compact and lower-cost
than its predecessors [19,29]. The system’s performance was confirmed through the detec-
tion of the 1O2 signal from PpIX in ethanol, where the 1270 nm counts were significantly
higher relative to the background than published values [19]. In the next stage of system
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engineering, the bifurcated fiber bundle coupled with an ns pulsed laser will further reduce
the footprint of the system, further improving its practicality, especially for in vivo and
clinical use.

In summary, the measurement of the PpIX concentration dependence of the lumi-
nescence generation in different solvents and biological media demonstrated that the 1O2

generation and lifetime are affected by changes in microenvironmental factors. Optical
scattering in biological tissues also affects the spatial distribution of excitation light, and
thereby of the 1O2 generation, as well as the near-infrared luminescence [54,55]. Also,
quenching and diffusion limitations in biological media further reduce the 1O2 lifetime [54].
Hence, these multiple factors need to be taken into account during 1O2 luminescence mea-
surements for PDT dosimetry, especially where absolute singlet oxygen concentrations are
used to predict or correlate with the biological outcomes of the treatment. In addition, the
singlet oxygen lifetime directly affects the effective diffusion range at cellular/subcellular
scales [51], and previous studies have shown that, because of the very short 1O2 lifetime,
the localization of the photosensitizer in different organelles has a marked impact on the
cytotoxicity even for the same concentration of singlet oxygen [56].
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