In Vitro Cultivars of Vaccinium corymbosum L. (Ericaceae) are a Source of Antioxidant Phenolics
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals
2.2. Plant Material
2.3. Extracts Preparation
2.4. DPPH• Free Radical-Scavenger Spectrophotometric Assay
2.5. Ferric Reducing/Antioxidant Power (FRAP)
2.6. Total Phenolic Content (TPC)
2.7. Analysis of Extracts by HPLC-DAD
2.8. Analysis of Extracts by LC-MS/MS
2.9. Statistical Analysis
3. Results and Discussion
3.1. In Vitro Culture Establishment
3.2. Antioxidant Activity of Extracts
3.3. Total Phenolic Compound Content Determined by Folin-Ciocalteu’s Assay
3.4. Phenolic Profile Determined by HPLC-DAD and LC-MS/MS
Peak Number | Retention Time | UV Spectra | Compound | IC50 (μg) * |
---|---|---|---|---|
1 | 3.5 | Caffeic acid hexoside | nd | |
2 | 4.2 | Chlorogenic acid | 4.18 | |
3 | 4.7 | Syringic acid | 7.28 | |
4 | 6.4 | Rutin | 9.25 | |
5 | 6.9 | Apigenin-7-O-glucoside | nd | |
6 | 8.1 | Myricetin | 3.20 | |
7 | 15.8 | Luteolin 3-O-glucuronide | nd | |
8 | 16.2 | Myricitrin | nd | |
9 | 17.4 | Kempferol 3-O-glucosyde | nd |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sellappan, S.; Akoh, C.C.; Krewer, G. Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. J. Agric. Food Chem. 2002, 50, 2432–2438. [Google Scholar] [CrossRef] [PubMed]
- Amakura, Y.; Umino, Y.; Tsuji, S.; Tonogai, Y. Influence of jam processing on the radical scavenging activity and phenolic content in berries. J. Agric. Food Chem. 2009, 48, 6294–6297. [Google Scholar]
- Zheng, W.; Wang, S.Y. Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries. J. Agric. Food Chem. 2003, 51, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Sawa, T.; Nakao, M.; Akaike, T.; Ono, K.; Maeda, H. Alkylperoxyl radical-scavenging activity of various flavonoids and other phenolic compounds: Implications for the anti-tumor-promoter effect of vegetables. J. Agric. Food Chem. 1999, 47, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Rodney, C.; Toni, M.; Kutchan, N.; Lewis, G. Natural products. In Biochemistry and Molecular Biology of Plants; Buchanan, B., Gruissem, W., Jones, R., Eds.; Wiley: Rockville, MD., USA, 2000; pp. 1253–1348. [Google Scholar]
- Karuppusamy, S. A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J. Med. Plant Res. 2009, 3, 1222–1239. [Google Scholar]
- Hussain, S.; Fareed, S.; Ansari, S.; Rahman, A.; Zareen, A.; Saeed, M. Current approaches toward production of secondary plant metabolites. J. Pharm. Bioallied Sci. 2012, 4, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, G.; McCown, B. Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. Comb. Proc. Int. Plant Propag. Soc. 1980, 30, 421–427. [Google Scholar]
- Adam, M.; Dobiáš, P.; Eisner, A.; Ventura, K. Extraction of antioxidants from plants using ultrasonic methods and their antioxidant capacity. J. Sep. Sci. 2009, 32, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Shyu, Y.-S.; Lin, J.-T.; Chang, Y.-T.; Chiang, Ch.-J.; Yang, D.-J. Evaluation of antioxidant ability of ethanolic extract from dill (Anethum graveolens L.) flower. Food Chem. 2009, 115, 515–521. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–188. [Google Scholar]
- Alhakmani, F.; Kumar, S.; Khan, S.A. Estimation of total phenolic content, in vitro antioxidant and anti-inflammatory activity of flowers of Moringa oleifera. Asian Pac. J. Trop. Biomed. 2013, 3, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zeballos, L.; Hawkins, D. Comparision of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Antolovich, M.; Prenzler, P.D.; Patsalides, E.; McDonald, S.; Robards, K. Methods for testing antioxidant activity. Analyst 2002, 127, 183–198. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind the antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef] [PubMed]
- Barreca, D.; Bellocco, E.; Caristi, C.; Leuzzi, U.; Gattuso, G. Distribution onf C- and O-glycosyl flavonoids, (3-hydroxy-3-methylglutaryl)glycosyl flavanones and furanocoumarins in Citrus aurantium L. juice. Food Chem. 2011, 124, 576–582. [Google Scholar] [CrossRef]
- Gournelis, D. Flavonoids of Erica verticillata. J. Nat. Prod. 1995, 58, 1065–1069. [Google Scholar] [CrossRef]
- Bohm, B.A.; Saleh, A.M. The flavonoids of Cladothamnus pyrolaeflorus. Can. J. Bot. 1972, 50, 2081–2083. [Google Scholar] [CrossRef]
- Shibata, H.; Sakamoto, Y.; Oka, M.; Kono, Y. Natural antioxidant, chlorogenic acid, protects against DNA breakage caused by monochloramine. Biosci. Biotecnhol. Biochem. 1999, 63, 1295–1297. [Google Scholar] [CrossRef]
- Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishna, A.; Ravishankar, G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contreras, R.A.; Köhler, H.; Pizarro, M.; Zúiga, G.E. In Vitro Cultivars of Vaccinium corymbosum L. (Ericaceae) are a Source of Antioxidant Phenolics. Antioxidants 2015, 4, 281-292. https://doi.org/10.3390/antiox4020281
Contreras RA, Köhler H, Pizarro M, Zúiga GE. In Vitro Cultivars of Vaccinium corymbosum L. (Ericaceae) are a Source of Antioxidant Phenolics. Antioxidants. 2015; 4(2):281-292. https://doi.org/10.3390/antiox4020281
Chicago/Turabian StyleContreras, Rodrigo A., Hans Köhler, Marisol Pizarro, and Gustavo E. Zúiga. 2015. "In Vitro Cultivars of Vaccinium corymbosum L. (Ericaceae) are a Source of Antioxidant Phenolics" Antioxidants 4, no. 2: 281-292. https://doi.org/10.3390/antiox4020281
APA StyleContreras, R. A., Köhler, H., Pizarro, M., & Zúiga, G. E. (2015). In Vitro Cultivars of Vaccinium corymbosum L. (Ericaceae) are a Source of Antioxidant Phenolics. Antioxidants, 4(2), 281-292. https://doi.org/10.3390/antiox4020281