HPLC-DAD Phenolic Characterization and Antioxidant Activities of Ripe and Unripe Sweet Orange Peels
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Reagents
2.2. Orange Peel Powder Production
2.3. Decoction
2.4. HPLC-DAD Analysis
Quantification of Compounds
2.5. In vitro Antioxidant Studies of Unripe and Ripe Orange Peel
2.5.1. Determination of Total Phenol Content
2.5.2. Determination of Total Flavonoid Content
2.5.3. Determination of Ferric Reducing Antioxidant Property
2.5.4. ABTS* Scavenging Ability
2.5.5. DPPH Free Radical Scavenging Ability
2.5.6. Fenton Reaction (Degradation of Deoxyribose)
2.5.7. Fe2+ Chelation Assay
2.5.8. Lipid Peroxidation Assay
2.6. Statistical Analysis
3. Results and Discussion
3.1. Identification and Quantification of Phenolics Using HPLC-DAD
Compounds | Unripe Orange Peel (mg/g) | Ripe Orange Peel (mg/g) |
---|---|---|
Catechin | 5.91 ± 0.03 c,B | 12.49 ± 0.01 c,A |
Caffeic acid | 3.45 ± 0.01 d,A | 3.57 ± 0.02 e,A |
Naringin | 3.58 ± 0.02 d,B | 5.71 ± 0.02 d,A |
Epicatechin | 3.21 ± 0.01 d,B | 6.08 ± 0.01 d,A |
Rutin | 18.65 ± 0.03 a,A | 17.93 ± 0.03 b,B |
Quercitrin | 18.77 ± 0.01 a,B | 22.61 ± 0.01 a,A |
Quercetin | 10.39 ± 0.01 b,B | 14.03 ± 0.02 b,A |
Kaempferol | 5.86 ± 0.02 c,A | 3.76 ± 0.03 e,B |
Luteolin | 3.19 ± 0.03 d,B | 5.83 ± 0.01 d,A |
Compounds | Concentration Range mg/mL | Standard Curves | Correlation Coefficient (r) | LOD µg/mL | LOQ µg/mL |
---|---|---|---|---|---|
Catechin | 0.030–0.350 | Y = 13067 X + 1281.9 | 0.9997 | 0.017 | 0.056 |
Caffeic acid | 0.030–0.350 | Y = 11961 X + 1187.0 | 0.9998 | 0.026 | 0.090 |
Naringin | 0.025–0.250 | Y = 12647 X + 1346.9 | 0.9994 | 0.011 | 0.037 |
Epicatechin | 0.030–0.350 | Y = 11983 X + 1162.5 | 0.9999 | 0.032 | 0.105 |
Rutin | 0.025–0.250 | Y = 12706 X + 1384.5 | 0.9999 | 0.028 | 0.096 |
Quercitrin | 0.025–0.250 | Y = 11893 X + 1187.6 | 0.9997 | 0.009 | 0.034 |
Quercetin | 0.025–0.250 | Y = 13507 X + 1271.9 | 0.9997 | 0.019 | 0.063 |
Kaempferol | 0.025–0.250 | Y = 13509 X + 1305.8 | 0.9991 | 0.021 | 0.069 |
Luteolin | 0.025–0.250 | Y = 11865 X + 1259.6 | 0.9998 | 0.035 | 0.118 |
3.2. In vitro Antioxidant Studies of Unripe and Ripe Orange Peel
ANTIOXIDANT PROPERTIES | UNRIPE | RIPE |
---|---|---|
Total phenol content (mgGAE/g) | 5.27 ± 0.03 b | 9.40 ± 0.01 a |
Total flavonoid content (mgQE/g) | 3.30 ± 0.30 b | 4.20 ± 0.02 a |
ABTS* scavenging ability (mmol/TEAC g) | 14.68 ± 0.01 b | 16.89 ± 0.02 a |
FRAP (mg/GAE100 g) | 70.69 ± 0.01 b | 91.38 ± 0.01 a |
ANTIOXIDANT PARAMETERS | UNRIPE | RIPE |
---|---|---|
DPPH* | 2.71 ± 0.03 a | 2.23 ± 0.03 b |
OH* | 0.67 ± 0.02 a | 0.57 ± 0.03 b |
Fe2+ Chelation | 0.57 ± 0.02 a | 0.49 ± 0.01 b |
Malondialdehyde (MDA) | 0.63 ± 0.06 a | 0.50 ± 0.01 b |
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Iqbal, S.; Haleem, S.; Akhtar, M.; Zia-ul-Haq, M.; Akbar, J. Efficiency of pomegranate peel extracts in stabilization of sunflower oil under accelerated conditions. Food Res. Int. 2008, 41, 194–200. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, D. Antioxidant activities of different fractions of polysaccharide purified from Gynostemma pentaphyllum Makino. Carbohydr. Polym. 2007, 68, 54–58. [Google Scholar] [CrossRef]
- Hall, C.A.; Cuppet, S.L. Strcture activities of natural antioxidants. In Antioxidant Methodology in vivo and in vitro Concepts; Aruoma, O.I., Cuppet, S.L., Eds.; Amer Oil Chemists Society: Champaign city, IL, USA, 1997; pp. 2–29. [Google Scholar]
- Qi, H.M.; Zhang, Q.B.; Zhao, T.T.; Chenc, R.; Zhang, H.; Niu, X.Z. Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro. Int. J. Biol. Macromol. 2005, 37, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Ehler, S.A. Citrus and its benefits. J. Bot. 2011, 5, 201–207. [Google Scholar]
- Topuz, A.; Topakci, M.; Canakci, M.; Akinci, I.; Ozdemir, F. Physical and nutritional properties of four orange varieties. J. Food Eng. 2005, 66, 519–523. [Google Scholar] [CrossRef]
- Li, S.; Lo, C.; Ho, C. Hydroxylated Polymethoxyflavones and Methylated Flavonoids in Sweet Orange (Citrus sinensis) Peel. J. Agric. Food Chem. 2006, 54, 4176–4185. [Google Scholar] [CrossRef] [PubMed]
- Marin, F.R.; Martinez, M.T.; Uribesalgo, S.C.; Frutos, M.J. Changes in nutraceutical composition of lemon juices according to different industrial extraction systems. Food Chem. 2002, 78, 319–324. [Google Scholar] [CrossRef]
- Albishi, T.; John, J.A.; Al-Khalifa, A.S.; Shahidi, F. Phenolic content and antioxidant activities of selected potato varieties and their processing by-products. J. Funct. Foods. 2013, 5, 590–600. [Google Scholar] [CrossRef]
- Sawalha, S.M.S.; Arráez-Román, D.; Segura-Carretero, A. Quantification of main phenolic compounds in sweet and bitter orange peel using CE−MS/MS. Food Chem. 2009, 116, 567–574. [Google Scholar] [CrossRef]
- Tapas, A.R.; Sakarkar, D.M.; Kakde, R.B. Flavonoids as nutraceuticals: A review. Trop. J. Pharm. Res. 2008, 7, 1089–1099. [Google Scholar] [CrossRef]
- Hanasaki, Y.; Ogawa, S.; Fukui, S. The correlation between active oxygen scavenging and antioxidative effects of flavonoids. Free Radic. Biol. Med. 1994, 16, 845–850. [Google Scholar] [CrossRef]
- La Casa, C.; Villegas, I.; de la Lastra, C.; Motilva, V.; Calero, M.J. Evidence for protective and antioxidant properties of rutin, a natural flavone, against ethanol induced gastric lesions. J. Ethnopharm. 2000, 71, 45–53. [Google Scholar] [CrossRef]
- Jiang, P.; Burczynski, F.; Campbell, C.; Pierce, G.; Austria, J.A.; Briggs, C.J. Rutin and flavonoid contents in three buckwheat species Fagopyrum esculentum, F. tataricum, and F. Homotropicum and their protective effects against lipid peroxidation. Food Res. Int. 2007, 40, 356–364. [Google Scholar] [CrossRef]
- Cailet, S.; Yu, H.; Lessard, S.; Lamoureux, G.; Ajdukovic, D.; Lacroix, M. Fenton reaction applied for screening natural antioxidants. Food Chem. 2007, 100, 542–552. [Google Scholar] [CrossRef]
- Peng, X.; Zheng, Z.; Cheng, K.W.; Shan, F.; Ren, G.X.; Chen, F. Inhibitory effect of mung bean extract and its constituents vitexin and isovitexin on the formation of advanced glycation endproducts. Food Chem. 2008, 106, 475–481. [Google Scholar] [CrossRef]
- Ferrali, M.; Signorini, C.; Caciotti, B. Protection against oxidative damage of erythrocyte membrane by the flavonoid quercetin and its relation to iron chelating activity. FEBS Lett. 1997, 416, 123–129. [Google Scholar] [CrossRef]
- Boligon, A.A.; Athayde, M.L. Importance of HPLC in analysis of plants extracts. Austin Chromatogr. 2014, 1, 1–2. [Google Scholar]
- Giuffrè, A.M. HPLC-DAD detection of changes in phenol content of red berry skins during grape ripening. Eur. Food Res. Technol. 2013, 237, 555–564. [Google Scholar] [CrossRef]
- Giuffrè, A.M. High performance liquid chromatography-diode array detector (HPLC-DAD) detection of trans-resveratrol: Evolution during ripening in grape berry skins. Afr. J. Agric. Res. 2013, 8, 224–229. [Google Scholar]
- Albano, C.; Negro, C.; Tommasi, N.; Gerardi, C.; Mita, G.; Miceli, A.; de Bellis, L.; Blando, F. Betalains, phenols and antioxidant capacity in Cactus Pear [Opuntia ficus-indica (L.) Mill.] fruits from Apulia (South Italy) Genotypes. Antioxidants 2015, 4, 269–280. [Google Scholar] [CrossRef]
- Di Stefano, R.; Cravero, M.C. The separation of hydroxycinnamates in wine. Sci. Aliment. 1992, 12, 139–144. [Google Scholar]
- Chen, Z.T.; Chu, H.L.; Chyau, C.C.; Chu, C.C.; Duh, P.D. Protective effects of sweet orange (Citrus sinensis) peel and their bioactive compounds on oxidative stress. Food Chem. 2012, 135, 2119–2127. [Google Scholar] [CrossRef] [PubMed]
- Oboh, G.; Ademosun, A.O. Comparative studies on the ability of crude polyphenols from some Nigerian citrus peels to prevent lipid peroxidation—In vitro. Asian J. Biochem. 2006, 1, 169–177. [Google Scholar] [CrossRef]
- Van-Acker, S.A.; van Den, D.J.; Tromp, M.N.; Bast, A. Structural aspects of antioxidant activity of flavanoids. Free Radic. Biol. Med. 2011, 35, 331–342. [Google Scholar]
- Pereira, R.P.; Boligon, A.A.; Appel, A.S.; Fachinetto, R.; Ceron, C.S.; Tanus-Santos, J.E.; Athayde, M.L.; Rocha, J.B.T. Chemical composition, antioxidant and anticholinesterase activity of Melissa officinalis. Ind. Crop Prod. 2014, 53, 34–45. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofor, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteau reagent. Method Enzymol. 1999, 299, 152–178. [Google Scholar]
- Oyaizu, M. Studies on products of browning reaction: Antioxidative activity of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorisation assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Gyamfi, M.A.; Yonamine, M.; Aniya, Y. Free-radical scavenging action of Medicinal herbs from Ghana: Thonningia sanguinea on experimentally-induced liver injuries. Gen. Pharmacol. 1999, 32, 661–667. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C.; Aruoma, O.I. The deoxyribose method: A sample test tube assay for determination of rate constant for reaction of hydroxyl radicals. Anal. Biochem. 1987, 165, 215–219. [Google Scholar] [CrossRef]
- Minotti, G.; Aust, S.D. An investigation into the mechanism of citrate-Fe2+-dependent lipid peroxidation. Free Radic. Biol. Med. 1987, 3, 379–387. [Google Scholar] [CrossRef]
- Belle, N.A.V.; Dalmolin, G.D.; Fonini, G.; Rubim, M.A.; Rocha, J.B.T. Polyamines reduces lipid peroxidation induced by different prooxidant agents. Brain Res. 2004, 1008, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Ding, M.; Zhao, J.S.; Bowman, L.; Lu, Y.J.; Shi, X.L. Inhibition of AP-1and MAPK signaling and activation of Nrf2/ARE pathway by quercitrin. Int. J. Oncol. 2010, 36, 59–67. [Google Scholar] [PubMed]
- Ben, O.N.; Roblain, D.; Chammen, N.; Thonart, P.; Hamdi, M. Antioxidant phenolic compounds loss during the fermentation of Chétoui olives. Food Chem. 2009, 116, 662–669. [Google Scholar] [CrossRef]
- Hanen, F.; Riadh, K.; Samia, O.; Sylvain, G.; Christian, M.; Chedly, A. Inter specific variability of antioxidant activities and phenolic composition in Mesembryanthemum genus. Food Chem. Toxicol. 2009, 47, 2308–2313. [Google Scholar] [CrossRef] [PubMed]
- Romero, M.P.; Tovar, M.J.; Girona, J.; Motilva, M.J. Changes in the HPLC phenolic profile of virgin olive oil from young trees (Olea europaea L. Cv. Arbequina) grown under different deficit irrigation strategies. J. Agric. Food Chem. 2002, 50, 5349–5354. [Google Scholar] [CrossRef] [PubMed]
- Vinha, A.F.; Ferreres, F.; Silva, B.M.; Valentão, P.; Gonçalves, A.; Pereira, J.A.; Andrade, P.B. Phenolic profiles of Portuguese olive fruits (Olea europaea L.): Influences of cultivar and geographical origin. Food Chem. 2005, 89, 561–568. [Google Scholar] [CrossRef]
- Raffo, A.; Leonardi, C.; Fogliano, V.; Ambrosino, P.; Salucci, M.; Gennaro, L.; Bugianesi, R.; Giuffrida, F.; Quaglia, G. Nutritional value of cherry tomatoes (Lycopersicon esculentum Cv. Naomi F1) harvested at different ripening stages. J. Agric. Food Chem. 2002, 50, 6550–6556. [Google Scholar] [CrossRef]
- Pokorny, J.; Yanishlieva, N.; Gordon, M. Antioxidants in Food, Practical Applications; Woodhead Publishing Ltd.: Cambridge, UK, 2001; pp. 145–171. [Google Scholar]
- Sun, J.; Chu, Y.F.; Wu, X.; Liu, R.H. Antioxidant and anti-proliferation activities of common fruits. J. Agric. Food Chem. 2002, 50, 7449–7454. [Google Scholar] [CrossRef] [PubMed]
- Oboh, G.; Akindahunsi, A.A. Change in ascorbic acid, total phenol and antioxidant activity of sundried commonly consumed green leafy vegetables in Nigeria. J. Nutr. Health 2004, 18, 29–36. [Google Scholar] [CrossRef]
- Oboh, G. Effect of blanching on the antioxidant properties of some tropical green leafy vegetables. LWT—Food Sci. Tech. 2005, 38, 513–517. [Google Scholar] [CrossRef]
- Kim, H.; Moon, J.Y.; Kim, H.; Lee, D.S.; Cho, M.; Choi, H.K.; Kim, Y.S.; Mosaddik, A.; Cho, S.K. Antioxidant and anti-proliferative activities of mango (Mangifera indica L.) flesh and peel. Food Chem. 2010, 121, 429–436. [Google Scholar] [CrossRef]
- Li, B.B.; Smith, B.; Hossain, M. Extraction of phenolics from citrus peels. I. Solvent extraction Method. Sep. Purif. Technol. 2006, 48, 182–188. [Google Scholar] [CrossRef]
- Oboh, G.; Raddatz, H.; Henle, T. Antioxidant properties of polar and non-polar extracts of some tropical green leafy vegetables. J. Sci. Food Agric. 2008, 88, 2486–2492. [Google Scholar] [CrossRef]
- Oboh, G.; Rocha, J.B.T. Polyphenols in red pepper (Capsicum annuum var aviculare (Tepin) and their protective effect on some pro-oxidants induced lipid peroxidation in brain and liver. Eur. Food Res. Technol. 2007, 225, 239–247. [Google Scholar] [CrossRef]
- Oboh, G.; Rocha, J.B.T. Antioxidant and neuroprotective properties of sour tea (Hibiscuss abdariffa, calyx) and green tea (Camellia sinensis) on some pro-oxidants induced lipid peroxidation in brain in vitro. Food Biophys. 2008, 3, 382–389. [Google Scholar] [CrossRef]
- Lindsay, R.C. Food additives. In Food Chemistry, 2nd ed.; Fennema, O.R., Ed.; Marcel Dekker Inc.: New York, NY, USA, 1996; pp. 778–780. [Google Scholar]
- Yuan, Y.V.; Bone, D.E.; Carrington, M.F. Antioxidant activity of pulse (Palmaria palmata) extract evaluated in vitro. Food Chem. 2005, 91, 485–494. [Google Scholar] [CrossRef]
- Gülçin, I. Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology 2006, 217, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Bayır, H.; Kochanek, P.M.; Kagan, V.E. Oxidative stress in immature brain after traumatic brain injury. Int. J. Dev. Neurosci. 2006, 28, 420–431. [Google Scholar] [CrossRef]
- Oboh, G.; Rocha, J.B.T. Antioxidant in foods: A new challenge for food processors. In Leading Edge Antioxidants Research; Panglossi, H.V., Ed.; Nova Science Publishers Inc.: New York, NY, USA, 2007; pp. 35–64. [Google Scholar]
- Puntel, R.L.; Nogueira, C.W.; Rocha, J.B.T. Krebs cycle intermediates modulate thiobarbituricReactive species (TBARS) production in rat brain in vitro. Neurochem. Res. 2005, 30, 225–235. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omoba, O.S.; Obafaye, R.O.; Salawu, S.O.; Boligon, A.A.; Athayde, M.L. HPLC-DAD Phenolic Characterization and Antioxidant Activities of Ripe and Unripe Sweet Orange Peels. Antioxidants 2015, 4, 498-512. https://doi.org/10.3390/antiox4030498
Omoba OS, Obafaye RO, Salawu SO, Boligon AA, Athayde ML. HPLC-DAD Phenolic Characterization and Antioxidant Activities of Ripe and Unripe Sweet Orange Peels. Antioxidants. 2015; 4(3):498-512. https://doi.org/10.3390/antiox4030498
Chicago/Turabian StyleOmoba, Olufunmilayo Sade, Rebeccah Olajumoke Obafaye, Sule Ola Salawu, Aline Augusti Boligon, and Margareth Linde Athayde. 2015. "HPLC-DAD Phenolic Characterization and Antioxidant Activities of Ripe and Unripe Sweet Orange Peels" Antioxidants 4, no. 3: 498-512. https://doi.org/10.3390/antiox4030498
APA StyleOmoba, O. S., Obafaye, R. O., Salawu, S. O., Boligon, A. A., & Athayde, M. L. (2015). HPLC-DAD Phenolic Characterization and Antioxidant Activities of Ripe and Unripe Sweet Orange Peels. Antioxidants, 4(3), 498-512. https://doi.org/10.3390/antiox4030498