Study of the Selectivity and Bioactivity of Polyphenols Using Infrared Assisted Extraction from Apricot Pomace Compared to Conventional Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Extraction Experiments
2.2.1. Infrared-Assisted Extraction
2.2.2. Solid-Liquid Extraction
2.2.3. Ultrasound Extraction
2.2.4. Microwave Extraction
2.3. Analysis
2.3.1. Dry Matter Content
2.3.2. Quantification of Total Polyphenol Content by the Folin-Ciocalteu Method
2.3.3. Determination of the Antiradical Activity
2.3.4. Determination of Tannin Concentration
2.3.5. Determination of Total Flavonoids (TF)
2.3.6. HPLC-DAD Analysis
2.3.7. Bacterial Strains, Culture Media, and Growth Conditions
2.3.8. Preparation of the Bacterial Inocula for Minimal Inhibitory Concentration (MIC)
2.3.9. Phenolic Extracts Preparation for MIC Assessment
2.4. Scanning Electron Microscopy (SEM)
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effect of Different Extraction Techniques on Polyphenols, Tannins, and Flavonoids Concentrations in Apricot Pomace Extracts
3.2. Scanning Electron Microscopy of the Apricot Pomace Extracted by Different Techniques
3.3. Antiradical Activity of the Apricot Pomace Extracted by Different Techniques
3.4. Antimicrobial Activity of the Apricot Pomace Extracted by Different Techniques
3.5. Quantification of Polyphenol Extracts by High-Performance Liquid Chromatography
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for Extraction of Bioactive Compounds from Plant Materials: A Review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Mason, T.J. Ultrasound in synthetic organic chemistry. Chem. Soc. Rev. 2000, 26, 443–451. [Google Scholar] [CrossRef]
- Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and opportunities for ultrasound assisted extraction in the food industry—A review. Innov. Food Sci. Emerg. Technol. 2008, 9, 161–169. [Google Scholar] [CrossRef]
- Wang, Y.; Xi, G.-S.; Zheng, Y.-C.; Miao, F.-S. Microwave-assisted extraction of flavonoids from Chinese herb Radix Puerariae (Ge Gen). J. Med. Plant Res. 2010, 4, 304–308. [Google Scholar]
- Gallo, M.; Ferracane, R.; Graziani, G.; Ritieni, A.; Fogliano, V. Microwave assisted extraction of phenolic compounds from four different spices. Molecules 2010, 15, 6365–6374. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.P.; Liu, R.L.; Cui, H.Y.; Zhang, Z.Q. Microwave-assisted extraction and LC/MS analysis of phenolic antioxidants in sweet apricot (Prunus armeniaca L.) kernel skins. J. Liq. Chromatogr. Relat. Technol. 2013, 36, 2182–2195. [Google Scholar]
- Escobedo, R.; Miranda, R.; Martínez, J. Infrared irradiation: Toward green chemistry, a review. Int. J. Mol. Sci. 2016, 17, 453. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Duan, G.; Xie, M.; Chen, B.; Li, Y. Infrared-assisted extraction coupled with high-performance liquid chromatography for simultaneous determination of eight active compounds in Radix Salviae miltiorrhizae. J. Sep. Sci. 2010, 33, 2888–2897. [Google Scholar] [CrossRef] [PubMed]
- Madrau, M.A.; Piscopo, A.; Sanguinetti, A.M.; Del Caro, A.; Poiana, M.; Romeo, F.V.; Piga, A. Effect of drying temperature on polyphenolic content and antioxidant activity of apricots. Eur. Food Res. Technol. 2009, 228, 441–448. [Google Scholar] [CrossRef]
- Slinkard, K.; Singleton, V. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar]
- Zhang, D.; Hamauzu, Y. Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chem. 2004, 88, 503–509. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Dubourdieu, D.; Donèche, B.; Lonvaud, A. Traité d’oenologie-Tome 1 - 6e éd. - Microbiologie du vin. Vinifications. Available online: https://www.dunod.com/sciences-techniques/traite-d-oenologie-tome-1-microbiologie-du-vin-vinifications (accessed on 23 October 2018).
- Michel, T.; Destandau, E.; Elfakir, C. Evaluation of a simple and promising method for extraction of antioxidants from sea buckthorn (Hippophaë rhamnoides L.) berries: Pressurised solvent-free microwave assisted extraction. Food Chem. 2011, 126, 1380–1386. [Google Scholar] [CrossRef]
- Vizzotto, M.; Cisneros-zevallos, L.; Byrne, D.H. Large Variation Found in the Phytochemical and Antioxidant Activity of Peach and Plum Germplasm. J. Am. Soc. Hortic. Sci. 2007, 132, 334–340. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Third Informational Supplement (CLSI Document M100-S23). Clinical and Laboratory Standards Institute 33. 2013. Available online: http://reflab.yums.ac.ir/uploads/clsi_m100-s23-2013.pdf (accessed on 23 October 2018).
- Cai, Y.; Yu, Y.; Duan, G.; Li, Y. Study on infrared-assisted extraction coupled with high performance liquid chromatography (HPLC) for determination of catechin, epicatechin, and procyanidin B2 in grape seeds. Food Chem. 2011, 127, 1872–1877. [Google Scholar] [CrossRef]
- Zhang, H.F.; Yang, X.H.; Wang, Y. Microwave assisted extraction of secondary metabolites from plants: Current status and future directions. Trends Food Sci. Technol. 2011, 22, 672–688. [Google Scholar] [CrossRef]
- Ferhat, M.A.; Meklati, B.Y.; Smadja, J.; Chemat, F. An improved microwave Clevenger apparatus for distillation of essential oils from orange peel. J. Chromatogr. A 2006, 1112, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Dent, M.; Dragović-Uzelac, V.; Garofulić, E.I.; Bosiljkov, T.; Ježek, D.; Brnčić, M. Comparison of Conventional and Ultrasound-assisted Extraction Techniques on Mass Fraction of Phenolic Compounds from Sage (Salvia officinalis L.). Chem. Biochem. Eng. Q. 2015, 29, 475–484. [Google Scholar] [CrossRef]
- Rajha, H.N.; Louka, N.; El Darra, N.; Hobaika, Z.; Boussetta, N.; Vorobiev, E.; Maroun, R.G. Multiple Response Optimization of High Temperature, Low Time Aqueous Extraction Process of Phenolic Compounds from Grape Byproducts. Food Nutr. Sci. 2014, 5, 351–360. [Google Scholar] [CrossRef]
- Hasmida, M.N.; Nur Syukriah, A.R.; Liza, M.S.; Mohd Azizi, C.Y. Effect of different extraction techniques on total phenolic content and antioxidant activity of quercus infectoria galls. Int. Food Res. J. 2014, 21, 1039–1043. [Google Scholar]
- Naz, S.; Ahmad, S.; Ajaz Rasool, S.; Asad Sayeed, S.; Siddiqi, R. Antibacterial activity directed isolation of compounds from Onosma hispidum. Microbiol. Res. 2006, 161, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Delcour, A.H. Outer Membrane Permeability and Antibiotic Resistance. Biochim. Biophys. Acta 2009, 1794, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Russell, A.D. Similarities and differences in the responses of microorganisms to biocides 1. J. Antimicrob. Chemother. 2003, 52, 750–763. [Google Scholar] [CrossRef] [PubMed]
- Veberic, R.; Stampar, F. Selected polyphenols in fruits of different cultivars of genus Prunus. Phyt. Ann. Rei Bot. 2005, 45, 375–383. [Google Scholar]
- Sun, T.; Ho, C.T. Antioxidant activities of buckwheat extracts. Food Chem. 2005, 90, 743–749. [Google Scholar] [CrossRef]
- Maier, T.; Schieber, A.; Kammerer, D.R.; Carle, R. Residues of grape (Vitis vinifera L.) seed oil production as a valuable source of phenolic antioxidants. Food Chem. 2009, 112, 551–559. [Google Scholar] [CrossRef]
Bacteria/POMs | Minimum Inhibitory Concentration (µg/mL) | |||
---|---|---|---|---|
Infrared µg/mL | Microwave µg/mL | Ultrasound µg/mL | Solid-Liquid µg/mL | |
Methicillin-resistant Staphylococcus aureus (MRSA 2) (gram +) | 10 | 20 | 20 | - |
Staphylococcus aureus 2030 (gram +) | 10 | 20 | 20 | - |
Methicillin-resistant Staphylococcus epidermidis MRSE 2380 (gram +) | 10 | 20 | 20 | 20 |
Staphylococcus epidermidis 2047 (gram +) | 10 | 10 | 10 | 20 |
Klebsiella 118 metallo beta lactamse (gram −) | - | - | - | - |
Klebsiella (gram −) | - | - | - | - |
Escherichia coli ESBL 2238 (gram −) | - | - | - | - |
Escherichia coli (gram −) | 10 | 20 | 20 | - |
Techniques | Rutin (μg/g DM) | Catechin (μg/g DM) | Epicatechin (μg/g DM) |
---|---|---|---|
Solid-liquid | 1.6 a | Nd | Nd |
Ultrasound | 2.1 b | 1.5 c | Nd |
Microwave | 1.7 c | 2.1 b | Nd |
Infrared | 2.6 d | 3.1 d | 4 f |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheaib, D.; El Darra, N.; Rajha, H.N.; El-Ghazzawi, I.; Mouneimne, Y.; Jammoul, A.; Maroun, R.G.; Louka, N. Study of the Selectivity and Bioactivity of Polyphenols Using Infrared Assisted Extraction from Apricot Pomace Compared to Conventional Methods. Antioxidants 2018, 7, 174. https://doi.org/10.3390/antiox7120174
Cheaib D, El Darra N, Rajha HN, El-Ghazzawi I, Mouneimne Y, Jammoul A, Maroun RG, Louka N. Study of the Selectivity and Bioactivity of Polyphenols Using Infrared Assisted Extraction from Apricot Pomace Compared to Conventional Methods. Antioxidants. 2018; 7(12):174. https://doi.org/10.3390/antiox7120174
Chicago/Turabian StyleCheaib, Dina, Nada El Darra, Hiba N. Rajha, Iman El-Ghazzawi, Youssef Mouneimne, Adla Jammoul, Richard G. Maroun, and Nicolas Louka. 2018. "Study of the Selectivity and Bioactivity of Polyphenols Using Infrared Assisted Extraction from Apricot Pomace Compared to Conventional Methods" Antioxidants 7, no. 12: 174. https://doi.org/10.3390/antiox7120174
APA StyleCheaib, D., El Darra, N., Rajha, H. N., El-Ghazzawi, I., Mouneimne, Y., Jammoul, A., Maroun, R. G., & Louka, N. (2018). Study of the Selectivity and Bioactivity of Polyphenols Using Infrared Assisted Extraction from Apricot Pomace Compared to Conventional Methods. Antioxidants, 7(12), 174. https://doi.org/10.3390/antiox7120174