Evening Primrose (Oenothera biennis) Biological Activity Dependent on Chemical Composition
Abstract
:1. Introduction
2. Chemical Composition of Evening Primrose (Oenothera biennis)
3. Biological Activity of Evening Primrose Oil (Oenothera biennis)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mihulka, S.; Pysek, P. Invasion history of Oenothera congeners in Europe: A comparative study of spreading rates in the last 200 years. J. Biogeogr. 2001, 28, 597–609. [Google Scholar] [CrossRef]
- Granica, S.; Czerwińska, M.E.; Piwowarski, J.P.; Ziaja, M.; Kiss, A.K. Chemical composition, antioxidative and anti-inflammatory activity of extracts prepared from aerial parts of Oenothera biennis L. and Oenothera paradoxa Hudziok obtained after seeds cultivation. J. Agric. Food Chem. 2013, 61, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.T.J.; Agrawal, A.A.; Maron, J.L.; Salminen, J.P. Heritability, covariation and natural selection on 24 traits of common evening primrose (Oenothera biennis) from a field experiment. J. Evol. Biol. 2009, 22, 1295–1307. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Kaur, R.; Sharma, S.K. An updated review on the Oenothera genus. J. Chin. Integr. Med. 2012, 10, 717–725. [Google Scholar] [CrossRef]
- Ahmad, A.; Singh, D.K.; Fatima, K.; Tandon, S.; Luqman, S. New constituents from the roots of Oenothera biennis and their free radical scavenging and ferric reducing activity. Ind. Crops Prod. 2014, 58, 125–132. [Google Scholar] [CrossRef]
- Christie, W.W. The analysis of evening primrose oil. Ind. Crops Prod. 1999, 10, 73–83. [Google Scholar] [CrossRef]
- Zadernowski, R.; Polakowska-Nowak, H.; Rashed, A.A.; Kowalska, M. Lipids from evening primrose and borage seeds. Oilseed Crops 1999, 20, 581–589. [Google Scholar]
- Montserrat-de la Paz, S.; Fernandez-Arche, M.A.; Angel-Martin, M.; Garcia-Gimenez, M.D. Phytochemical characterization of potential nutraceutical ingredients from Evening Primrose oil (Oenothera biennis L.). Phytochem. Lett. 2014, 8, 158–162. [Google Scholar] [CrossRef]
- Zadernowski, R.; Naczk, M.; Nowak-Polakowska, H. Phenolic Acids of Borage (Borago officinalis L.) and Evening Primrose (Oenothera biennis L.). J. Am. Oil Chem. Soc. 2002, 79, 335–338. [Google Scholar] [CrossRef]
- Hudson, B.J.F. Evening primrose (Oenothera spp.) oil and seed. J. Am. Oil Chem. Soc. 1984, 61, 540–543. [Google Scholar] [CrossRef]
- Białek, M.; Rutkowska, J. The importance of γ-linolenic acid in the prevention and treatment. Adv. Hyg. Exp. Med. 2015, 69, 892–904. [Google Scholar] [CrossRef]
- Muggli, R. Systemic evening primrose oil improves the biophysical skin parameters of healthy adults. Int. J. Cosmet. Sci. 2005, 27, 243–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kendall, A.C.; Kiezel-Tsugunova, M.; Brownbridge, L.C.; Harwood, J.L.; Nicolaou, A. Lipid functions in skin: Differential effects of n-3 polyunsaturated fatty acids on cutaneous ceramides, in a human skin organ culture model. Biochim. Biophys. Acta 2017, 1859, 1679–1689. [Google Scholar] [CrossRef] [PubMed]
- Mahfouz, M.M.; Kummerow, F.A. Effect of magnesium deficiency on delta 6 desaturase activity and fatty acid composition of rat liver microsomes. Lipids 1989, 24, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Zietemann, V.; Kröger, J.; Enzenbach, C.; Jansen, E.; Fritche, A.; Weiker, C.; Boeing, H.; Schylze, M.B. Genetic variation of the FADS1 FADS2 gene cluster and n-6 PUFA composition in erythrocyte membranes in the European Prospective Investigation into Cancer and Nutrition-Potsdam study. Br. J. Nutr. 2010, 104, 1748–1759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, L.; Gordon, J.S.; Hsuan, C.; Stenn, K.; Prouty, S.M. Identification of the Δ-6 desaturase of human sebaceous glands: Expression and enzyme activity. J. Investig. Dermatol. 2003, 120, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Sampath, H.; Ntambi, J.M. The role of fatty acid desaturases in epidermal metabolism. Dermatoendocrinol 2011, 3, 62–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolaou, A. Eicosanoids in skin inflammation. Prostaglandins Leukot. Essent. Fat. Acids 2013, 88, 131–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williard, D.E.; Nwankwo, J.O.; Kaduce, T.L.; Harmon, S.D.; Irons, M.; Moser, H.W.; Raymond, G.V.; Spector, A.R. Identification of a fatty acid Δ6-desaturase deficiency in human skin fibroblasts. J. Lipid Res. 2001, 42, 501–508. [Google Scholar] [PubMed]
- Huang, S.; Liu, R.; Niu, Y.; Hasi, A. Cloning and functional characterization of a fatty acid Δ6-desaturase from Oenothera biennis: Production of γ-linolenic acid by heterologous expression in Saccharomyces cerevisiae. Russ. J. Plant Phys. 2010, 57, 568–573. [Google Scholar] [CrossRef]
- Cho, H.P.; Nakamura, M.T.; Clarke, S.D. Cloning, expression, and nutritional regulation of the mammalian Delta-6 desaturase. J. Biol. Chem. 1999, 274, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Senapati, S.; Sabyasachi, B.; Gangopadhyay, D.N. Evening primrose oil is effective in atopic dermatitis: A randomized placebo-controlled trial. Indian J. Dermatol. Venereol. Leprol. 2008, 74, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Schlichte, M.J.; Vandersall, A.; Katta, R. Diet and eczema: A review of dietary supplements for the treatment of atopic dermatitis. Dermatol. Pract. Concept 2016, 6, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Lin, H.; Gu, Y. Multiple roles of dihomo-γ-linolenic acid against proliferation diseases. Lipids Health Dis. 2012, 14, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Fujiyama-Fujiwara, Y.; Ohmori, C.; Igarashi, O. Metabolism of γ-linolenic acid in primary cultures of rat hepatocytes and in Hep G2 cells. J. Nutr. Sci. Vitaminol. 1989, 35, 597–611. [Google Scholar] [CrossRef] [PubMed]
- Ziboh, V.A.; Naguwa, S.; Vang, K.; Wineinger, J.; Morrissey, B.M.; Watnik, M.; Gershwin, M.E. Suppression of leukotriene B4 generation by ex-vivo neutrophils isolated from asthma patients on dietary supplementation with gammalinolenic acid-containing borage oil: Possible implication in asthma. Clin. Dev. Immunol. 2004, 11, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Belch, J.J.; Hill, A. Evening primrose oil and borage oil in rheumatologic conditions. Am. J. Clin. Nutr. 2000, 71, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Luo, J.; Zang, W.; Chen, D.; Xu, H.; Shi, H.; Jing, H. Gamma-Linolenic Acid Suppresses NF-κB Signaling via CD36 in the Lipopolysaccharide-Induced Inflammatory Response in Primary Goat Mammary Gland Epithelial Cells. Inflammation 2016, 39, 1225–1237. [Google Scholar] [CrossRef] [PubMed]
- Surette, M.E.; Koumenis, I.L.; Edens, M.B.; Tramposch, K.M.; Clayton, B.; Bowton, D.; Chilton, F.H. Inhibition of leukotriene biosynthesis by a novel dietary fatty acid formulation in patients with atopic asthma: A randomized, placebo-controlled, parallel-group, prospective trial. Clin. Ther. 2003, 25, 972–979. [Google Scholar] [CrossRef]
- Khajeh, M.; Rahbarghazi, R.; Nouri, M.; Darabi, M. Potential role of polyunsaturated fatty acids, with particular regard to the signaling pathways of arachidonic acid and its derivatives in the process of maturation of the oocytes: Contemporary review. Biomed. Pharmacother. 2017, 94, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Kumlin, M.; Ingelman-Sunberg, M.; Wolk, A. Dietary long-chain n-3 fatty acids for the prevention of cancer: A review of potential mechanisms. Am. J. Clin. Nutr. 2004, 79, 935–945. [Google Scholar] [CrossRef] [PubMed]
- Nilsen, D.W.T.; Aarsetoey, H.; Ponitz, V.; Brugger-Andersen, T.; Staines, H.; Harris, W.S.; Grundt, H. The prognostic utility of dihomo-gamma-linolenic acid (DGLA) in patients with acute coronary heart disease. Int. J. Cardiol. 2017, 249, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Łuczaj, W.; Gęgotek, A.; Skrzydlewska, E. Antioxidants and HNE in redox homeostasis. Free Radic. Biol. Med. 2017, 111, 87–101. [Google Scholar] [CrossRef]
- Park, K.Y.; Ko, E.J.; Kim, I.S.; Li, K.; Kim, B.J.; Seo, S.J.; Kim, M.N.; Hong, C.K. The effect of evening primrose oil for the prevention of xerotic cheilitis in acne patients being treated with isotretinoin: A pilot study. Ann. Dermatol. 2014, 26, 706–712. [Google Scholar] [CrossRef] [PubMed]
- Antal, O.; Peter, M.; Hackler, L., Jr.; Man, I.; Szebeni, G.; Ayaydin, F.; Hideghety, K.; Vigh, L.; Kitajka, K.; Balogh, G.; et al. Lipidomic analysis reveals a radiosensitizing role of gamma-linolenic acid in glioma cells. Biochim. Biophys. Acta 2015, 1851, 1271–1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, U.N.; Rao, K.P. Effect of γ-linolenic acid and prostaglandins E1 on gamma-radiation and chemical-induced genetic damage to the bone marrow cells of mice. Prostaglandins Leukot. Essent Fat. Acids 2006, 74, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Menendez, J.A.; Vellon, L.; Colomer, R.; Lupu, R. Effect of γ-Linolenic Acid on the Transcriptional Activity of the Her-2/neu (erbB-2) Oncogene. J. Natl. Cancer Inst. 2005, 2, 1611–1615. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.C.; Lee, J.H.; Steeg, P.S. Clinical-translational strategies for the elevation of Nm23-H1 metastasis suppressor gene expression. Mol. Cell Biochem. 2009, 329, 115–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, W.G.; Hiscox, S.; Bryce, R.P.; Horrobin, D.F.; Mansel, R.E. The effects of n-6 polyunsaturated fatty acids on the expression of nm-23 in human cancer cells. Br. J. Cancer 1998, 77, 731–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyake, J.A.; Benadiba, M.; Colquhoun, A. Gamma-linolenic acid inhibits both tumour cell cycle progression and angiogenesis in the orthotopic C6 glioma model through changes in VEGF, Flt1, ERK1/2, MMP2, cyclin D1, pRb, p53 and p27 protein expression. Lipids Health Dis. 2009, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aragona, P.; Bucolo, S.; Spinella, R.; Giuffrida, S.; Ferreri, G. Systemic Omega-6 Essential Fatty Acid Treatment and PGE1 Tear Content in Sjögren’s Syndrome Patients, Investigative Ophthalmology & Visual Science. Investig. Ophthalmol. Vis. Sci. 2005, 46, 4474–4479. [Google Scholar] [CrossRef]
- Dasgupta, S.; Bhattacharyya, D.K. Dietary effect of γ-linolenic acid on the lipid profile of rat fed erucic acid rich oil. J. Oleo Sci. 2007, 56, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Ras, R.T.; Geleijnse, J.M.; Trautwein, E.A. LDL-cholesterol-lowering effect of plant sterols and stanols across different dose ranges: A metaanalysis of randomized controlled studies. Br. J. Nutr. 2014, 112, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Sivamani, R.K. Eicosanoids and Keratinocytes in Wound Healing. Adv. Wound Care 2014, 3, 476–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guimaraes, R.F.; Sales-Campos, H.; Nardini, V.; da Costa, T.A.; Fonseca, M.T.C.; Júnior, V.R.; Sorgi, C.A.; da Silva, J.S.; Chica, J.E.L.; Faccioli, L.H.; et al. The inhibition of 5-Lipoxygenase (5-LO) products leukotriene B4 (LTB4) and cysteinyl leukotrienes (cysLTs) modulates the inflammatory response and improves cutaneous wound healing. Clin. Immunol. 2018, 190, 74–83. [Google Scholar] [CrossRef] [PubMed]
Compound Name | Contents (%) |
---|---|
linoleic acid | 73.88 ± 0.09 |
γ-linolenic acid | 9.24 ± 0.05 |
oleic acid | 6.93 ± 0.02 |
palmitic acid | 6.31 ± 0.14 |
stearic acid | 1.88 ± 0.02 |
vaccenic acid | 0.81 ± 0.03 |
eicosenoic acid | 0.55 ± 0.01 |
eicosanoic acid | 0.31 ± 0.03 |
behenic acid | 0.10 ± 0.01 |
Acid Name | Included in | |||
---|---|---|---|---|
Free | Esters | Glycosides | Total | |
p-hydroxyphenyl acetic | n/a | 1.03 ± 0.18 | 0.26 ± 0.05 | 1.29 ± 0.19 |
p-hydroxybenzoic | 4.12 ± 0.25 | 0.38 ± 0.07 | 0.29 ± 0.10 | 4.79 ± 0.26 |
2-hydroxy-4-methoxybenzoic | 6.52 ± 0.30 | n/a | 0.83 ± 0.28 | 7.35 ± 0.41 |
caffeic | 6.48 ± 0.29 | 0.80 ± 0.14 | n/a | 7.51 ± 0.33 |
hydroxycaffeic | n/a | 0.77 ± 0.18 | n/a | 0.77 ± 0.18 |
m-coumaric | 4.90 ± 0.45 | 0.83 ± 0.21 | n/a | 5.73 ± 0.50 |
p-coumaric | 1.32 ± 0.10 | 1.96 ± 0.23 | 0.06 ± 0.06 | 3.34 ± 0.25 |
ferulic | 4.08 ± 0.30 | 0.72 ± 0.09 | 0.22 ± 0.06 | 5.02 ± 0.32 |
gallic | 1.87 ± 0.22 | 7.03 ± 0.82 | 5.91 ± 1.56 | 14.81 ± 1.78 |
protocatechuic | 50.28 ± 0.77 | 10.96 ± 0.34 | 2.16 ± 2.42 | 63.40 ± 2.56 |
vanillic | 5.22 ± 0.28 | 0.06 ± 0.02 | 0.83 ± 0.28 | 7.35 ± 0.41 |
veratric | n/a | 0.41 ± 0.03 | 0.47 ± 0.15 | 0.88 ± 0.15 |
homoveratric | n/a | 0.43 ± 0.06 | n/a | 0.43 ± 0.06 |
salicylic | 1.15 ± 0.04 | 1.40 ± 0.18 | n/a | 2.55 ± 0.18 |
Compound Name | Contents (mg/kg of Oil) |
---|---|
β-sitosterol | 7952.00 ± 342.25 |
kampesterol | 883.32 ± 0.45 |
Δ5-avenasterol | 429.65 ± 75.20 |
sitostanol | 167.01 ± 39.77 |
clerosterol | 120.44 ± 0.12 |
Δ5-24-estigmastadienol | 94.60 ± 5.68 |
Δ7-estigmasterol | 38.17 ± 14.33 |
Δ7-avenasterol | 27.80 ± 16.07 |
Macroelements | Contents (mg/100g of ash) |
calcium | 1800 |
magnesium | 530 |
potassium | 460 |
sodium | 18 |
phosphorus | 410 |
Microelements | Contents (mg/100g of ash) |
iron | 39 |
zinc | 7 |
copper | 1.1 |
manganese | 0.5 |
Metabolite | Biological Activity | Occurrence | |
---|---|---|---|
anti-inflammatory | PGE1 |
| keratinocytes fibroblasts sebocyte |
15-HETrE |
| keratinocytes fibroblasts | |
13-HODE |
| keratinocytes fibroblasts | |
15-HETE |
| keratinocytes fibroblasts | |
LXA4 LXB4 |
| neutrophils | |
inflammatory | PGE2 |
| keratinocytes fibroblasts |
5-HETE |
| keratinocytes | |
LTB4 |
| leukocytes keratinocytes in chronic dermatitis (psoriasis, atopic dermatitis) | |
Cys-LT (LTC4 LTD4 LTE4) |
| leukocytes in chronic dermatitis (psoriasis, atopic dermatitis) | |
12-HETE |
| keratinocytes fibroblasts Langerhans cells in chronic dermatitis (psoriasis) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timoszuk, M.; Bielawska, K.; Skrzydlewska, E. Evening Primrose (Oenothera biennis) Biological Activity Dependent on Chemical Composition. Antioxidants 2018, 7, 108. https://doi.org/10.3390/antiox7080108
Timoszuk M, Bielawska K, Skrzydlewska E. Evening Primrose (Oenothera biennis) Biological Activity Dependent on Chemical Composition. Antioxidants. 2018; 7(8):108. https://doi.org/10.3390/antiox7080108
Chicago/Turabian StyleTimoszuk, Magdalena, Katarzyna Bielawska, and Elżbieta Skrzydlewska. 2018. "Evening Primrose (Oenothera biennis) Biological Activity Dependent on Chemical Composition" Antioxidants 7, no. 8: 108. https://doi.org/10.3390/antiox7080108
APA StyleTimoszuk, M., Bielawska, K., & Skrzydlewska, E. (2018). Evening Primrose (Oenothera biennis) Biological Activity Dependent on Chemical Composition. Antioxidants, 7(8), 108. https://doi.org/10.3390/antiox7080108