Coenzyme Q10 Modulates Remodeling Possibly by Decreasing Angiotensin-Converting Enzyme in Patients with Acute Coronary Syndrome
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Two-Dimensional Echocardiography
2.2. Laboratory Data
2.3. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cohn, J.N.; Ferrari, R.; Sharpe, N. Cardiac remodeling—Concepts and clinical implications: A consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J. Am. Coll. Cardiol. 2000, 35, 569–582. [Google Scholar] [CrossRef]
- Ulla, A.; Mohamed, M.K.; Sikder, B.; Rahman, A.T.; Sumi, F.A.; Hossain, M.; Mahmud, H.; Rahman, G.M.S.; Alam, M.A. Coenzyme Q10 prevents oxidative stress and fibrosis in isoprenaline induced cardiac remodeling in aged rats. BMC Pharmacol. Toxicol. 2017, 18, 29. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.B.; Niaz, M.A.; Rastogi, S.S.; Sharma, J.P.; Kumar, R.; Bishnoi, I.; Beegom, R. Plasma levels of antioxidant vitamins and oxidative stress in patients with suspected acute myocardial infarction. Acta Cardiol. 1994, 49, 411–452. [Google Scholar]
- Grech, E.D.; Jackson, M.; Ramsdale, D.R. Reperfusion injury after acute myocardial infarction. Br. Med. J. 1995, 310, 477–478. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.B.; Wander, G.S.; Rastogi, A.; Shukla, P.K.; Mittal, A.; Sharma, J.P.; Mehrotra, S.K.; Kapoor, R.; Chopra, R.K. Randomized, double blind, placebo controlled trial of coenzyme Q10 in patients with acute myocardial infarction. Cardiovasc. Drug Ther. 1998, 12, 347–353. [Google Scholar] [CrossRef]
- Langsjoen, P.H.; Langsjoen, A.M. Overview of the use of coenzyme Q10 in cardiovascular disease. Biofactors 1999, 9, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Kuklinski, B.; Weissenbacher, E.; Fahnrich, A. Coenzyme Q10 and antioxidants in acute myocardial infarction. Mol. Asp. Med. 1994, 15, s143–s147. [Google Scholar] [CrossRef]
- Hill, M.F.; Singal, P.K. Antioxidant and oxidative stress changes during heart failure subsequent to myocardial infarction in rats. Am. J. Pathol. 1996, 148, 291–300. [Google Scholar] [PubMed]
- Mckay, R.G.; Pfeffer, M.A.; Pasternak, R.C. Left ventricular remodeling following myocardial infarction: A corollary to infarct expansion. Circulation 1986, 74, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Litwin, S.E.; Sarah, K.E.; Morgan, J.P.; Douglas, P.S. Serial echocardiographic assessment of left ventricular geometry and function after large myocardial infarction in the rat. Circulation 1994, 89, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Senior, R.; Basu, S.; Kinsey, C.; Schaeffer, S.; Lahiri, A. Carvidilol prevents remodeling in patients with left ventricular dysfunction after acute myocardial infarction. Am. Heart J. 1999, 137, 646–652. [Google Scholar] [CrossRef]
- Khaper, N.; Singal, P.K. Effects of after load reducing drugs on the pathogenesis of antioxidant changes and congestive heart failure in rats. J. Am. Coll. Cardiol. 1997, 219, 856–861. [Google Scholar] [CrossRef]
- Dhalla, A.K.; Hill, M.; Singal, P.K. Role of oxidative stress in the transition of hypertrophy to heart failure. J. Am. Coll. Cardiol. 1996, 28, 506–514. [Google Scholar] [CrossRef]
- Munkholm, H.; Hansen, H.U.T.; Rasmusen, K. Coenzyme Q10 treatment in serious heart failure. Biofactors 1999, 9, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Folkers, K.; Littarru, G.P.; Ho, L.; Runge, T.M.; Havannonda, S.; Cooley, D. Evidence for a deficiency of coenzyme Q10 in human heart disease. Int. Z. Vitaminforsch. 1970, 40, 380–390. [Google Scholar] [PubMed]
- Morisco, C.; Trimuco, B.; Condorelh, M. Effect of coenzyme therapy in patients with congestive heart failure: A long term multicentre randomized study. Clin. Investig. 1993, 71, S134–S136. [Google Scholar] [CrossRef] [PubMed]
- Soja, A.M.; Mortensen, S.A. Treatment of congestive heart failure with coenzyme Q10 illuminated by metaanalysis of clinical trials. Mol. Asp. Med. 1997, 18, 159–168. [Google Scholar] [CrossRef]
- Swedberg, K.; Hoffman-Bang, C.; Rehnqvist, N.; Astrom, H. Coenzyme Q10 as adjunctive in treatment of congestive heart failure. J. Card. Fail. 1995, 1, 101–107. [Google Scholar]
- Shi, H.; Noguchi, N.; Niki, E. Dynamics of antioxidant action of ubiquinol; a reappraisal. Biofactors 1999, 9, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, S.A.; Leth, A.; Agner, E.; Rohde, M. Coenzyme Q10: Clinical benefits with biochemical correlates suggesting a scientific breakthrough in the management of chronic heart failure. Int. J. Tissue React. 1990, 12, 155–162. [Google Scholar] [PubMed]
- Beyer, R. An analysis of coenzyme Q in free radical generation and as an antioxidant. Biochem. Cell Biol. 1992, 70, 390–403. [Google Scholar] [CrossRef] [PubMed]
- Niibori, K.; Wroblewski, K.P.; Yokoyama, H.; Juan, A.; Crestanello, J.A.; Whitman, G.J.R. Bioenergetic effect of liposomal coenzyme Q10 on myocardial ischaemia reperfusion injury. Biofactors 1999, 9, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Reichek, N.; Helak, J.; Plappert, T.; Sutton, M.J.; Weber, K.T. Anatomic validation of left ventricular mass estimates from clinical two-dimentional echocardiography: Initial results. Circulation 1983, 67, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Choy, A.M.; Darbar, D.; Lang, C.C.; Pringle, T.H.; MCNeill, G.P.; Kennedy, N.S. Detection of left ventricular dysfunction after acute myocardial infarction-comparison of clinical, echocardiographic, and neurohumoral methods. Br. Heart J. 1994, 72, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Willenbeimer, R.B.; Israelsson, B.A.; Cline, C.M.; Erhardt, L.R. Simplified echocardiography in the diagnosis of heart failure. Scand. Cardiovasc. J. 1997, 31, 9–16. [Google Scholar] [CrossRef]
- Schiller, N.B.; Acquatella, H.; Ports, T.A.; Drew, D.; Goerke, J.; Ringertz, H.; Silverman, N.H.; Brundage, B.; Botvinick, E.H.; Boswell, R.; et al. Left ventricular volume from paired biplane two-dimensional echocardiography. Circulation 1979, 60, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Miyitake, K.; Okamoto, M.; Minoshita, N. Augmentation of atrial contribution to left ventricular inflow with ageing as assessed by intracardiac Doppler flowmetry. Am. J. Cardiol. 1984, 53, 586–589. [Google Scholar] [CrossRef]
- Vasan, R.S.; Benjamin, E.J.; Levy, D. Prevalence, clinical features and prognosis of diastolic heart failure: An epidemiologic perspective. J. Am. Coll. Cardiol. 1995, 26, 1565–1574. [Google Scholar] [CrossRef]
- Brubacher, G.; Vuilleumier, J.P.; Inairtis, H.C. Roth Meds. Vitamin C: Clinical Biochemistry. Principles and Methods; de Gniyter: Berlin, Germany, 1974; Volume 2, pp. 989–997. [Google Scholar]
- Vuilleumier, J.P.; Keller, H.E.; Gysel, D.; Hunziker, F. Clinical chemical methods for the routine assessment of the vitamin status in human population, part 1. The fat soluble vitamin A, E and beta-carotene. Int. J. Vitam. Nutr. Res. 1983, 58, 265–272. [Google Scholar]
- Esterbaur, H.; Cheeseman, K. Determination of aldehyde peroxidation products MDA and 4 hydroxynonenal. Method Enzym. 1990, 186, 407–421. [Google Scholar]
- Niato, C.; Kawamura, M.; Yamamoto, Y. Lipid peroxides as the initiating factor of atherosclerosis. Ann. N. Y. Acad. Sci. 1993, 676, 27–45. [Google Scholar] [CrossRef]
- Lunec, J.; Hallovan, S.P.; White, A.G.; Dormandy, T.L. Free radical oxidation (peroxidation) products in serum and synovial fluids in rheumatoid arthritis. J. Rheumatol. 1981, 8, 233–245. [Google Scholar] [PubMed]
- Kessler, G. Angiotensin converting enzyme. In Methods in Clinical Chemistry; Pesce, A.T., Kaplan, L.A., Eds.; Mosby-year Book Inc.: St. Louis, MO, USA, 1987; Chapter 123; pp. 935–943. [Google Scholar]
- Permanetter, B.; Rössy, W.; Klein, G.; Weingartner, F.; Seidl, K.F.; Blomer, H. Ubiquinone (coenzyme Q10) in the long term treatment of cardiomyopathy. Eur. Heart J. 1992, 13, 1528–1533. [Google Scholar] [CrossRef] [PubMed]
- Watson, P.S.; Scalia, G.M.; Galbraith, A.; Burstow, D.J.; Bett, N.; Aroney, C.N. Lack of effect of coenzyme Q on left ventricular function in patients with congestive heart failure. J. Am. Coll. Cardiol. 1999, 33, 1549–1552. [Google Scholar] [CrossRef]
- Ithatta, M.; Alexander, B.S.; Krichten, C.M.; Freudenberger, R.; Robinson, S.W.; Gottlieb, S.S. The effect of coenzyme Q10 in patients with congestive heart failure. Ann. Intern. Med. 2000, 132, 636–640. [Google Scholar]
- Oldroyd, K.G.; Pye, M.P.; Ray, S.G.; Christie, J.; Cobbe, S.M.; Dargie, H.J. Effects of early captopril administration on infarct expansion, left ventricular remodeling and exercise capacity after acute myocardial infarction. J. Am. Coll. Cardiol. 1991, 68, 713–718. [Google Scholar] [CrossRef]
- Ivanov, A.; Tokareva, O.; Gorodetskaya, E.; Kalenikova, E.; Medvedev, O. Cardioprotection with intravenous injection of coenzyme Q10 is limited by time of administration after onset of myocardial infarction in rats. J. Clin. Exp. Cardiol. 2014, 5, 299. [Google Scholar] [CrossRef]
- Huang, C.H.; Kuo, C.L.; Huang, C.S.; Tseng, W.M.; Lian, I.B.; Chang, C.C.; Liu, C.S. High plasma coenzyme Q10 concentration is correlated with good left ventricular performance after primary angioplasty in patients with acute myocardial infarction. Medicine 2016, 95, e4501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.B.; Niaz, M.A.; Kumar, A.; Moesgaard, S.; Littaru, G.P. Effect on absorption and oxidative stress of different oral Coenzyme Q10 dosages and intake strategy in healthy men. BioFactors 2005, 25, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.B.; Fedacko, J.; Sharma, J.P.; Vargova, V.; Sharma, M.M.; De Meester, F.; Otsuka, K. Association of inflammation, heavy meals, magnesium, nitrite, and coenzyme Q10 deficiency and circadian rhythms with risk of acute coronary syndromes. World Heart J. 2010, 2, 219–228. [Google Scholar]
- Gvozdjáková, A.; Takahashi, T.; Singh, R.B.; De Meester, F.; Wilson, D.W.; Crane, F.L. New roles of coenzyme Q10 in cardiovascular diseases, discovered by a single group. World Heart J. 2013, 5, 159–171. [Google Scholar]
- Mortensen, S.A.; Rosenfeldt, F.; Kumar, A.; Dolliner, P.; Filipiak, K.J.; Pella, D.; Alehagen, U.; Steurer, G.; Littarru, G.P. Q-SYMBIO Study Investigators. The effects of coenzyme Q10 on morbidity and mortality in patients with chronic heart failure: Results From Q-SYMBIO: A Randomized Double-Blind Trial. JACC Heart Fail. 2014, 2, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Roever, L.; Palandri Chagas, A.C. Cardiac remodeling: New insights in physiological and pathological adaptations. Front. Physiol. 2017, 8, 751. [Google Scholar] [CrossRef] [PubMed]
- Metra, M.; Teerlink, J.R. Heart failure. Lancet 2017, 390, 1981–1995. [Google Scholar] [CrossRef]
Characteristics | Ejection Fraction < 50% | Ejection Fraction 50% and above |
---|---|---|
n | 55 | 75 |
Age (years) | 48.5 ± 7.2 | 47.0 ± 6.4 |
Body weight (kg) | 65.4 ± 5.5 | 64.3 ± 5.2 |
Body mass index (kgm2) | 24.0 ± 1.4 | 23.2 ± 1.3 |
Men | 45(81.8)n% | 60(80.0) |
Previous coronary artery disease | 18(32.7) * | 6(8.0) |
Previous angina pectoris. | 9(16.4) | 4(5.3) |
Known hypertension | 26(47.2) | 25(33.3) |
Diabetes mellitus | 18(32.7) | 23(30.6) |
Current smokers | 18(32.7) | 22(29.3) |
Ex-smokers | 6(10.9) | 10(13.3) |
Final diagnosis | ||
Acute myocardial infarction | 48(87.2) | 62(82.6) |
Possible myocardial infarction | 6(10.9) | 10(13.3) |
Unstable angina | 1(1.8) | 3(4.0) |
Site of infarction | ||
Anterior or universal | 50(90.9) * | 45(60.0) |
Inferior or posterior | 5(9.1) | 30(40.0) |
Ventricular enlargement at presentation | 27(49.2) * | 18(24.0) |
Thrombolysis | 4(7.3) | 8(10.6) |
Elapsed time from symptom onset to the | ||
Treatment (hours) | 40.1 ± 4.3 | 42.5 ± 4.6 |
Peak creatinine kinase (IU/L) | 981 ± 185 ** | 628 ± 105 |
Clinical Data | Intervention Group (n = 27) | Control Group (n = 28) |
---|---|---|
Mean age | 48.5 ± 9.5 | 48.7 ± 9.3 |
Sex, Men | 23(85.8) | 22(78.6) |
Smokers | 5(18.5) | 4(12.3) |
Ex-smokers | 3(11.1) | 4(12.3) |
Previous coronary artery disease | 9(33.3) | 9(32.1) |
Previous angina pectoris | 6(22.2) | 3(10.7) |
Hypertension | 12(44.4) | 14(50.0) |
Diabetes mellitus | 8(28.6) | 10(35.7) |
Thrombolysis | 2(7.4) | 2(6.2) |
Congestive heart failure at presentation | 13(47.1) | 12(36.9) |
Site of acute myocardial infarction (AMI) | ||
Anterior | 20(74.1) | 24(85.7) |
Inferior | 16(59.2) | 13(44.4) |
Peak creatinine Kinase(IU/L) | 1050 ± 292 | 915 ± 300 |
Clinical Data | Intervention (n = 27) | Control Group (n = 28) |
---|---|---|
Before discharge | ||
Heart rate | 74.1 ± 12.6 ** | 94.2 ± 15.5 |
Systolic blood pressure | 110.5 ± 10.6 ** | 127.6 ± 16.2 |
Diastolic blood pressure | 72.6 ± 9.5 * | 83.5 ± 10.5 |
After 6 month | ||
Heart rate | 64.0 ± 9.6 ** | 84.2 ± 13.6 |
Systolic blood pressure | 116.2 ± 14.4 * | 127.1 ± 16.5 |
Diastolic blood pressure | 79.2 ± 8.5 * | 88.4 ± 8.6 |
Echocardiographic Data | Intervention Group (n = 27) | Control Group (n = 28) | ||
---|---|---|---|---|
Baseline | After 6 Months | Baseline | After 6 Months | |
End diastolic volume (mL) | 94.2 ± 1.9 | 90.5 ± 2.0 ** | 97.5 ± 1.9 | 104.4 ± 2.2 |
End systolic volume (mL) | 52.5 ± 1.5 | 48.0 ± 1.2 * | 55.7 ± 1.7 | 59.7 ± 1.8 |
Left ventricular wall | 12.0 ± 2.0 | 10.0 ± 1.8 | 12.8 ± 2.2 | 13.3 ± 2.3 |
thickness (mm) | ||||
Left ventricular mass (g) | 236 ± 72 | 213 ± 61 ** | 230 ± 77 | 255 ± 86 |
Area of wall thickening at | 9.4 ± 3.0 | 9.1 ± 2.8 | 10.1 ± 3.1 | 13.7 ± 4.2 |
the site of infarct (m2) | ||||
Sphericity index | 1.61 ± 0.28 | 1.63 ± 0.30 | 1.61 ± 0.32 | 1.41 ± 0.31 |
Laboratory Data | Intervention Group (n = 27) | Control Group (n = 28) | ||
---|---|---|---|---|
Baseline | After 6 Months | Baseline | After 6 Months | |
Vitamin E (mg/dL) | 15.5 ± 2.5 | 30.5 ± 4.2 ** | 14.4 ± 2.4 | 21.5 ± 3.5 |
Vitamin C (mg/dL) | 4.5 ± 1.21 | 32.1 ± 4.0 ** | 4.6 ± 1.2 | 12.6 ± 2.5 |
Beta carotene (mg/dL) | 0.16 ± 0.03 | 0.45 ± 0.07 * | 0.15 ± 0.04 | 0.27 ± 0.05 |
TBARS (nmol/ml) | 2.5 ± 0.51 | 1.2 ± 0.32 * | 2.6 ± 0.42 | 2.4 ± 0.00 |
Malondialdehyde (nmol) | 3.4 ± 0.32 | 2.0 ± 0.41 * | 3.5 ± 0.35 | 3.0 ± 0.31 |
Diene conjugates (OD units) | 33.5 ± 4.6 | 28.4 ± 4.0 | 33.6 ± 4.8 | 31.5 ± 4.5 |
Angiotensin converting enzyme (IU) | 108.2 ± 13.5 | 70.6 ± 8.5 ** | 104.5 ± 11.4 | 92.6 ± 9.7 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, R.B.; Fedacko, J.; Mojto, V.; Pella, D. Coenzyme Q10 Modulates Remodeling Possibly by Decreasing Angiotensin-Converting Enzyme in Patients with Acute Coronary Syndrome. Antioxidants 2018, 7, 99. https://doi.org/10.3390/antiox7080099
Singh RB, Fedacko J, Mojto V, Pella D. Coenzyme Q10 Modulates Remodeling Possibly by Decreasing Angiotensin-Converting Enzyme in Patients with Acute Coronary Syndrome. Antioxidants. 2018; 7(8):99. https://doi.org/10.3390/antiox7080099
Chicago/Turabian StyleSingh, Ram B., Jan Fedacko, Viliam Mojto, and Dominik Pella. 2018. "Coenzyme Q10 Modulates Remodeling Possibly by Decreasing Angiotensin-Converting Enzyme in Patients with Acute Coronary Syndrome" Antioxidants 7, no. 8: 99. https://doi.org/10.3390/antiox7080099
APA StyleSingh, R. B., Fedacko, J., Mojto, V., & Pella, D. (2018). Coenzyme Q10 Modulates Remodeling Possibly by Decreasing Angiotensin-Converting Enzyme in Patients with Acute Coronary Syndrome. Antioxidants, 7(8), 99. https://doi.org/10.3390/antiox7080099