Spray Drying of Blueberry Juice-Maltodextrin Mixtures: Evaluation of Processing Conditions on Content of Resveratrol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design
2.3. Spray Drying
2.4. Content and Retention of Resveratrol
2.5. Statistical Analysis
3. Results and Discussion
3.1. Content and Retention of Resveratrol
3.2. ANOVA and Response Surface Plots Analysis (RSP)
3.3. Effect of the Chemical Structure in the Content of Antioxidants
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gülçin, İ. Antioxidant properties of resveratrol: A structure—Activity insight. Innov. Food Sci. Emerg. Technol. 2010, 11, 210–218. [Google Scholar] [CrossRef]
- Naik, G.; Priyadarsini, K.; Satav, J.; Banavalikar, M.; Sohoni, D.; Biyani, M.; Mohan, H. Comparative antioxidant activity of individual herbal components used in Ayurvedic medicine. Phytochemistry 2003, 63, 97–104. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Anti-oxidative action of resveratrol: Implications for human health. Arab. J. Chem. 2011, 4, 293–298. [Google Scholar] [CrossRef] [Green Version]
- Faria, A.; Oliveira, J.; Neves, P.; Gameiro, P.; Santos-Buelga, C.; de Freitas, V.; Mateus, N. Antioxidant properties of prepared blueberry (Vaccinium myrtillus) extracts. J. Agric. Food Chem. 2005, 53, 6896–6902. [Google Scholar] [CrossRef] [PubMed]
- Sinelli, N.; Spinardi, A.; Di Egidio, V.; Mignani, I.; Casiraghi, E. Evaluation of quality and nutraceutical content of blueberries (Vaccinium corymbosum L.) by near and mid-infrared spectroscopy. Postharvest Biol. Technol. 2008, 50, 31–36. [Google Scholar] [CrossRef]
- Frémont, L. Biological effects of resveratrol. Life Sci. 2000, 66, 663–673. [Google Scholar] [CrossRef]
- Burns, J.; Yokota, T.; Ashihara, H.; Lean, M.E.; Crozier, A. Plant foods and herbal sources of resveratrol. J. Agric. Food Chem. 2002, 50, 3337–3340. [Google Scholar] [CrossRef] [PubMed]
- Shrikanta, A.; Kumar, A.; Govindaswamy, V. Resveratrol content and antioxidant properties of underutilized fruits. J. Food Sci. Technol. 2015, 52, 383–390. [Google Scholar] [CrossRef]
- Tomé-Carneiro, J.; Gonzálvez, M.; Larrosa, M.; Yáñez-Gascón, M.J.; García-Almagro, F.J.; Ruiz-Ros, J.A.; García-Conesa, M.T.; Tomás-Barberán, F.A.; Espín, J.C. One-year consumption of a grape nutraceutical containing resveratrol improves the inflammatory and fibrinolytic status of patients in primary prevention of cardiovascular disease. Am. J. Cardiol. 2012, 110, 356–363. [Google Scholar] [CrossRef]
- Kuršvietienė, L.; Stanevičienė, I.; Mongirdienė, A.; Bernatonienė, J. Multiplicity of effects and health benefits of resveratrol. Medicina 2016, 52, 148–155. [Google Scholar] [CrossRef]
- Balanč, B.; Trifković, K.; Dordević, V.; Marković, S.; Pjanović, R.; Nedović, V.; Bugarski, B. Novel resveratrol delivery systems based on alginate-sucrose and alginate-chitosan microbeads containing liposomes. Food Hydrocoll. 2016, 61, 832–842. [Google Scholar] [CrossRef]
- Intagliata, S.; Modica, M.N.; Santagati, L.M.; Montenegro, L. Strategies to Improve Resveratrol Systemic and Topical Bioavailability: An Update. Antioxidants 2019, 8, 244. [Google Scholar] [CrossRef] [PubMed]
- Retamales, J.B.; Hancock, J.F. The Blueberry Industry. In Blueberries, 2nd ed.; Russell, R., Wilford, S., Eds.; Cabi: Boston, MA, USA, 2018; pp. 1–17. [Google Scholar]
- Saavedra-Leos, M.Z.; Leyva-Porras, C.; Martínez-Guerra, E.; Pérez-García, S.A.; Aguilar-Martínez, J.A.; Álvarez-Salas, C. Physical properties of inulin and inulin-orange juice: Physical characterization and technological application. Carbohydr. Polym. 2014, 105, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Jittanit, W.; Niti-Att, S.; Techanuntachaikul, O. Study of spray drying of pineapple juice using maltodextrin as an adjunct. Chiang Mai J. Sci. 2010, 37, 498–506. [Google Scholar]
- De Oliveira, M.A.; Maia, G.A.; De Figueiredo, R.W.; De Souza, A.C.R.; De Brito, E.S.; De Azeredo, H.M.C. Addition of cashew tree gum to maltodextrin-based carriers for spray drying of cashew apple juice. Int. J. Food Sci. Tech. 2009, 44, 641–645. [Google Scholar] [CrossRef] [Green Version]
- Quek, S.Y.; Chok, N.K.; Swedlund, P. The physicochemical properties of spray-dried watermelon powders. Chem. Eng. Process. Process. Intensif. 2007, 46, 386–392. [Google Scholar] [CrossRef]
- Cano-Chauca, M.; Stringheta, P.; Ramos, A.; Cal-Vidal, J. Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innov. Food Sci. Emerg. Technol. 2005, 6, 420–428. [Google Scholar] [CrossRef]
- Lim, K.; Ma, M.; Dolan, K.D. Effects of spray drying on antioxidant capacity and anthocyanidin content of blueberry by-products. J. Food Sci. 2011, 76, H156–H164. [Google Scholar] [CrossRef]
- Waterhouse, G.I.; Sun-Waterhouse, D.; Su, G.; Zhao, H.; Zhao, M. Spray-drying of antioxidant-rich blueberry waste extracts; interplay between waste pretreatments and spray-drying process. Food Bioprocess Technol. 2017, 10, 1074–1092. [Google Scholar] [CrossRef]
- Saavedra-Leos, Z.; Leyva-Porras, C.; Araujo-Díaz, S.B.; Toxqui-Terán, A.; Borrás-Enríquez, A.J. Technological application of maltodextrins according to the degree of polymerization. Molecules 2015, 20, 21067–21081. [Google Scholar] [CrossRef]
- Saavedra-Leos, M.Z.; Leyva-Porras, C.; López-Martínez, L.A.; González-García, R.; Martínez, J.O.; Compeán Martínez, I.; Toxqui-Terán, A. Evaluation of the Spray Drying Conditions of Blueberry Juice-Maltodextrin on the Yield, Content, and Retention of Quercetin 3-d-Galactoside. Polymers 2019, 11, 312. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Aguilar, D.; Ortega-Regules, A.; Lozada-Ramírez, J.; Pérez-Pérez, M.; Vernon-Carter, E.; Welti-Chanes, J. Color and chemical stability of spray-dried blueberry extract using mesquite gum as wall material. J. Food Compos. Anal. 2011, 24, 889–894. [Google Scholar] [CrossRef]
- Tatar Turan, F.; Cengiz, A.; Sandıkçı, D.; Dervisoglu, M.; Kahyaoglu, T. Influence of an ultrasonic nozzle in spray-drying and storage on the properties of blueberry powder and microcapsules. J. Sci. Food Agric. 2016, 96, 4062–4076. [Google Scholar] [CrossRef]
- Correia, R.; Grace, M.H.; Esposito, D.; Lila, M.A. Wild blueberry polyphenol-protein food ingredients produced by three drying methods: Comparative physico-chemical properties, phytochemical content, and stability during storage. Food Chem. 2017, 235, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Darniadi, S.; Ho, P.; Murray, B.S. Comparison of blueberry powder produced via foam-mat freeze-drying versus spray-drying: Evaluation of foam and powder properties. J. Sci. Food Agric. 2018, 98, 2002–2010. [Google Scholar] [CrossRef]
- Shimojo, A.A.; Fernandes, A.R.V.; Ferreira, N.R.; Sanchez-Lopez, E.; Santana, M.H.; Souto, E.B. Evaluation of the Influence of Process Parameters on the Properties of Resveratrol-Loaded NLC Using 22 Full Factorial Design. Antioxidants 2019, 8, 272. [Google Scholar] [CrossRef] [PubMed]
- MacGregor, W. Effects of air velocity, air temperature, and berry diameter on wild blueberry drying. Dry. Technol. 2005, 23, 387–396. [Google Scholar] [CrossRef]
- Pallas, L.A.; Pegg, R.B.; Shewfelt, R.L.; Kerr, W.L. The role of processing conditions on the color and antioxidant retention of jet tube fluidized bed–dried blueberries. Dry. Technol. 2012, 30, 1600–1609. [Google Scholar] [CrossRef]
- Turan, F.T.; Cengiz, A.; Kahyaoglu, T. Evaluation of ultrasonic nozzle with spray-drying as a novel method for the microencapsulation of blueberry’s bioactive compounds. Innov. Food Sci. Emerg. Technol. 2015, 32, 136–145. [Google Scholar] [CrossRef]
- Munson-McGee, S.H. D-Optimal Experimental Designs for Uniaxial Expression. J. Food Process Eng. 2014, 37, 248–256. [Google Scholar] [CrossRef]
- Ameri, M.; Maa, Y. Spray drying of biopharmaceuticals: Stability and process considerations. Dry. Technol. 2006, 24, 763–768. [Google Scholar] [CrossRef]
- Nadeem, H.S.; Torun, M.; Özdemir, F. Spray drying of the mountain tea (Sideritis stricta) water extract by using different hydrocolloid carriers. LWT Food Sci. Technol. 2011, 44, 1626–1635. [Google Scholar] [CrossRef]
- Caliskan, G.; Dirim, S.N. The effects of the different drying conditions and the amounts of maltodextrin addition during spray drying of sumac extract. Food Bioprod. Process. 2013, 91, 539–548. [Google Scholar] [CrossRef]
- Bhusari, S.; Muzaffar, K.; Kumar, P. Effect of carrier agents on physical and microstructural properties of spray dried tamarind pulp powder. Powder Technol. 2014, 266, 354–364. [Google Scholar] [CrossRef]
- Peng, Z.; Li, J.; Guan, Y.; Zhao, G. Effect of carriers on physicochemical properties, antioxidant activities and biological components of spray-dried purple sweet potato flours. LWT Food Sci. Technol. 2013, 51, 348–355. [Google Scholar] [CrossRef]
- Araujo-Díaz, S.; Leyva-Porras, C.; Aguirre-Bañuelos, P.; Álvarez-Salas, C.; Saavedra-Leos, Z. Evaluation of the physical properties and conservation of the antioxidants content, employing inulin and maltodextrin in the spray drying of blueberry juice. Carbohydr. Polym. 2017, 167, 317–325. [Google Scholar] [CrossRef]
- Leyva-Porras, C.; Saavedra-Leos, M.; López-Pablos, A.; Soto-Guerrero, J.; Toxqui-Terán, A.; Fozado-Quiroz, R. Chemical, thermal and physical characterization of inulin for its technological application based on the degree of polymerization. J. Food Process Eng. 2017, 40, e12333. [Google Scholar] [CrossRef]
- Saavedra-Leos, M.Z.; Leyva-Porras, C.; Alvarez-Salas, C.; Longoria-Rodríguez, F.; López-Pablos, A.L.; González-García, R.; Pérez-Urizar, J.T. Obtaining orange juice—Maltodextrin powders without structure collapse based on the glass transition temperature and degree of polymerization. CyTA J. Food 2018, 16, 61–69. [Google Scholar] [CrossRef]
- Valenzuela, C.; Aguilera, J.M. Effects of maltodextrin on hygroscopicity and crispness of apple leathers. J. Food Eng. 2015, 144, 1–9. [Google Scholar] [CrossRef]
Tested Variables | Testing Level | |
---|---|---|
Minimum | Maximum | |
Inlet temperature (°C) | 170 | 210 |
Maltodextrin concentration (wt%) | 10 | 30 |
Dextrose equivalent | CM | M40 |
Run Identification | Factors | Resveratrol | |||
---|---|---|---|---|---|
T (°C) | C (wt%) | MD | Content (μg/g) a | Retention (wt%) | |
1 | 170 | 30 | CM | 0.23 ± 0.031 | 5.01 |
2 | 187 | 10 | M10 | 0 | 0.00 |
3 | 170 | 30 | M20 | 0.33 ± 0.108 | 7.19 |
4 | 210 | 10 | M40 | 0 | 0.00 |
5 | 210 | 30 | CM | 0.21 ± 0.056 | 4.58 |
6 | 210 | 18 | M10 | 0.39 ± 0.036 | 8.50 |
7 | 210 | 10 | M20 | 0 | 0.00 |
8 | 170 | 10 | M40 | 0 | 0.00 |
9 | 210 | 10 | CM | 0 | 0.00 |
10 | 170 | 22 | M10 | 0.47 ± 0.282 | 10.24 |
11 | 170 | 10 | M20 | 0 | 0.00 |
12 | 181 | 30 | M40 | 0.29 ± 0.010 | 6.32 |
13 | 190 | 20 | CM | 0.29 ± 0.020 | 6.32 |
14 | 193 | 30 | M10 | 0.22 ± 0.053 | 4.79 |
15 | 210 | 30 | M20 | 0.27 ± 0.122 | 5.88 |
16 | 175 | 12.5 | CM | 0.28 ± 0.020 | 6.10 |
17 | 190 | 20 | M10 | 0.28 ± 0.212 | 6.10 |
18 | 190 | 25 | M20 | 0.31 ± 0.057 | 6.76 |
19 | 209 | 24 | M40 | 0.26 ± 0.033 | 5.67 |
20 | 210 | 20 | CM | 0.30 ± 0.065 | 6.54 |
21 | 170 | 10 | M40 | 0 | 0.00 |
22 | 193 | 30 | M10 | 0.20 ± 0.019 | 4.36 |
23 | 170 | 10 | M20 | 0 | 0.00 |
24 | 181 | 30 | M40 | 0.25 ± 0.020 | 5.45 |
25 | 170 | 22 | M10 | 0.3 ± 0.170 | 6.54 |
Content | |||||
---|---|---|---|---|---|
Source | DF | SS a | MS b | F | p * |
Model | 14 | 1.069 | 0.076 | 15.978 | 0.0001 |
T | 1 | 0.011 | 0.011 | 2.425 | 0.150 |
C | 1 | 0.531 | 0.531 | 111.03 | 0.0001 |
MX | 3 | 0.005 | 0.002 | 0.401 | 0.755 |
T·C | 1 | 0.0005 | 0.0005 | 0.122 | 0.733 |
T·MX | 3 | 0.021 | 0.007 | 1.516 | 0.269 |
C·MX | 3 | 0.033 | 0.011 | 2.308 | 0.138 |
T2 | 1 | 0.011 | 0.011 | 2.463 | 0.147 |
C2 | 1 | 0.222 | 0.222 | 46.605 | 0.0001 |
Residual | 10 | 0.047 | 0.004 | ||
Total | 24 | 1.117 |
Type Of MX | Content |
---|---|
CM | |
M10 | |
M20 | |
M40 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leyva-Porras, C.; Saavedra-Leos, M.Z.; Cervantes-González, E.; Aguirre-Bañuelos, P.; Silva-Cázarez, M.B.; Álvarez-Salas, C. Spray Drying of Blueberry Juice-Maltodextrin Mixtures: Evaluation of Processing Conditions on Content of Resveratrol. Antioxidants 2019, 8, 437. https://doi.org/10.3390/antiox8100437
Leyva-Porras C, Saavedra-Leos MZ, Cervantes-González E, Aguirre-Bañuelos P, Silva-Cázarez MB, Álvarez-Salas C. Spray Drying of Blueberry Juice-Maltodextrin Mixtures: Evaluation of Processing Conditions on Content of Resveratrol. Antioxidants. 2019; 8(10):437. https://doi.org/10.3390/antiox8100437
Chicago/Turabian StyleLeyva-Porras, César, María Zenaida Saavedra-Leos, Elsa Cervantes-González, Patricia Aguirre-Bañuelos, Macrina B. Silva-Cázarez, and Claudia Álvarez-Salas. 2019. "Spray Drying of Blueberry Juice-Maltodextrin Mixtures: Evaluation of Processing Conditions on Content of Resveratrol" Antioxidants 8, no. 10: 437. https://doi.org/10.3390/antiox8100437
APA StyleLeyva-Porras, C., Saavedra-Leos, M. Z., Cervantes-González, E., Aguirre-Bañuelos, P., Silva-Cázarez, M. B., & Álvarez-Salas, C. (2019). Spray Drying of Blueberry Juice-Maltodextrin Mixtures: Evaluation of Processing Conditions on Content of Resveratrol. Antioxidants, 8(10), 437. https://doi.org/10.3390/antiox8100437