Phytochemical Constituents and Antioxidant Activity of Oudneya Africana L. Leaves Extracts: Evaluation Effects on Fatty Acids and Proteins Oxidation of Beef Burger during Refrigerated Storage
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemical and Reagents
2.2. Plant Material and Extraction
2.3. Phytochemical Investigation
2.3.1. Total Phenolic Content (TPC)
2.3.2. Total Flavonoids Content (TFC)
2.3.3. Condensed Tannins Content (CTC)
2.3.4. Analysis of Phenolic Compounds by HPLC-MS
2.4. Antioxidant Assays
2.4.1. Scavenging Ability on DPPH Radical
2.4.2. ABTS Scavenging Activity
2.4.3. Reducing Power Assay (FRAP)
2.5. Meat Conservation
2.5.1. Preparation of Beef Burgers
2.5.2. Physicochemical Analysis
pH Value
Color
Thiobarbituric Acid-reactive Substances (TBARS)
Determination of Protein Thiol Groups: Derivatization with DTNB
2.5.3. Sensory Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Contents of Total Phenols, Flavonoids and Condensed Tannins of OA Leaves Extracts
3.2. Identification and Quantification of Phenolic Compounds by HPLC-MS
3.3. Antioxidant Activity of OA Extracts
3.4. Analyses of Meat Samples
3.4.1. Physicochemical Analysis
pH
Color
Measurement Thiobarbituric Reactive Species (TBARS)
Determination of Protein Thiol Groups
3.4.2. Sensory Analysis
3.4.3. Correlation Matrix and Multiple Regression Analysis
Relationship between Hamburger Odor and Physicochemical Parameters.
Relationship between Hamburger Odor and Sensory Parameters.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Proestos, C.; Zoumpoulakis, P.; Vassileia, J.; Sinanoglo, L. Determination of Plant Bioactive Compounds. Antioxidant Capacity and Antimicrobial Screening. Focus. Mod. Food. Ind. 2013, 2, 26–35. [Google Scholar]
- Soliman, K.M.; Badeaa, R.I. Effect of oil extracted from some medicinal plants on different mycotoxigenic fungi. Food Chem. Toxicol. 2002, 40, 1669–1675. [Google Scholar] [CrossRef]
- Nam, K.C.; Ahn, D.U. Use of antioxidants to reduce lipid oxidation and off odor volatiles of irradiated pork homogenates and patties. Meat Sci. 2003, 63, 1–8. [Google Scholar] [CrossRef]
- Saito, M.; Sakagami, H.; Fujisawa, S. Cytotoxicity and apoptosis induction by butylatedhydroxyanisole(BHA) and butylatedhydroxytoluene (BHT). Anticancer Res. 2003, 23, 4693–4701. [Google Scholar] [PubMed]
- Yahaya, W.; Amnin, W.; Abu Yazid, N.; Azman, M.; Aini, N.; Almajano, M.P. Antioxidant Activities and Total Phenolic Content of Malaysian Herbs as Components of Active Packaging Film in Beef Patties. Antioxidants 2019, 8, 204. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Chen, Y.; Ouyang, Q.; Liu, S.X.; Pang, Z.J. Reduction of the oxidative injury to the rabbits with established atherosclerosis by protein bound polysaccharide from Coriolusvesicolor. Am. J. Chin. Med. 2000, 28, 239–249. [Google Scholar] [CrossRef]
- Trifkovic, K.T.; Milasinovic, N.Z.; Djordjevic, V.B.; Krusic, M.T.; Knezevic-Jugovic, Z.D.; Nedovic, V.A.; Bugarski, B.M. Chitosan microbeads for encapsulation of thyme (Thymus serpyllum L.) polyphenols. Carbohydr. Polym. 2014, 111, 901–907. [Google Scholar] [CrossRef]
- Serrano-Leon, J.S.; Bergamaschi, K.B.; Yoshida, C.M.P.; Saldana, E.; Selani, M.M.; Rios-Mera, J.D.; Alencar, S.M.; Contreras-Castillo, C.J. Chitosan active films containing agro-industrial residue extracts for shelf life extension of chicken restructured product. Food Res. Int. 2018, 108, 93–100. [Google Scholar] [CrossRef]
- Frankel, E.N. Antioxidants in Food and Biology, Facts and Fiction; Oily Press: Bridgwater, UK, 2007; p. 254. [Google Scholar]
- Lorenzo, J.M.; González-Rodríguez, R.M.; Sánchez, M.; Amado, I.R.; Franco, D. Effects of natural (grape seed and chestnut extract) and synthetic antioxidants (buthylatedhydroxytoluene, BHT) on the physical, chemical, microbiological and sensory characteristics of dry cured sausage “chorizo”. Food Res. Int. 2013, 54, 611–620. [Google Scholar] [CrossRef]
- Zhang, J.; Perry, G.; Smith, M.A. Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantianigra neurons. Am. J. Pathol. 1999, 154, 1423–1429. [Google Scholar] [CrossRef]
- Chaitanya, K.V.; Pathan, A.A.K.; Mazumdar, S.S.; Chakravarthi, G.P.; Parine, N.; Bobbarala, V. Role of oxidative stress in human health: An overview. J. Pharm. Rese. 2010, 3, 1330–1333. [Google Scholar]
- Bouaziz, M.; Dhouib, A.; Loukil, S.; Boukhris, M.; Sayadi, S. Polyphenols content, antioxidant and antimicrobial activities of extracts of some wild plants collected from the south of Tunisia. Afr. J. Biotechnol. 2009, 8, 7017–7027. [Google Scholar]
- Asres, K.; Frank, S.; Wink, M. Patterns of pyrrolizidine alkaloids in 12 Ethiopian Crotalaria species. Biochem. Syst. Ecol. 2004, 32, 915–930. [Google Scholar] [CrossRef]
- Kartinia, S.; Piyaviriyakulc, P.; Siripongc, O.; Vallisuta, A. HPTLC simultaneous quantification of triterpene acids for quality control of Plantago major L. and evaluation of their cytotoxic and antioxidant activities. Ind. Crops Prod. 2014, 60, 239–246. [Google Scholar] [CrossRef]
- Hariharapura, R.; Srinivasan, R.; Ashok, G.; Dongre, S.; Jagani, H.; Vijayan, P. Investigation of the Antioxidant and Hepatoprotective Potential of Hypericum mysorense. Antioxidants 2014, 3, 526–543. [Google Scholar] [CrossRef] [PubMed]
- Firus Khan, A.Y.; Abdullah Asuhaimi, F.; Jalal, T.K.; Roheem, F.O.; Natto, H.A.; Johan, M.F.; Ahmed, Q.U.; Abdul Wahab, R. Hystrix Brachyura Bezoar Characterization, Antioxidant Activity Screening, and Anticancer Activity on Melanoma Cells (A375): A Preliminary Study. Antioxidants. 2019, 8, 39. [Google Scholar] [CrossRef] [PubMed]
- María, J.J.-P. Wine Lees as a Source of Antioxidant Compounds. Antioxidants 2019, 8, 45. [Google Scholar] [Green Version]
- Quèzel, P.; Santa, S. Nouvelle Flore d’Algérie et des Régions Désertiques Méridionales, Tomes 2; CNRS: Paris, France, 1963; p. 1170. [Google Scholar]
- Cheib, M.; Boukhris, M. Flore Succincte et Illustrée des Zones Arides et Sahariennes de Tunisie; L’Or du Temps: Tunis, Tunisie, 1998; pp. 49–51. ISBN 757. [Google Scholar]
- Mechergui, K.; Jaouadi, W.; Khouja, M.L. Pastoral plants for rehabilitation of degraded soil in Tunisia: The case for use of Calicotomevillosa and Genistaspachiana (Fabaceae). Biologija. 2017, 63, 23–32. [Google Scholar]
- Bouhadjera, K.; Kebir, T.; Baba-Ahmed, A.; Bendahou, M. Antimicrobial activity of the sterols and steroids extracted from the Algerian Oudneya Africana. Pak. J. Biol. Sci. 2005, 8, 834–838. [Google Scholar]
- Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds. Food Chem. 2006, 97, 654–660. [Google Scholar] [CrossRef]
- Nabti, L.Z.; Belhattab, R. In vitro antioxidant activity of Oudneya africana R. Br. aerial parts. IBSPR 2016, 4, 58–64. [Google Scholar]
- Lakhdari, W.; Dehliz, A.; Acheuk, F.; Mlik, R.; Hammi, H.; Doumandji-Mitiche, B.; Gheriani, S.; Berrekbia, M.; Guermit, K.; Chergui, S. Ethnobotanical study of some plants used in traditional medicine in the region of OuedRigh (Algerian Sahara). J. Med. Plants Stud. 2016, 4, 204–211. [Google Scholar]
- Hammami, R.; Zouhir, A.; Ben Hamida, J.; Neffati, M.; Vergoten, G.; Naghmouchi, K.; Fliss, I. Antimicrobial properties of aqueous extracts from three medicinal plants growing wild in arid regions of Tunisia. Pharm. Biol. 2009, 47, 452–457. [Google Scholar] [CrossRef]
- Matu, E.N.; VanStaden, J. Antibacterial and anti-inflammatory activities of some plants used for medicinal purposes in Kenya. J. Ethnopharmacol. 2003, 87, 35–41. [Google Scholar] [CrossRef]
- Dewanto, V.X.; Wu, K.; Adom, K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef] [PubMed]
- Tomaino, A.; Cristani, M.; Cimino, F.; Speciale, A.; Trombetta, D.; Bonina, F.; Saija, A. In vitro protective effect of a Jacquez grapes wine extract on UVB-induced skin damage. Toxicology 2006, 20, 1395–1402. [Google Scholar] [CrossRef] [PubMed]
- Mighri, H.; Akrout, A.; Bennour, N.; Eljeni, H.; Zammouri, T.; Neffati, M. LC/MS method development for the determination of the phenolic compounds of Tunisian Ephedra alata hydro-methanolic extract and its fractions and evaluation of their antioxidant activities. S. Afr. J. Bot. 2019, 124, 102–110. [Google Scholar] [CrossRef]
- Hanato, H.; Kagawa, T.; Yasuhara, J.; Okuda, T. Two new flavonoids and other constituents in licorice root: Their relative astringency and radical scavenging effect. Chem. Pharm. Bull. 1988, 36, 1090–1097. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cationdecolorisation assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of the browning reaction prepared from glucose amine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Nieto, G.; Jongberg, S.; Andersen, M.L.; Skibsted, L.H. Thiol oxidation and protein cross-link formation during chill storage of pork patties added essential oil of oregano, rosemary, or garlic. Meat Sci. 2013, 95, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xiong, Y.L. Inhibition of lipid oxidation in cooked beef patties by hydrolyzed potato protein is related to its reducing and radical scavenging ability. J. Agric. Food Chem. 2005, 53, 9186–9192. [Google Scholar] [CrossRef] [PubMed]
- Riener, C.K.; Kada, G.; Gruber, H.J. Quick measurement of protein sulfhydryls with Ellman’s reagent and with 4,4′-dithiodipyridine. Anal. Bioanal. Chem. 2002, 373, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Xiong, Y.L. Electrophoretic Pattern, Thermal Denaturation, and in Vitro Digestibility of Oxidized Myosin. J. Agric. Food Chem. 2000, 3, 624–630. [Google Scholar] [CrossRef] [PubMed]
- ISO (International Organization for Standardization). Sensory analysis: General Guidance for the Selection, Training and Monitoring of Assessors; ISO 8586-1:1993; ISO (International Organization for Standardization): London, UK, 1993. [Google Scholar]
- ISO (International Organization for Standardization). Sensory Analysis: Guidelines for the Use of Quantitative Response Scales; ISO 4121:2003; ISO (International Organization for Standardization): London, UK, 2003. [Google Scholar]
- Khacheba, I.; Djeridane, A.; Yousfi, M. Twenty Traditional Algerian Plants Used in Diabetes Therapy as Strong Inhibitors of α-Amylase Activity. Int. J. Carbohydr. Chem. 2014, 2014, 287281. [Google Scholar] [CrossRef]
- Cheynier, V. Polyphenols in food are more complex than often thought. Am. J. Clin. Nutr. 2005, 81, 223–229. [Google Scholar] [CrossRef]
- Buszewski, B.; Kawka, S.; Suprynowicz, Z.; Wolski, T. Simultaneous isolation of rutin and esculin from plant material and drugs using solid-phase extraction. J. Pharm. Biomed. Anal. 1993, 3, 211–215. [Google Scholar] [CrossRef]
- Chua, L.S. A review on plant-based rutin extraction methods and its pharmacological activities. J. Ethnopharmacol. 2013, 150, 805–817. [Google Scholar] [CrossRef]
- Jianhua, S.; Heng, W.; Bei, L.; Wenhao, S.; Juanzi, S.; Zhou, Z.; Junping, X. Rutin attenuates H2O2-induced oxidation damage and apoptosis in Leydig cells by activating PI3K/Akt signal pathways. Biomed. Pharmacother. 2017, 88, 500–506. [Google Scholar]
- Karabagias, I.; Badeka, A.; Kontominas, M.G. Shelf life extension of lamb meat using thyme or oregano essential oils and modified atmosphere packaging. Meat Sci. 2011, 88, 109–116. [Google Scholar] [CrossRef]
- Istrati, D.; Constantin, O.; Ionescu, A.; Vizireanu, C.; Dinică, R. Study of the combined effect of spices and marination on beef meat vacuum packaged. J. Food Technol. 2011, 35, 75–85. [Google Scholar]
- Lorenzo, J.M.; Franco, D. Fat effect on physico-chemical, microbial and textural changes through the manufactured of dry-cured foal sausage lipolysis, proteolysis and sensory properties. Meat Sci. 2012, 92, 704–714. [Google Scholar] [CrossRef] [PubMed]
- Leite, A.; Rodrigues, S.; Pereira, E.; Paulos, K.; Oliveira, A.F.; Lorenzo, J.M.; Teixeira, A. Physicochemical properties, fatty acid profile and sensory characteristics of sheep and goat meat sausages manufactured with different porkfat levels. Meat Sci. 2015, 105, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Gallego, M.G.; Gordon, M.H.; Segovia, F.J.; Almajano, M. Caesalpiniadecapetala extracts as iInhibitors of lipid oxidation in beef patties. Molecules 2015, 20, 13913–13926. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Rhee, K.S. Antioxidant properties of selected Oriental non culinary/nutraceutical herb extracts as evaluated in raw and cooked meat. Meat Sci. 2005, 70, 25–33. [Google Scholar] [CrossRef] [PubMed]
- MohdAzman, N.A.; Gallego, M.G.; Segovia, F.; Abdullah, S.; Shaarani, S.M.; AlmajanoPablos, M.P. Study of the properties of bearberry leaf extract as a natural antioxidant in model foods. Antioxidants 2016, 5, 11. [Google Scholar] [CrossRef]
- Skowyra, M.; Falguera, V.; Gallego, G.; Peiro, S.; Almajano, M.P. Antioxidant properties of aqueous and ethanolic extracts of tara (Caesalpinia spinosa) pods in vitro and in model food emulsions. J. Sci. Food Agric. 2014, 9, 911–918. [Google Scholar] [CrossRef]
- Renerre, M. Oxidative processes and myoglobin. In Antioxidants in Muscle Foods-Nutritional Strategies to Improve Quality; Decker, E., Faustman, C., LopezBote, C.J., Eds.; John Wiley & Sons, Inc.: Toronto, ON, Canada, 2000; p. 113. [Google Scholar]
- Filgueras, R.S.; Gatellier, P.; Za mbiazi, R.C.; Santé-Lhoutellier, V. Effect of frozen storage duration and cooking on physical and oxidative changes in M. Gastrocnemius pars interna and M. Iliofiburalis of rhea americana. Meat Sci. 2011, 88, 645–651. [Google Scholar] [CrossRef]
- Mirian, P.; Roberto, B.; José, M.L.; Daniel, F. Effect of Addition of Natural Antioxidants on the Shelf-Life of “Chorizo”, a Spanish Dry-Cured Sausage. Antioxidants 2015, 4, 42–67. [Google Scholar]
- Huang, Y.; Zhu, M.; Li, Z.; Sa, R.; Chu, Q.; Zhang, Q.; Zhang, H.; Tang, W.; Zhang, M.; Yin, H. Mass spectrometry-based metabolomic profiling identifies alterations in salivary redox status and fatty acid metabolism in response to inflammation and oxidative stress in periodontal disease. Free Radic. Biol. Med. 2014, 70, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Raharjo, S.; Sofos, J.N. Methodology for measuring malonaldehyde as a product of lipid peroxidation in muscle tissues: A review. Meat Sci. 1993, 35, 145–169. [Google Scholar] [CrossRef]
- Smaoui, S.; Ben Hsouna, A.; Lahmar, A.; Ennouri, K.; Mtibaa-Chakchouk, A.; Sellema, I.; Najah, S.; Bouaziz, M.; Mellouli, L. Bio-preservative effect of the essential oil of the endemic Menthapiperita used alone and in combination with BacTN635 in stored minced beef meat. Meat Sci. 2016, 117, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Lund, M.N.; Heinonen, M.; Baron, C.P.; Estévez, M. Protein oxidation in muscle foods: A review. Mol. Nutr. Food Res. 2011, 55, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.B.; Bodker, S.; Rosenvold, K. Influence of lamb age and high-oxygen modified atmosphere packaging on protein polymerization of long-term aged lamb loins. Food Chem. 2012, 135, 122–126. [Google Scholar] [CrossRef]
- Kim, D.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003, 81, 321–326. [Google Scholar] [CrossRef]
- Chaâbane, M.; Maktouf, S.; Sayari, N.; Zouari, S.; Zeghal, N.; Ellouze Ghorbel, R. Antioxidant and antimicrobial properties of the extracts from Nitrariaretusa fruits and their applications to meat product preservation. Ind. Crops Prod. 2014, 55, 295–303. [Google Scholar]
- Gok, V.; Bor, Y. Effect of olive leaf, blueberry and Zizyphus jujube extracts on the equality and shelf life of meatball during storage. J. Food Agric. Environ. 2012, 2, 190–195. [Google Scholar]
- Nanasombat, S.; Khanha, K.; Phan-im, J.; Jitaied, J.; Wannasomboon, S.; Patradisakorn, S.; Wongsil, A. Antimicrobial and antioxidant activities of Thai local fruit extracts: Application of selected fruit extract, Phyllantusemblica Linn. as a nat-ural preservative in raw ground pork during refrigerated storage. Online J. Sci. Technol. 2012, 2, 1. [Google Scholar]
- Elgadir, M.A.; Jamilah, B.; Abdul Rahman, R. Quality and sensory attributes of burger formulated from fresh beef cuts (longissmusdorsi) infused with citric acid. IJFANS. 2015, 4, 1–5. [Google Scholar]
- Fernandes, R.D.P.P.; Trindade, M.A.; Tonin, F.G.; Pugine, S.M.P.; Hirano, M.H.; Lorenzo Rodríguez, J.M.; de Melo, M.P. Physicochemical parameters and sensory properties of lamb burger manufactured with different concentrations of oregano extract. In Proceedings of the International Congress of Meat Science and Technology, Punta Del Este, Uruguay, 17–22 August 2014. [Google Scholar]
- Gardner, J.W.; Bartlett, P.N. Sensors and Sensory Systems for an Electronic Nose, 3rd ed.; Dordrecht: Beijing, China, 1992; p. 327. [Google Scholar]
- Nieto, G.; Xiong, Y.L.; Payne, F.; Castillo, M. Predicting frankfurters quality metrics using light backscatter. J. Food Eng. 2014, 143, 132–138. [Google Scholar] [CrossRef]
- Furnols, M.F.; Guerrero, L. Consumer preference, behavior and perception about meat and meat products: An overview. Meat Sci. 2014, 98, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Kerth, C.R.; Harbison, A.L.; Smith, S.B.; Miller, R.K. Consumer sensory evaluation, fatty acid composition, and shelf-life of ground beef with subcutaneous fat trimmings from different carcass locations. Meat Sci. 2015, 104, 30–36. [Google Scholar] [CrossRef] [PubMed]
Hexane | Dichloromethane | Acetone | Ethanol | Aqueous | Ascorbic Acid | |
---|---|---|---|---|---|---|
Yield (%) | 2.26 | 2.14 | 2.30 | 5.39 | 13.49 | - |
TPC | 213.00 ± 1.41 e | 445.33 ± 3.27 c | 496.16 ± 0.02 b | 661.66 ± 0.08 a | 291.5 ± 0.81 d | - |
TFC | 127.08 ± 0.73 d | 301.61 ± 2.93 b | 344.68 ± 0.44 a | 296.28 ± 1.49 c | 3.97 ± 0.01 e | - |
CTC | 70.47 ± 1.41 b | 90.18 ± 0.49 a | 45.62 ± 0.01 c | 36.22 ± 0.03 d | 2.40 ± 0.02 e | - |
DPPH | - | 343.02 ± 0.01 a | 80.10 ± 0.03 c | 22.00 ± 0.03 d | 105.06 ± 0.65 b,c | 108.1 ± 0.06 b |
ABTS | 2799.21 ± 0.01 a | 1354.50 ± 0.06 c | 761.15 ± 0.09 e | 1075.25 ± 0.06 d | 1761.10 ± 0.03 b | 71.0 ± 0.04 f |
FRAP | 1627.12 ± 0.02 a | 1423.16 ± 0.02 b | 1006.12 ± 0.04 c | 269.00 ± 0.01 e | 805.00 ± 0.61 d | 31.02 ± 0.48 f |
Peak | Retention Time (min) | MS [M−H]−m/z | Compounds | Quantity in µg/g Extract | |
---|---|---|---|---|---|
Acetone Extract | Ethanol Extract | ||||
1 | 2.255 | 191.00 | Quinic acid | 228.61 ± 7.41 | 1097.96 ± 50.48 |
2 | 4.768 | 169.00 | Gallic acid | 72.045 ± 2.06 | 17.98 ± 0.15 |
3 | 7.396 | 153.00 | protocatchuic acid | 242.98 ± 0.86 | 24.58 ± 0.10 |
4 | 9.583 | 289.00 | Catechin (+) | 17.521 ± 0.08 | 3.79 ± 0.18 |
5 | 12.060 | 351.00 | Chlorogenic acid | 459.5 ± 20.94 | 655.21 ± 43.88 |
6 | 14.781 | 289.00 | Epicatechin | 458.84 ± 13.35 | - |
7 | 13.013 | 353.00 | 4-O-caffeoylquinicacid | 15,443 ± 10.47 | 22,365.06 ± 1.04 |
8 | 13.301 | 179.00 | Caffeic acid | 320.71 ± 2.53 | 69.38 ± 1.59 |
9 | 17.548 | 163.00 | p-coumaric acid | 192 ± 0.32 | 24.14 ± 0.15 |
10 | 21.868 | 579.00 | Naringin | 79.657 ± 3.12 | - |
11 | 21.978 | 359.00 | Rosmarinic acid | 55.898 ± 1.47 | - |
12 | 22.507 | 463.00 | Hyperoside (quercetin-3-O-galactoside) | 206.31 ± 5.39 | 56.11 ± 1.90 |
13 | 23.332 | 609.00 | Rutin | 18,635 ± 472.13 | 15,447.12 ± 91.45 |
14 | 23.564 | 717.00 | Salvianolic acid | 230.82 ± 7.97 | 88.44 ± 1.14 |
15 | 24.186 | 515.00 | 4,5-di-O-caffeoylquinic acid | 557.08 ± 5.11 | 490.89 ± 9.36 |
16 | 25.551 | 447.00 | Quercetrin (quercetin-3-O-rhamonoside) | 44.976 ± 0.77 | 7.53 ± 0.73 |
17 | 27.075 | 271.00 | Naringenin | 2.757 ± 0.04 | 0.73 ± 0.10 |
18 | 28.802 | 481.00 | Silymarin | 13.998 ± 0.27 | 2.92 ± 0.23 |
19 | 32.536 | 329.00 | Cirsiliol | 38.613 ± 0.42 | 6.21 ± 0.10 |
20 | 37.233 | 283.00 | Acacetin | 125.19 ± 2.40 | 118.02 ± 7.99 |
Extracts | Storage Day | |||
---|---|---|---|---|
Day0 | Day3 | Day7 | Day10 | |
Acetone | 5.64 ± 0.01 b,C | 5.54 ± 0.03 b,D | 6.65 ± 0.54 c,B | 7.09 ± 0.01 b,A |
Ethanol | 5.45 ± 0.02 d,D | 5.47 ± 0.01 c,C | 6.62 ± 0.46 d,B | 6.65 ± 0.01 c,A |
Aqueous | 5.59 ± 0.01 c,C | 5.54 ± 0.02 b,D | 6.85 ± 0.26 a,B | 7.15 ± 0.01 a,A |
(–)Control | 5.63 ± 0.01 b,C | 5.57 ± 0.01 b,D | 6.71 ± 0.41 b,B | 7.15 ± 0.01 a,A |
(+)Control | 5.73 ± 0.01 a,C | 5.75 ± 0.02 a,C | 6.51 ± 0.14 e,B | 6.64 ± 0.01 c,A |
Extracts | Treatment | Storage Days | |||
---|---|---|---|---|---|
Day 0 | Day 3 | Day 7 | Day 10 | ||
L* | |||||
Acetone | 42.41 ± 1.02 aA | 41.53 ± 0.55 bB | 41.95 ± 1.18 abB | 42.31 ± 0.42 abA | |
Ethanol | 42.28 ± 0.52 aB | 44.22 ± 0.48 abA | 39.85 ± 0.59 bcC | 38.81 ± 0.39 cD | |
Aqueous | 39.51 ± 1.30 bBC | 42.91 ± 0.47 abA | 39.58 ± 0.85 cC | 40.24 ± 0.27 bcB | |
(–)Control | 43.10 ± 0.79 aB | 45.10 ± 1.04 aA | 43.02 ± 0.97 abB | 43.15 ± 0.59 aB | |
(+)Control | 44.84 ± 0.69 aA | 44.26 ± 0.55 abA | 43.77 ± 1.11 aA | 43.62 ± 1.03 aA | |
*a | |||||
Acetone | 12.11 ± 0.44 dA | 9.81 ± 0.13 dB | 8.99 ± 1.03 cB | 8.4 ± 0.32 bC | |
Ethanol | 15.72 ± 0.53 cA | 11.74 ± 0.36 bcB | 11.16 ± 0.43 abcBC | 10.84 ± 0.28 aC | |
Aqueous | 16.6 ± 0.68 cA | 12.88 ± 0.16 bB | 8.72 ± 1.60b cC | 7.31 ± 0.33 bD | |
(–)Control | 19.16 ± 0.52 bA | 10.32 ± 0.19 cC | 11.55 ± 0.38 bB | 10.22 ± 0.38 aC | |
(+)Control | 24.91 ± 0.34 aA | 16.88 ± 0.67 aB | 12.77 ± 0.33 aC | 10.8 ± 0.33 aD | |
b* | |||||
Acetone | 11.01 ± 0.20 bcA | 8.74 ± 0.28 bC | 8.68 ± 0.24 bC | 9.15 ± 0.21 bB | |
Ethanol | 11.95 ± 0.40 bA | 10.12 ± 0.24 aB | 9.07 ± 0.25 abC | 8.92 ± 0.25 bcC | |
Aqueous | 9.94 ± 0.40 cA | 9.34 ± 0.28 abA | 9.28 ± 0.04a bA | 9.46 ± 0.30 bA | |
(–)Control | 14.07 ± 0.18 aA | 9.82 ± 0.36 abB | 7.36 ± 0.23 cC | 7.94 ± 0.25 cC | |
(+)Control | 10.83 ± 0.37 bcA | 9.03 ± 0.25 abC | 9.77 ± 0.19 aB | 10.67 ± 0.27 aA | |
TBARS | |||||
Acetone | 0.54 ± 0.03 bA | 0.49 ± 0.02 bB | 0.47 ± 0.02 bBC | 0.44 ± 0.01 bC | |
Ethanol | 0.58 ± 0.03 bA | 0.56 ± 0.02 bA | 0.46 ± 0.01 bB | 0.45 ± 0.02 bB | |
Aqueous | 0.61 ± 0.09 bA | 0.46 ± 0.03 bA | 0.58 ± 0.12 bA | 0.54 ± 0.08 bA | |
(–)Control | 1.33 ± 0.32 aC | 1.98 ± 0.19 aB | 2.88 ± 0.28 aA | 2.95 ± 0.19 aA | |
(+)Control | 0.58 ± 0.03 bA | 0.48 ± 0.0 bB | 0.42 ± 0.00 bC | 0.40 ± 0.01 bC | |
THIOLS | |||||
Acetone | 40.96 ± 0.99 bA | ND | 19.36 ± 7.91 aB | 15.55 ± 1.44 cB | |
Ethanol | 32.60 ± 5.42 cA | ND | 20.74 ± 3.58 aB | 20.38 ± 0.62 abB | |
Aqueous | 48.14 ± 2.51 bA | ND | 24.56 ± 7.66 aB | 17.04 ± 2.28 bcB | |
(–)Control | 47.90 ± 4.61 bA | ND | 25.65 ± 11.34 aB | 16.45 ± 2.89 cB | |
(+)Control | 59.38 ± 6.77 aA | ND | 29.83 ± 3.65 aB | 22.82 ± 1.66 aB |
Parameters | Extracts | Storage days | |||
---|---|---|---|---|---|
Day 0 | Day 3 | Day 7 | Day 10 | ||
Acetone | 3.00 ± 1.29 bA | 2.57 ± 0.78 bA | 2.00 ± 0.81 abAB | 1.14 ± 0.37 aB | |
Ethanol | 3.71 ± 1.79 abA | 2.57 ± 1.39 bAB | 2.28 ± 1.88 abAB | 1.14 ± 0. 37aB | |
HO | Aqueous | 4.71 ± 1.38 abA | 1.42 ± 0.78 cC | 3.14 ± 1.77 aB | 1.14 ± 0.37 aC |
(–)Control | 4.14 ± 1.34 abA | 3.14 ± 0.89 abB | 1.42 ± 0.53 bC | 1.14 ± 0.37 aC | |
(+)Control | 5.00 ± 1.41 aA | 4.14 ± 0.69 abA | 1.14 ± 0.37 bB | 1.14 ± 0.37 aB | |
Acetone | 1.00 ± 0.00 aB | 1.57 ± 1.13 aB | 2.14 ± 1.21 bB | 3.28 ± 1.70 aA | |
Ethanol | 1.00 ± 0.00 aB | 1.71 ± 1.11 aB | 1.85 ± 1.06 bB | 3.71 ± 2.05 aA | |
RO | Aqueous | 1.00 ± 0.00 aB | 1.14 ± 0.37 aB | 1.71 ± 1.25 bB | 3.85 ± 1.95 aA |
(–)Control | 1.00 ± 0.00 aB | 2.14 ± 1.06 aB | 2.42 ± 1.39 bB | 4.57 ± 1.81 aA | |
(+)Control | 1.00 ± 0.00 aB | 1.28 ± 0.48 aB | 4.14 ± 1.06 aA | 4.71 ± 1.11 aA | |
Acetone | 1.00 ± 0.00 aC | 1.85 ± 1.21 aBC | 2.00 ± 1.00 abB | 4.15 ± 2.00 aA | |
Ethanol | 1.00 ± 0.00 aC | 1.14 ± 0.37 aBC | 2.00 ± 1.00 abB | 3.85 ± 1.86 aA | |
AO | Aqueous | 1.14 ± 0.37 aB | 1.14 ± 0.37 aB | 2.00 ± 1.00 bB | 3.71 ± 1.88 aA |
(–)Control | 1.00 ± 0.00 aC | 1.57 ± 0.53 aBC | 3.00 ± 1.00 abB | 4.57 ± 1.71 aA | |
(+)Control | 1.00 ± 0.00 aB | 1.57 ± 0.53 aB | 4.00 ± 1.00 aA | 4.57 ± 0.97 aA | |
Acetone | 1.00 ± 0.00 aB | 1.42 ± 0.78 aB | 1.71 ± 0.75 bB | 3.71 ± 1.79 aA | |
Ethanol | 1.00 ± 0.00 aB | 1.00 ± 0.00 aB | 1.85 ± 0.89 bB | 3.42 ± 1.90 aA | |
PO | Aqueous | 1.00 ± 0.00 aB | 1.14 ± 0.37 aB | 1.71 ± 1.49 bB | 3.85 ± 1.57 aA |
(–)Control | 1.00 ± 0.00 aB | 1.57 ± 0.53 aB | 2.28 ± 1.38 bB | 4.57 ± 1.71 aA | |
(+)Control | 1.00 ± 0.00 aB | 1.42 ± 0.53 aB | 4.42 ± 0.78 aA | 4.85 ± 1.06 aA | |
Acetone | 3.57 ± 0.97 baA | 2.57 ± 0.97 bA | 2.85 ± 1.06 aA | 1.28 ± 0.48 aB | |
Ethanol | 3.85 ± 1.46 aAB | 5.00 ± 1.00 aA | 3.28 ± 1.49 aBC | 2.00 ± 1.41 aC | |
EO | Aqueous | 4.28 ± 1.70 aA | 4.57 ± 1.51 aA | 1.57 ± 0.53 bB | 1.42 ± 0.78 aB |
(–)Control | 1.28 ± 0.48 bA | 1.42 ± 0.53 cA | 1.42 ± 0.78 bA | 2.00 ± 1.91 aA | |
(+)Control | 3.14 ± 1.67 aA | 1.28 ± 0.48 cB | 1.28 ± 0.75 bB | 2.00 ± 1.82 aAB | |
Acetone | 5.57 ± 0.53 abA | 3.28 ± 0.95 aBC | 3.57 ± 0.78 abB | 2.42 ± 1.39 aC | |
Ethanol | 5.14 ± 1.06 abA | 3.57 ± 1.13 aB | 3.71 ± 0.95 aB | 3.14 ± 1.46 aB | |
MC | Aqueous | 6.00 ± 0.00 aA | 3.28 ± 0.95 aB | 2.57 ± 1.13 abBC | 2.00 ± 1.00 aC |
(–)Control | 5.14 ± 1.21 abA | 2.85 ± 0.69 aB | 3.28 ± 1.70 abB | 2.28 ± 1.11 aB | |
(+)Control | 4.71 ± 1.25 bA | 3.57 ± 0.78 aB | 2.28 ± 0.75 bC | 1.71 ± 0.95 aC | |
Acetone | 5.28 ± 0.95 aA | 4.28 ± 0.48 aA | 2.85 ± 1.46 aB | 2.42 ± 1.13 aB | |
Ethanol | 5.57 ± 0.78 aA | 4.57 ± 0.78 aAB | 3.57 ± 0.97 aBC | 3.14 ± 1.34 aC | |
FC | Aqueous | 6.00 ± 0.00 aA | 4.71 ± 0.95 aB | 3.57 ± 1.27 aBC | 2.57 ± 1.39 aC |
(–)Control | 5.14 ± 1.46 aA | 4.28 ± 0.95 aAB | 3.71 ± 1.38 aAB | 2.71 ± 1.60 aB | |
(+)Control | 5.00 ± 1.52 aA | 4.00 ± 1.00 aAB | 2.71 ± 1.38 aB | 2.57 ± 1.39 aB |
Parameters | Extracts | Regression Equation | R2 |
---|---|---|---|
Physico-chemical | Acetone | HO = −4.208 + 0.903 a* | 0.816 |
Ethanol | HO = −0.780 + 0.600 b* | 0.360 | |
Aqueous | HO = 26.546+ 0.752 a* − 0.692 L* | 0.875 | |
(+)Control | HO = −1.123 + 0.881 TBARS | 0.777 | |
(−)Control | HO = 9.927 - 1.210 TBARS − 0.493 a* | 0.814 | |
Sensorial | Acetone | HO = −4.184 + 0.830 RO | 0.689 |
Ethanol | - | ||
Aqueous | HO = −0.254+ 0.805 MC | 0.648 | |
(+)Control | HO = 3.605+ 0.534 MC − 0.524 PO | 0.792 | |
(−)Control | HO = 1.184 +0.720 MC | 0.518 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hajlaoui, H.; Arraouadi, S.; Mighri, H.; Chaaibia, M.; Gharsallah, N.; Ros, G.; Nieto, G.; Kadri, A. Phytochemical Constituents and Antioxidant Activity of Oudneya Africana L. Leaves Extracts: Evaluation Effects on Fatty Acids and Proteins Oxidation of Beef Burger during Refrigerated Storage. Antioxidants 2019, 8, 442. https://doi.org/10.3390/antiox8100442
Hajlaoui H, Arraouadi S, Mighri H, Chaaibia M, Gharsallah N, Ros G, Nieto G, Kadri A. Phytochemical Constituents and Antioxidant Activity of Oudneya Africana L. Leaves Extracts: Evaluation Effects on Fatty Acids and Proteins Oxidation of Beef Burger during Refrigerated Storage. Antioxidants. 2019; 8(10):442. https://doi.org/10.3390/antiox8100442
Chicago/Turabian StyleHajlaoui, Hafedh, Soumaya Arraouadi, Hedi Mighri, Mouna Chaaibia, Néji Gharsallah, Gaspar Ros, Gema Nieto, and Adel Kadri. 2019. "Phytochemical Constituents and Antioxidant Activity of Oudneya Africana L. Leaves Extracts: Evaluation Effects on Fatty Acids and Proteins Oxidation of Beef Burger during Refrigerated Storage" Antioxidants 8, no. 10: 442. https://doi.org/10.3390/antiox8100442
APA StyleHajlaoui, H., Arraouadi, S., Mighri, H., Chaaibia, M., Gharsallah, N., Ros, G., Nieto, G., & Kadri, A. (2019). Phytochemical Constituents and Antioxidant Activity of Oudneya Africana L. Leaves Extracts: Evaluation Effects on Fatty Acids and Proteins Oxidation of Beef Burger during Refrigerated Storage. Antioxidants, 8(10), 442. https://doi.org/10.3390/antiox8100442