Impact of ApoE Polymorphism and Physical Activity on Plasma Antioxidant Capability and Erythrocyte Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects Recruitment and ApoE Genotyping
2.2. Study Population and Evaluation of the Physical Activity Level
2.3. Blood Collection
2.4. Quantification of Amyloid Beta (Aβ) in Erythrocytes
2.5. Evaluation of the Total Antioxidant Capability (AOC) in Plasma
2.6. Lipid Peroxidation Assay in Plasma
2.7. Phosphatidylcholine (PC) Assay in Erythrocytes
2.8. Phosphatidylethanolamine (PE) Assay in Erythrocytes
2.9. Membrane Fluidity Assay in Erythrocytes
2.10. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Antioxidant Capability (AOC) in Plasma
3.3. Levels of Amyloid Beta (Aβ) in Erythrocytes
3.4. Lipid Peroxidation in Plasma
3.5. Phosphatidylcholine (PC) and Phosphatidylethanolamine (PE) Amount in Erythrocytes
3.6. Membrane Fluidity of Erythrocytes
3.7. Correlation among Triglycerides, Cholesterol, and Glucose Levels
3.8. Correlation between Plasma and Erythrocytes Well-Being Parameters
3.9. Correlation of Plasma and Erythrocytes Well-Being Parameters with Age and the Level of Physical Activity
3.10. Covariate and Multiple Regression Analyses
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Giau, V.V.; Bagyinszky, E.; An, S.S.; Kim, S.Y. Role of apolipoprotein E in neurodegenerative diseases. Neuropsychiatr. Dis. Treat. 2015, 16, 1723–1737. [Google Scholar] [CrossRef]
- Liu, C.C.; Liu, C.C.; Kanekiyo, T.; Xu, H.; Bu, G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat. Rev. Neurol. 2013, 9, 106–118. [Google Scholar] [CrossRef] [Green Version]
- Mahley, R.W.; Rall, S.C., Jr. Apolipoprotein E: Far more than a lipid transport protein. Annu. Rev. Genom. Hum. Genet. 2000, 1, 507–537. [Google Scholar] [CrossRef]
- Serrano-Pozo, A.; Frosch, M.P.; Masliah, E.; Hyman, B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2011, 1, a006189. [Google Scholar] [CrossRef]
- Bell, R.D.; Winkler, E.A.; Singh, I.; Sagare, A.P.; Deane, R.; Wu, Z.; Holtzman, D.M.; Betsholtz, C.; Armulik, A.; Sallstrom, J.; et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 2012, 48, 512–516. [Google Scholar] [CrossRef]
- Ross, J.M.; Olson, L.; Coppotelli, G. Mitochondrial and ubiquitin proteasome system dysfunction in ageing and disease: two sides of the same coin? Int. J. Mol. Sci. 2015, 16, 19458–19476. [Google Scholar] [CrossRef] [PubMed]
- Ramassamy, C.; Averill, D.; Beffert, U.; Bastianetto, S.; Theroux, L.; Lussier-Cacan, S.; Cohn, J.S.; Christen, Y.; Davignon, J.; Quirion, R.; et al. Oxidative damage and protection by antioxidants in the frontal cortex of Alzheimer’s disease is related to the apolipoprotein E genotype. Free Radic. Biol. Med. 1999, 27, 544–553. [Google Scholar] [CrossRef]
- Calzada, E.; Onguka, O.; Claypool, S.M. Phosphatidylethanolamine metabolism in health and disease. Int. Rev. Cell Mol. Biol. 2016, 321, 29–88. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, G.G.; Pacheco-Moisés, F.P.; Flores-Alvarado, L.J.; Macías-Islas, M.A.; Velázquez-Brizuela, I.E.; Ramírez-Anguiano, A.C.; Tórres-Sánchez, E.D.; Moráles-Sánchez, E.W.; Cruz-Ramos, J.A.; Ortiz-Velázquez, G.E.; et al. Alzheimer Disease and Metabolism: Role of Cholesterol and Membrane Fluidity; Intech Open: London, UK, 2013. [Google Scholar]
- Morris, J.K.; Vidoni, E.D.; Johnson, D.K.; van Sciver, A.; Mahnken, J.D.; Honea, R.A.; Wilkins, H.M.; Brooks, W.M.; Billinger, S.A.; Swerdlow, R.H.; et al. Aerobic exercise for Alzheimer’s disease: A randomized controlled pilot trial. PLoS ONE 2017, 12, e0170547. [Google Scholar] [CrossRef] [PubMed]
- Paillard, T.; Rolland, Y.; de Souto Barreto, P. Protective effects of physical exercise in Alzheimer’s Disease and Parkinson’s Disease: a narrative review. J. Clin. Neurol. 2015, 11, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Radak, Z.; Suzuki, K.; Higuchi, M.; Balogh, L.; Boldogh, I.; Koltai, E. Physical exercise, reactive oxygen species and neuroprotection. Free Radic. Biol. Med. 2016, 98, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Daniele, S.; Frosini, D.; Pietrobono, D.; Petrozzi, L.; Lo Gerfo, A.; Baldacci, F.; Fusi, J.; Giacomelli, C.; Siciliano, G.; Trincavelli, M.L.; et al. α-synuclein heterocomplexes with β-amyloid are increased in red blood cells of Parkinson’s Disease patients and correlate with disease severity. Front. Mol. Neurosci. 2018, 11, 53. [Google Scholar] [CrossRef] [PubMed]
- Singh, S. Antioxidants as a preventive therapeutic option for age related neurodegenerative disease. Targets Neurol. Dis. 2015, 2, e592. [Google Scholar] [CrossRef]
- Kiko, T.; Nakagawa, K.; Satoh, A.; Tsuduki, T.; Furukawa, K.; Arai, H.; Miyazawa, T. Amyloid β levels in human red blood cells. PLoS ONE 2012, 7, e49620. [Google Scholar] [CrossRef]
- Karsten, E.; Breen, E.; Herbert, B.R. Red blood cells are dynamic reservoirs of cytokines. Sci. Rep. 2018, 8, 3101. [Google Scholar] [CrossRef]
- Daniele, S.; Pietrobono, D.; Fusi, J.; Iofrida, C.; Chico, L.; Petrozzi, L.; Lo Gerfo, A.; Baldacci, F.; Galetta, F.; Siciliano, G.; et al. α-synuclein aggregates with β-amyloid or tau in human red blood cells: correlation with antioxidant capability and physical exercise in human healthy subjects. Mol. Neurobiol. 2018, 55, 653–2675. [Google Scholar] [CrossRef]
- Lee, J.H.; Hong, S.M.; Shin, Y.A. Effects of exercise training on stroke risk factors, homocysteine concentration, and cognitive function according the APOE genotype in stroke patients. J. Exerc. Rehabil. 2018, 14, 267–274. [Google Scholar] [CrossRef]
- Solomon, A.; Turunen, H.; Ngandu, T.; Peltonen, M.; Levälahti, E.; Helisalmi, S.; Antikainen, R.; Bäckman, L.; Hänninen, T.; Jula, A.; et al. Effect of the Apolipoprotein E genotype on cognitive change during a multidomain lifestyle intervention: a subgroup analysis of a randomized clinical trial. JAMA Neurol. 2018, 75, 462–470. [Google Scholar] [CrossRef]
- Whaley, M.H.; Brubaker, P.H.; Otto, R.M.; Armstrong, L.E. Medicine ACoS Guidelines for Exercise Testing and Prescription, 7th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006. [Google Scholar]
- Wicker, P.; Frick, B. Intensity of physical activity and subjective well-being: An empirical analysis of the WHO recommendations. J. Public Health 2017, 39, e19–e26. [Google Scholar] [CrossRef]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Regoli, F.; Winston, G.W. Quantification of total oxidant scavenging capacity of antioxidants for peroxynitrite, peroxyl radicals, and hydroxyl radicals. Toxicol. Appl. Pharm. 1999, 156, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Franzoni, F.; Ghiadoni, L.; Galetta, F.; Plantinga, Y.; Lubrano, V.; Huang, Y.; Salvetti, G.; Regoli, F.; Taddei, S.; Santoro, G.; et al. Physical activity, plasma antioxidant capacity, and endothelium-dependent vasodilation in young and older men. Am. J. Hypertens. 2005, 18, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, S.; Fusi, J.; Franzoni, F.; Giovannini, L.; Galetta, F.; Mannari, C.; Guidotti, E.; Tocchini, L.; Santoro, G. Effects of recombinant human erythropoietin high mimicking abuse doses on oxidative stress processes in rats. Biomed. Pharm. 2016, 82, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Franzoni, F.; Colognato, R.; Galetta, F.; Laurenza, I.; Barsotti, M.; Di Stefano, R.; Bocchetti, R.; Regoli, F.; Carpi, A.; Balbarini, A.; et al. An in vitro study on the free radical scavenging capacity of ergothioneine: Comparison with reduced glutathione, uric acid and trolox. Biomed. Pharm. 2006, 60, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Muralidharan, N.; Bhat, T.; Kumari, S.N. A study on effect of ageing on the levels of total antioxidant and lipid peroxidation. Int. J. Contemp. Med. Res. 2017, 4, 8–10. [Google Scholar]
- Dose, J.; Huebbe, P.; Nebel, A.; Rimbach, G. APOE genotype and stress response—A mini review. Lipids Health Dis. 2006, 25, 121. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Mormino, E.C. APOE genotype and early β-amyloid accumulation in older adults without dementia. Neurology 2017, 89, 1028–1034. [Google Scholar] [CrossRef]
- Baldacci, F.; Daniele, S.; Piccarducci, R.; Giampietri, L.; Pietrobono, D.; Giorgi, F.S.; Nicoletti, V.; Frosini, D.; Libertini, P.; Lo Gerfo, A.; et al. Potential diagnostic value of red blood cells α-synuclein heteroaggregates in Alzheimer’s Disease. Mol. Neurobiol. 2019. [Google Scholar] [CrossRef]
- Piccarducci, R.; Pietrobono, D.; Pellegrini, C.; Daniele, S.; Fornai, M.; Antonioli, L.; Trincavelli, M.L.; Blandizzi, C.; Martini, C. High Levels of β-Amyloid, Tau, and Phospho-Tau in Red Blood Cells as Biomarkers of Neuropathology in Senescence-Accelerated Mouse. Oxid. Med. Cell. Longev. 2019. [Google Scholar] [CrossRef]
- Hooper, C.; De Souto Barreto, P.; Payoux, P.; Salabert, A.S.; Guyonnet, S.; Andrieu, S.; Sourdet, S.; Delrieu, J.; Vellas, B. Association of cortical β-amyloid with erythrocyte membrane monounsaturated and saturated fatty acids in older adults at risk of dementia. J. Nutr. Health Aging 2017, 21, 1170–1175. [Google Scholar] [CrossRef]
- Praticò, D. Lipid peroxidation and the aging process. Sci. Aging Knowl. Environ. 2002, re5. [Google Scholar] [CrossRef] [PubMed]
- Sinem, F.; Dildar, K.; Gökhan, E.; Melda, B.; Orhan, Y.; Filiz, M. The serum protein and lipid oxidation marker levels in Alzheimer’s disease and effects of cholinesterase inhibitors and antipsychotic drugs therapy. Curr. Alzheimer Res. 2010, 7, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, T.; Suzuki, T.; Fujimoto, K.; Kinoshita, M. Age-related change of phosphatidylcholine hydroperoxide and phosphatidylethanolamine hydroperoxide levels in normal human red blood cells. Mech. Ageing Dev. 1996, 86, 145–150. [Google Scholar] [CrossRef]
- Choi, J.H.; Yu, B.P. Brain synaptosomal aging: Free radicals and membrane fluidity. Free Radic. Biol. Med. 1995, 18, 133–139. [Google Scholar] [CrossRef]
- Ou, T.; Yamakawa-Kobayashi, K.; Arinami, T.; Amemiya, H.; Fujiwara, H.; Kawata, K.; Saito, M.; Kikuchi, S.; Noguchi, Y.; Sugishita, Y.; et al. Methylenetetrahydrofolate reductase and apolipoprotein E polymorphisms are independent risk factors for coronary heart disease in Japanese: A case-control study. Atherosclerosis 1998, 137, 23–28. [Google Scholar] [CrossRef]
- Davignon, J.; Gregg, R.E.; Sing, C.F. Apolipoprotein E polymorphism and atherosclerosis. Arteriosclerosis 1988, 8, 1–21. [Google Scholar] [CrossRef]
- Song, Y.; Stampfer, M.J.; Liu, S. Meta-analysis: apolipoprotein E genotypes and risk for coronary heart disease. Ann. Intern. Med. 2004, 141, 137–147. [Google Scholar] [CrossRef]
- Tammi, A.; Rönnemaa, T.; Rask-Nissilä, L.; Miettinen, T.A.; Gylling, H.; Valsta, L.; Viikari, J.; Välimäki, I.; Simell, O. Apolipoprotein E Phenotype Regulates Cholesterol Absorption in Healthy 13-Month-Old Children—The STRIP Study. Pediatr. Res. 2001, 50, 688–691. [Google Scholar] [CrossRef]
- Tammi, A.; Rönnemaa, T.; Viikari, J.; Jokinen, E.; Lapinleimu, H.; Ehnholm, C.; Simell, O. Apolipoprotein E4 phenotype increases non-fasting serum triglyceride concentration in infants—The STRIP study. Atherosclerosis 2000, 152, 135–141. [Google Scholar] [CrossRef]
- Verghese, P.B.; Castellano, J.M.; Holtzman, D.M. Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol. 2011, 10, 241–252. [Google Scholar] [CrossRef]
- Maiti, T.K.; Konar, S.; Bir, S.; Kalakoti, P.; Bollam, P.; Nanda, A. Role of apolipoprotein E polymorphism as a prognostic marker in traumatic brain injury and neurodegenerative disease: A critical review. Neurosurg. Focus 2015, 39, E3. [Google Scholar] [CrossRef] [PubMed]
- Maurya, P.K.; Kumar, P.; Chandra, P. Biomarkers of oxidative stress in erythrocytes as a function of human age. World J. Methodol. 2015, 5, 216–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayakumar, R.; Kusiak, J.W.; Chrest, F.J.; Demehin, A.A.; Murali, J.; Wersto, R.P.; Nagababu, E.; Ravi, L.; Rifkind, J.M. Red cell perturbations by amyloid beta-protein. Biochim. Biophys. Acta 2003, 1622, 20–28. [Google Scholar] [CrossRef]
- Head, D.; Bugg, J.M.; Goate, A.M.; Fagan, A.M.; Mintun, M.A.; Benzinger, T.; Holtzman, D.M.; Morris, J.C. Exercise Engagement as a Moderator of the Effects of APOE Genotype on Amyloid Deposition. Arch. Neurol. 2012, 69, 636–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, T.; Kawarabayashi, T.; Seino, Y.; Hirohata, M.; Nakahata, N.; Narita, S.; Itoh, K.; Nakaji, S.; Shoji, M. Aging and APOE-ε4 are determinative factors of plasma Aβ42 levels. Ann. Clin. Transl. Neurol. 2018, 5, 1184–1191. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, K.S.; Madsen, K.; Andersen, B.B.; Beyer, N.; Garde, E.; Høgh, P.; Waldemar, G.; Hasselbalch, S.G.; Law, I. Effect of moderate-high intensity aerobic exercise on beta-amyloid accumulation measured with 11C-PiB-PET in patients with mild to moderate Alzheimer’s disease. Alzheimers Dement. 2015, 11, 96. [Google Scholar] [CrossRef]
- Stillman, C.M.; Lopez, O.L.; Becker, J.T.; Kuller, L.H.; Mehta, P.D.; Tracy, R.P.; Erickson, K.I. Physical activity predicts reduced plasma β amyloid in the Cardiovascular Health Study. Ann. Clin. Transl. Neurol. 2017, 4, 284–291. [Google Scholar] [CrossRef]
- Brown, B.M.; Peiffer, J.J.; Taddei, K.; Lui, J.K.; Laws, S.M.; Gupta, V.B.; Taddei, T.; Ward, V.K.; Rodrigues, M.A.; Burnham, S.; et al. Physical activity and amyloid-β plasma and brain levels: Results from the Australian Imaging, Biomarkers and Lifestyle Study of Ageing. Mol. Psychiatry 2013, 18, 875–881. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Nakatsuji, A.; Aoi, W.; Wada, S.; Kuwahata, M.; Kido, Y. Intense exercise increases protein oxidation in spleen and liver of mice. Nutr. Metab. Insights 2014, 7, 1–6. [Google Scholar] [CrossRef]
- Gawron-Skarbek, A.; Chrzczanowicz, J.; Kostka, J.; Nowak, D.; Drygas, W.; Jegier, A.; Kostka, T. Physical Activity, Aerobic Capacity, and Total Antioxidant Capacity in Healthy Men and in Men with Coronary Heart Disease. Oxid. Med. Cell. Longev. 2015, 197307. [Google Scholar] [CrossRef]
- Gustaw-Rothenberg, K.; Kowalczuk, K.; Stryjecka-Zimmer, M. Lipids’ peroxidation markers in Alzheimer’s disease and vascular dementia. Geriatr. Gerontol. Int. 2010, 10, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Prasinou, P.; Dafnis, I.; Giacometti, G.; Ferreri, C.; Chroni, A.; Chatgilialoglu, C. Fatty acid-based lipidomics and membrane remodeling induced by apoE3 and apoE4 in human neuroblastoma cells. Biochim. Biophys. Acta Biomembr. 2017, 1859, 1967–1973. [Google Scholar] [CrossRef] [PubMed]
- Parkhouse, W.S.; Willis, P.E.; Zhang, J. Hepatic lipid peroxidation and antioxidant enzyme responses to long-term voluntary physical activity and aging. AGE 1995, 18, 11. [Google Scholar] [CrossRef] [PubMed]
- Nicolle, C.; Cardinault, N.; Gueux, E.; Jaffrelo, L.; Rock, E.; Mazur, A.; Amouroux, P.; Rémésy, C. Health effect of vegetable-based diet: Lettuce consumption improves cholesterol metabolism and antioxidant status in the rat. Clin. Nutr. 2004, 23, 605–614. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, Z.; Ma, Y.; Qu, Y.; Lu, X.; Luo, H. Effects of Dietary Lycopene Supplementation on Plasma Lipid Profile, Lipid Peroxidation and Antioxidant Defense System in Feedlot Bamei Lamb. Asian-Australas J. Anim. Sci. 2015, 28, 958–965. [Google Scholar] [CrossRef]
- Van der Veen, J.N.; Kennelly, J.P.; Wan, S.; Vance, J.E.; Vance, D.E.; Jacobs, R.L. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim. Biophys. Acta Biomembr. 2017, 1859, 1558–1572. [Google Scholar] [CrossRef]
- Cao, J.; Gaamouch, F.E.; Meabon, J.S.; Meeker, K.D.; Zhu, L.; Zhong, M.B.; Bendik, J.; Elder, G.; Jing, P.; Xia, J.; et al. ApoE4-associated phospholipid dysregulation contributes to development of Tau hyper-phosphorylation after traumatic brain injury. Sci. Rep. 2017, 7, 11372. [Google Scholar] [CrossRef] [Green Version]
- Sumikawa, K.; Mu, Z.; Inoue, T.; Okochi, T.; Yoshida, T.; Adachi, K. Changes in erythrocyte membrane phospholipid composition induced by physical training and physical exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1993, 67, 132–137. [Google Scholar] [CrossRef]
- Saha, S.S.; Chakraborty, A.; Ghosh, S.; Ghosh, M. Comparative study of hypocholesterolemic and hypolipidemic effects of conjugated linolenic acid isomers against induced biochemical perturbations and aberration in erythrocyte membrane fluidity. Eur. J. Nutr. 2012, 51, 483–495. [Google Scholar] [CrossRef]
- Cazzola, R.; Russo-Volpe, S.; Cervato, G.; Cestaro, B. Biochemical assessments of oxidative stress, erythrocyte membrane fluidity and antioxidant status in professional soccer players and non-active controls. Eur. J. Clin. Investig. 2003, 33, 924–930. [Google Scholar] [CrossRef]
- Kaestner, L.; Bogdanova, A. Regulation of red cell life-span, erythropoiesis, senescence, and clearance. Front. Physiol. 2014, 5, 269. [Google Scholar] [CrossRef] [PubMed]
Groups | Number of Subjects (n) | Age (Years) | Physical Activity Level (Borg Scale) | Glucose (mg/mL) | Cholesterol (mg/mL) | HDL (mg/mL) | LDL (mg/mL) | Triglycerides (mg/mL) |
---|---|---|---|---|---|---|---|---|
ApoE ε4 carriers | 16 | 39.3 ± 14.2 | 9.0 ± 3.4 | 89.2 ± 8.36 | 198 ± 19.7 | 53.1 ± 9.26 | 125 ± 21.7 | 113 ± 35.8 |
ApoE non-ε4 carriers | 26 | 39.9 ± 12.6 | 10.2 ± 3.6 | 73.0 ± 26.6 | 168 ± 66.3 | 57.6 ± 23.2 | 98.5 ± 39.3 | 75.3 ± 30.9 |
NA ApoE ε4 carriers | 8 | 38.2 ± 11.3 | 6.88 ± 0.64 | 84.2 ± 7.92 | 205 ± 14.2 | 55.2 ± 10.3 | 133 ± 11.7 | 106.2 ± 44.1 |
A ApoE ε4 carriers | 8 | 41.5 ± 21.0 | 13.2 ± 2.36 | 95.5 ± 2.89 | 194 ± 22.3 | 51.7 ± 9.02 | 119 ± 25.4 | 117 ± 32.0 |
NA ApoE non-ε4 carriers | 13 | 40.8 ± 13.8 | 6.65 ± 0.69 | 76.2 ± 21.6 | 198 ± 35.8 | 65.1 ± 10.0 | 118 ± 30.6 | 82.0 ± 23.4 |
A ApoE non-ε4 carriers | 13 | 39.0 ± 11.9 | 13.5 ± 1.9 | 89.0 ± 8.69 | 174 ± 16 | 64.7 ± 13.4 | 92.4 ± 17.3 | 105.9 ± 35.7 |
Groups | Aβ (ng/mg) | AOC (TOSC Values) | Lipid Peroxidation (MDA, μM, i.e., nmol/mL) | PC (μM) | PE (μM) | Membrane Fluidity (E/M) |
---|---|---|---|---|---|---|
ApoE ε4 carriers | 18.0 ± 8.65 | 5.19 ± 3.18 | 106 ± 49.0 | 27.4 ± 11.0 | 635 ±2 61 | 0.37 ± 0.06 |
ApoE non-ε4 carriers | 12.4 ± 8.82 | 7.06 ± 3.24 | 51.4 ± 23.8 | 73.2 ± 27.8 | 832 ± 333 | 0.44 ± 0.08 |
NA ApoE ε4 carriers | 22.7 ± 8.24 | 2.76 ± 1.73 | 106 ± 48.3 | 25.4 ± 13.2 | 596 ± 223 | 0.34 ± 0.05 |
A ApoE ε4 carriers | 12.1 ± 4.37 | 7.63 ± 1.91 | 106 ± 57.9 | 30.8 ± 6.7 | 485 ± 170 | 0.40 ± 0.06 |
NA ApoE non-ε4 carriers | 19.6 ± 7.19 | 5.69 ± 3.06 | 53.4 ± 24.2 | 81.4 ± 28.4 | 832 ± 333 | 0.40 ± 0.07 |
A ApoE non-ε4 carriers | 5.70 ± 2.77 | 8.28 ± 2.97 | 49.5 ± 24.2 | 65.0 ± 25.9 | 523 ± 152 | 0.48 ± 0.06 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piccarducci, R.; Daniele, S.; Fusi, J.; Chico, L.; Baldacci, F.; Siciliano, G.; Bonuccelli, U.; Franzoni, F.; Martini, C. Impact of ApoE Polymorphism and Physical Activity on Plasma Antioxidant Capability and Erythrocyte Membranes. Antioxidants 2019, 8, 538. https://doi.org/10.3390/antiox8110538
Piccarducci R, Daniele S, Fusi J, Chico L, Baldacci F, Siciliano G, Bonuccelli U, Franzoni F, Martini C. Impact of ApoE Polymorphism and Physical Activity on Plasma Antioxidant Capability and Erythrocyte Membranes. Antioxidants. 2019; 8(11):538. https://doi.org/10.3390/antiox8110538
Chicago/Turabian StylePiccarducci, Rebecca, Simona Daniele, Jonathan Fusi, Lucia Chico, Filippo Baldacci, Gabriele Siciliano, Ubaldo Bonuccelli, Ferdinando Franzoni, and Claudia Martini. 2019. "Impact of ApoE Polymorphism and Physical Activity on Plasma Antioxidant Capability and Erythrocyte Membranes" Antioxidants 8, no. 11: 538. https://doi.org/10.3390/antiox8110538
APA StylePiccarducci, R., Daniele, S., Fusi, J., Chico, L., Baldacci, F., Siciliano, G., Bonuccelli, U., Franzoni, F., & Martini, C. (2019). Impact of ApoE Polymorphism and Physical Activity on Plasma Antioxidant Capability and Erythrocyte Membranes. Antioxidants, 8(11), 538. https://doi.org/10.3390/antiox8110538