Phytochemical Characterization of Commercial Processed Blueberry, Blackberry, Blackcurrant, Cranberry, and Raspberry and Their Antioxidant Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction
2.3. Phenolic Content
2.4. The Total Flavonoid Content
2.5. 2ʹ-Azino-bis (3-ethlylbenzothiazoline-6-sulfonic acid) (ABTS) Radical Cation-Decolorization Assay
2.6. HPLC-PDA-MS Identification and Quantification of Anthocyanins
2.7. Volatile Profile by ITEX/GC-MS
2.8. Statistical Analysis
3. Results
3.1. Phenolic Content
3.2. Total Flavonoid Content
3.3. Antioxidant Potential
3.4. HPLC-PDA-MS Identification and Quantification of Anthocyanins
3.5. The Volatile Profile by ITEX/GC-MS
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 2009, 7, 65–74. [Google Scholar] [CrossRef]
- Nile, S.H.; Park, S.W. Edible berries: bioactive components and their effect on human health. Nutrition 2014, 30, 134–144. [Google Scholar] [CrossRef]
- Kristo, A.S.; Klimis-Zacas, D.; Sikalidis, A.K. Protective Role of Dietary Berries in Cancer. Antioxidants 2016, 5, 37. [Google Scholar] [CrossRef]
- Diaconeasa, Z.; Ayvaz, H.; Rugina, D.; Leopold, L.; Stanila, A.; Socaciu, C.; Tabaran, F.; Luput, L.; Mada, D.C.; Pintea, A.; et al. Melanoma Inhibition by Anthocyanins Is Associated with the Reduction of Oxidative Stress Biomarkers and Changes in Mitochondrial Membrane Potential. Plant Foods Hum. Nutr. 2017, 72, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Mikulic-Petkovsek, M.; Skvarc, A.; Rusjan, D. Biochemical composition of different table grape cultivars produced in Slovenia. J. Hortic. Sci. Biotechnol. 2019, 94, 368–377. [Google Scholar] [CrossRef]
- Diaconeasa, Z.; Ranga, F.; Rugina, D.; Leopold, L.; Pop, O.; Vodnar, D.; Cuibus, L.; Socaciu, C. Phenolic Content and Their Antioxidant Activity in Various Berries Cultivated in Romania. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca-Food Sci. Technol. 2015, 72, 99–103. [Google Scholar] [CrossRef]
- Donno, D.; Mellano, M.G.; Riondato, I.; De Biaggi, M.; Andriamaniraka, H.; Gamba, G.; Beccaro, G.L. Traditional and Unconventional Dried Fruit Snacks as a Source of Health-Promoting Compounds. Antioxidants 2019, 8, 396. [Google Scholar] [CrossRef] [PubMed]
- Rabie, M.A.; Soliman, A.Z.; Diaconeasa, Z.S.; Constantin, B. Effect of Pasteurization and Shelf Life on the Physicochemical Properties of Physalis (Physalis peruviana L.) Juice. J. Food Process. Preserv. 2015, 39, 1051–1060. [Google Scholar] [CrossRef]
- Alves, L.R.; Battochio, J.R.; Cardoso, J.M.P.; De Melo, L.L.M.M.; Da Silva, V.S.; Siqueira, A.C.P.; Bolini, H.M.A. Time–intensity profile and internal preference mapping of strawberry jam. J. Sens. Stud. 2008, 23, 125–135. [Google Scholar] [CrossRef]
- Wojdylo, A.; Oszmianski, J.; Teleszko, M.; Sokol-Letowska, A. Composition and quantification of major polyphenolic compounds, antioxidant activity and colour properties of quince and mixed quince jams. Int. J. Food Sci. Nutr. 2013, 64, 749–756. [Google Scholar] [CrossRef]
- Hannum, S.M. Potential impact of strawberries on human health: a review of the science. Crit. Rev. Food Sci. Nutr. 2004, 44, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Seeram, N.P. Berry fruits for cancer prevention: current status and future prospects. J. Agric. Food Chem. 2008, 56, 630–635. [Google Scholar] [CrossRef] [PubMed]
- Amaro, L.F.; Soares, M.T.; Pinho, C.; Almeida, I.F.; Ferreira, I.M.P.L.V.O.; Pinho, O. Influence of Cultivar and Storage Conditions in Anthocyanin Content and Radical-Scavenging Activity of Strawberry Jams. World Acad. Sci. Eng. Technol. 2012, 69, 118–122. [Google Scholar]
- Poiana, M.A.; Munteanu, M.F.; Bordean, D.M.; Gligor, R.; Alexa, E. Assessing the effects of different pectins addition on color quality and antioxidant properties of blackberry jam. Chem. Cent. J. 2013, 7, 121. [Google Scholar] [CrossRef]
- Pilando, L.S.; Wrolstad, R.E.; Heatherbell, D.A. Influence of Fruit Composition, Maturity and Mold Contamination on the Color and Appearance of Strawberry Wine. J. Food Sci. 1985, 50, 1121–1125. [Google Scholar] [CrossRef]
- Pineli, L.d.L.d.O.; Moretti, C.L.; Chiarello, M.; Melo, L. Influence of strawberry jam color and phenolic compounds on acceptance during storage. Revista Ceres 2015, 62, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Howard, L.R.; Castrodale, C.; Brownmiller, C.; Mauromoustakos, A. Jam processing and storage effects on blueberry polyphenolics and antioxidant capacity. J. Agric. Food Chem. 2010, 58, 4022–4029. [Google Scholar] [CrossRef]
- Hadjimitsi, E.; Zabetakis, I. The aroma of jam prepared from fruits of mosphilla (Crataegus azarolus L.). Flavour Fragr. J. 2005, 20, 507–511. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Kim, D.-O.; Chun, O.K.; Kim, Y.J.; Moon, H.-Y.; Lee, C.Y. Quantification of polyphenolics and their antioxidant capacity in fresh plums. J. Agric. Food Chem. 2003, 51, 6509–6515. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Murphy, R.R.; Renfroe, M.H.; Brevard, P.B.; Lee, R.E.; Gloeckner, J.W. Cooking does not decrease hydrophilic antioxidant capacity of wild blueberries. Int. J. Food Sci. Nutr. 2009, 60 (Suppl. 2), 88–98. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Socaci, S.A.; Socaciu, C.; Tofană, M.; Raţi, I.V.; Pintea, A. In-tube Extraction and GC–MS Analysis of Volatile Components from Wild and Cultivated sea buckthorn (Hippophae rhamnoides L. ssp. Carpatica) Berry Varieties and Juice. Phytochem. Anal. 2013, 24, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Savikin, K.; Zdunic, G.; Jankovic, T.; Tasic, S.; Menkovic, N.; Stevic, T.; Dordevic, B. Phenolic content and radical scavenging capacity of berries and related jams from certificated area in Serbia. Plant Foods Hum. Nutr. 2009, 64, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Rugina, D.; Diaconeasa, Z.; Coman, C.; Bunea, A.; Socaciu, C.; Pintea, A. Chokeberry Anthocyanin Extract as Pancreatic β-Cell Protectors in Two Models of Induced Oxidative Stress. Oxidative Med. Cell. Longev. 2015, 2015, 429075. [Google Scholar] [CrossRef]
- Seo, J.Y.; Jang, J.H.; Kim, J.-S.; Kim, E.-J.; Kim, J.-S. Development of low-sugar antioxidant jam by a combination of anthocyanin-rich berries. Appl. Biol. Chem. 2016, 59, 305–312. [Google Scholar] [CrossRef]
- Korus, A.; Jaworska, G.; Bernaś, E.; Juszczak, L. Characteristics of physico-chemical properties of bilberry (Vaccinium myrtillus L.) jams with added herbs. J. Food Sci. Technol. 2015, 52, 2815–2823. [Google Scholar] [CrossRef]
- Bunea, A.; Rugina, D.; Sconta, Z.; Pop, R.M.; Pintea, A.; Socaciu, C.; Tabaran, F.; Grootaert, C.; Struijs, K.; VanCamp, J. Anthocyanin determination in blueberry extracts from various cultivars and their antiproliferative and apoptotic properties in B16-F10 metastatic murine melanoma cells. Phytochemistry 2013, 95, 436–444. [Google Scholar] [CrossRef]
- Dinstel, R.R.; Cascio, J.; Koukel, S. The antioxidant level of Alaska’s wild berries: high, higher and highest. Int. J. Circumpolar Health 2013, 72. [Google Scholar] [CrossRef]
- Garcıia-Viguera, C.; Zafrilla, P.; Tomás-Barberán, F.A. Determination of Authenticity of Fruit Jams by HPLC Analysis of Anthocyanins. J. Sci. Food Agric. 1997, 73, 207–213. [Google Scholar] [CrossRef]
- Kader, F.; Rovel, B.; Girardin, M.; Metche, M. Fractionation and identification of the phenolic compounds of Highbush blueberries (Vaccinium corymbosum, L.). Food Chem. 1996, 55, 35–40. [Google Scholar] [CrossRef]
- Rubinskiene, M.; Jasutiene, I.; Venskutonis, P.R.; Viskelis, P. HPLC determination of the composition and stability of blackcurrant anthocyanins. J. Chromatogr. Sci. 2005, 43, 478–482. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhou, J.; Liu, H.; Khan, M.A.; Huang, K.; Gu, Z. Compositions of anthocyanins in blackberry juice and their thermal degradation in relation to antioxidant activity. Eur. Food Res. Technol. 2012, 235, 637–645. [Google Scholar] [CrossRef]
- Sparzak, B.; Merino-Arevalo, M.; Vander Heyden, Y.; Krauze-Baranowska, M.; Majdan, M.; Fecka, I.; Glod, D.; Baczek, T. HPLC analysis of polyphenols in the fruits of Rubus idaeus L. (Rosaceae). Nat. Prod. Res. 2010, 24, 1811–1822. [Google Scholar] [CrossRef] [PubMed]
- García-Viguera, C.; Zafrilla, P.; Artés, F.; Romero, F.; Abellán, P.; Tomás-Barberán, F.A. Colour and anthocyanin stability of red raspberry jam. J. Sci. Food Agric. 1998, 78, 565–573. [Google Scholar] [CrossRef]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive Compounds and Antioxidant Activity in Different Types of Berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [Green Version]
- El Hadi, M.A.; Zhang, F.J.; Wu, F.F.; Zhou, C.H.; Tao, J. Advances in fruit aroma volatile research. Molecules 2013, 18, 8200–8229. [Google Scholar] [CrossRef]
- Du, X.; Rouseff, R. Aroma Active Volatiles in Four Southern Highbush Blueberry Cultivars Determined by Gas Chromatography–Olfactometry (GC-O) and Gas Chromatography–Mass Spectrometry (GC-MS). J. Agric. Food. Chem. 2014, 62, 4537–4543. [Google Scholar] [CrossRef]
Jam | Ingredients for 100 g Final Product |
---|---|
Blueberry | 50 g blueberry, sugar, citric acid, pectin |
Blackberry and Blackcurrant | 50 g berry (blackberry 70%, blackcurrant 30%), sugar, citric acid, pectin |
Blackcurrant | 40 g blackcurrant, sugar, water, citric acid |
Cranberry | 50 g cranberry, sugar, citric acid, pectin |
Raspberry | 50 g raspberry, sugar, citric acid, pectin |
Jam Type | Total Phenolics GAE mg/100g FW | Total Flavonoid mg QE/100g FW | Antioxidant Activity (μM Trolox/g FW) |
---|---|---|---|
Blueberry | 360.44 b | 2.61 e | 6.10 d |
Blackberry & Blackcurrant | 260.74 d | 7.26 c | 18.26 b |
Blackcurrant | 473.9 1a | 11.43 a | 36.56 a |
Cranberry | 310.40 c | 9.46 b | 20.21 b |
Raspberry | 170.32 e | 4.43 d | 10.10 c |
Peak No | tR (min) | UV–VIS λmax | Molecular Ion m/z | Fragment Ion m/z | Tentative Identification | Concentratin (mg cy-3-O-gal/100 g FW) |
---|---|---|---|---|---|---|
Blueberry | ||||||
1 | 8.1 | 276,526 | 465 | 303 | Delphinidin-3-O-galactoside | 1.866 a |
2 | 9.3 | 276,524 | 465 | 303 | Delphinidin-3-O-glucoside | 1.911 a |
3 | 11.3 | 279,517 | 449 | 286 | Cyanidin-3-O-galactoside | 1.821 a |
4 | 12.23 | 276,524 | 435 | 303 | Delphinidin-3-O-arabinoside | 0.964 e |
5 | 13.1 | 280,516 | 449 | 287 | Cyanidin-3-O-glucoside | 1.395 b |
6 | 13.7 | 276,526 | 479 | 317 | Petunidin-3-O-galactoside | 1.899 a |
7 | 15.4 | 279,517 | 419 | 287 | Cyanidin-3-O-arabinoside | 1.189 d |
8 | 18.2 | 276,526 | 463 | 301 | Peonidin-3-O-galactoside | 0.587 g |
9 | 18.4 | 276,526 | 449 | 317 | Petunidin-3-O-arabinoside | 0.663 f g |
10 | 20.9 | 276,527 | 493 | 331 | Malvidin-3-O-galactoside | 1.183 d |
11 | 23.8 | 276,526 | 493 | 331 | Malvidin-3-O-glucoside | 1.217 c d |
12 | 26.6 | 276,528 | 465 | 331 | Malvidin-3-O-arabinoside | 0.524 g |
15.219 | ||||||
Blackberry & Blackcurrant | ||||||
1 | 9.80 | 275,523 | 465 | 303 | Delphinidin-3-O-glucoside | 0.616 c |
2 | 10.95 | 272,526 | 300 | 283/252 | Delphinidin-3-O-rutinoside | 2.314 b |
3 | 13.09 | 279,516 | 535 | 287 | Cyanidin-3-O-malonyl-glucoside | 9.189 a |
4 | 14.81 | 278,519 | 449 | 287 | Cyanidin-3-O-glucoside | 2.259 b |
5 | 27.90 | 284,519 | 594 | 287 | Cyanidin-3-O-rutinoside | 0.297 c |
14.060 | ||||||
Blackcurrant | ||||||
1 | 9.85 | 277,525 | 465 | 303 | Delphinidin-3-O-glucoside | 2.75 c |
2 | 10.98 | 276,526 | 300 | 283/252 | Delphinidin-3-O-rutinoside | 7.89 a |
3 | 13.14 | 282,517 | 449 | 287 | Cyanidin-3-O-glucoside | 0.78 d |
4 | 14.83 | 280,518 | 595 | 287 | Cyanidin-3-O-rutinoside | 4.74 b |
16.17 | ||||||
Cranberry | ||||||
1 | 11.37 | 279,516 | 449 | 287 | Cyanidin-3-O-galactoside | 14.02 a |
2 | 13.03 | 280,517 | 449 | 287 | Cyanidin-3-O-glucoside | 0.85 c |
3 | 15.31 | 278,516 | 419 | 287 | Cyanidin-3-O-arabinoside | 1.80 b |
4 | 26.55 | 280,528 | 623 | 464 | Malvidin-3-O-glucoside-4-vinylcathecol | 0.25 d |
5 | 28.60 | 278,526 | 535 | 331 | Malvidin-6-acetyl-3-galactoside | 0.21 d |
17.13 | ||||||
Raspberry | ||||||
1 | 10.31 | 611 | 287 | Cyanidin-3-O-sophoroside | 8.99 a | |
2 | 13.16 | 757 | 611/430/286 | Cyanidin-3-O-sophoroside-5-rhamnoside | 1.90 b | |
10.89 |
Compound | tR (min) | Blueberry | Blackberry and Blackcurrant | Blackcurrant | Cranberry | Raspberry | Odor Characteristic Descriptors | |
---|---|---|---|---|---|---|---|---|
Alcohols | ||||||||
1 | 1-Butanol 3-methyl | 4.58 | 0.10 | 0.23 | 7.14 | 0.00 | 0.00 | whiskey, malt, burnt |
2 | 1-Butanol 2-methyl | 4.676 | 0.00 | 0.34 | 7.06 | 0.00 | 0.00 | malt |
3 | Furfuryl alcohol | 5.737 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | fermented, creamy, caramel |
4 | 1-Hexanol | 12.647 | 0.23 | 0.00 | 0.00 | 0.00 | 0.00 | flowery, sweet, toasty, green |
5 | 2-Heptanol | 14.593 | 0.00 | 0.19 | 0.00 | 0.00 | 0.00 | herbal, fruity, musty |
Total | 0.38 | 0.76 | 14.20 | 0.00 | 0.00 | |||
Aldehydes | ||||||||
6 | Hexanal | 7.343 | 0.14 | 0.23 | 0.80 | 0.50 | 0.00 | fresh, green, fruity |
7 | 2-Heptanal | 17.448 | 0.00 | 0.21 | 1.01 | 0.00 | 0.00 | green |
8 | Benzaldehyde | 17.53 | 0.18 | 0.30 | 1.55 | 2.02 | 0.00 | almond, burnt sugar |
Total | 0.32 | 0.74 | 3.36 | 2.52 | 0.00 | |||
Esters | ||||||||
9 | Methyl butanoate | 4.094 | 0.00 | 0.00 | 3.27 | 0.00 | 0.00 | ether, fruit, sweet |
10 | Methyl 2-methylbutanoate | 6.081 | 0.00 | 0.00 | 0.00 | 0.71 | 0.00 | apple, fruity |
11 | Ethyl 3-methylbutanoate | 11.436 | 1.11 | 0.00 | 0.00 | 0.00 | 0.00 | sweet, anise, fruity, apple |
12 | Methyl benzoate | 23.219 | 0.00 | 0.00 | 0.00 | 0.18 | 0.00 | flowery, honey, herbal |
Total | 1.11 | 0.00 | 3.27 | 0.89 | 0.00 | |||
Terpene hydrocarbons and oxygenated derivatives | ||||||||
13 | Linalool oxide | 17.97 | 0.12 | 0.00 | 1.24 | 0.89 | 0.00 | floral, fresh, lemon |
14 | β-Myrcene | 19.029 | 0.00 | 0.00 | 0.00 | 0.00 | 0.36 | spicy, ethereal |
15 | ∆-3-Carene | 19.683 | 0.27 | 1.69 | 28.59 | 0.00 | 0.00 | citrus fruits, orange peel |
16 | p-Cymene | 20.406 | 0.50 | 2.95 | 14.96 | 3.19 | 0.42 | citrus |
17 | D-Limonene | 20.592 | 94.80 | 89.85 | 11.40 | 79.95 | 98.82 | fruity |
18 | Eucalyptol | 20.714 | 0.29 | 0.00 | 1.79 | 0.93 | 0.00 | minty, pine, sweet |
19 | trans-β-Ocimene | 20.977 | 0.00 | 0.00 | 1.30 | 0.00 | 0.00 | sweet, herb, citrus |
20 | γ-Terpinene | 21.801 | 0.00 | 0.00 | 1.28 | 0.00 | 0.00 | citrus, terpeny, sweet, fruity |
21 | α- Terpinolen | 22.864 | 0.10 | 0.39 | 1.22 | 0.00 | 0.05 | woody, fruity, sweet, piney, anise |
22 | p-Cymenene | 23.045 | 0.34 | 1.05 | 4.41 | 0.25 | 0.15 | phenolic, spicy, musty, nutty |
23 | α-Terpineol | 27.127 | 1.09 | 1.18 | 2.14 | 0.85 | 0.20 | anise, mint |
24 | Caryophyllene | 37.916 | 0.00 | 0.21 | 4.54 | 0.00 | 0.00 | woody, spicy, fruity, sweet |
25 | α-Caryophyllene | 39.649 | 0.00 | 0.00 | 1.19 | 0.00 | 0.00 | fruity, woody |
Total | 97.51 | 97.32 | 74.06 | 86.06 | 100.00 | |||
Others | ||||||||
26 | 2H-Pyran, 3,4-dihydro-6-methyl | 4.991 | 0.08 | 0.00 | 0.00 | 2.90 | 0.00 | |
27 | Acetophenone | 0.37 | 0.64 | 2.46 | 2.19 | 0.00 | sweet, flower, almond | |
28 | Benzoic Acid | 26.103 | 0.23 | 0.30 | 1.82 | 3.32 | 0.00 | winey, balsamic, very weak |
29 | n.i. | 15.959 | 0.00 | 0.24 | 0.00 | 0.00 | 0.00 | |
30 | n.i. | 30.854 | 0.00 | 0.00 | 0.00 | 2.12 | 0.00 | |
Total | 0.68 | 1.18 | 4.28 | 10.53 | 0.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diaconeasa, Z.; Iuhas, C.I.; Ayvaz, H.; Rugină, D.; Stanilă, A.; Dulf, F.; Bunea, A.; Socaci, S.A.; Socaciu, C.; Pintea, A. Phytochemical Characterization of Commercial Processed Blueberry, Blackberry, Blackcurrant, Cranberry, and Raspberry and Their Antioxidant Activity. Antioxidants 2019, 8, 540. https://doi.org/10.3390/antiox8110540
Diaconeasa Z, Iuhas CI, Ayvaz H, Rugină D, Stanilă A, Dulf F, Bunea A, Socaci SA, Socaciu C, Pintea A. Phytochemical Characterization of Commercial Processed Blueberry, Blackberry, Blackcurrant, Cranberry, and Raspberry and Their Antioxidant Activity. Antioxidants. 2019; 8(11):540. https://doi.org/10.3390/antiox8110540
Chicago/Turabian StyleDiaconeasa, Zoriţa, Cristian I. Iuhas, Huseyin Ayvaz, Dumitriţa Rugină, Andreea Stanilă, Francisc Dulf, Andrea Bunea, Sonia Ancuța Socaci, Carmen Socaciu, and Adela Pintea. 2019. "Phytochemical Characterization of Commercial Processed Blueberry, Blackberry, Blackcurrant, Cranberry, and Raspberry and Their Antioxidant Activity" Antioxidants 8, no. 11: 540. https://doi.org/10.3390/antiox8110540
APA StyleDiaconeasa, Z., Iuhas, C. I., Ayvaz, H., Rugină, D., Stanilă, A., Dulf, F., Bunea, A., Socaci, S. A., Socaciu, C., & Pintea, A. (2019). Phytochemical Characterization of Commercial Processed Blueberry, Blackberry, Blackcurrant, Cranberry, and Raspberry and Their Antioxidant Activity. Antioxidants, 8(11), 540. https://doi.org/10.3390/antiox8110540