Antioxidative Defense and Fertility Rate in the Assessment of Reprotoxicity Risk Posed by Global Warming
Abstract
:1. Introduction
2. Invertebrate Overview
2.1. Annelida
2.2. Arthropoda
2.3. Mollusca
3. Vertebrate Overview
3.1. Pisces
3.2. Amphibia
3.3. Reptilia
3.4. Aves
3.5. Mammals
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Armstrong, C.W.; Vondolia, G.K.; Foley, N.S.; Henry, L.A.; Needham, K.; Ressurreicao, A.M. Expert assessment of risks posed by climate change and anthropogenic activities to ecosystem services in the deep North Atlantic. Front. Mar. Sci. 2019, 6, 158. [Google Scholar] [CrossRef]
- Bernhardt, E.S.; Rosi, E.J.; Gessner, M.O. Synthetic chemicals as agents of global change. Front. Ecol. Environ. 2017, 15, 84–90. [Google Scholar] [CrossRef]
- Weatherdon, L.V.; Magnan, A.K.; Rogers, A.D.; Sumaila, U.R.; Cheung, W.W. Observed and projected impacts of climate change on marine fisheries, aquaculture, coastal tourism, and human health: An update. Front. Mar. Sci. 2016, 3, 48. [Google Scholar] [CrossRef] [Green Version]
- Fasulo, S.; Guerriero, G.; Cappello, S.; Colasanti, M.; Schettino, T.; Leonzio, C.; Mancini, G.; Gornati, R. The “SYSTEMS BIOLOGY” in the study of xenobiotic effects on marine organisms for evaluation of the environmental health status: Biotechnological applications for potential recovery strategies. Rev. Environ. Sci. Bio Technol. 2015, 14, 339–345. [Google Scholar] [CrossRef]
- Guerriero, G.; Parisi, C.; Abdel-Gawad, F.K.; Hentati, O.; D’Errico, G. Seasonal and pharmaceutical-induced changes in selenoprotein glutathione peroxidase 4 activity in the reproductive dynamics of the soil biosentinel Podarcis sicula (Chordata: Reptilia). Mol. Reprod. Dev. 2019, 86, 1378–1387. [Google Scholar] [CrossRef]
- Piscopo, M. Seasonal dependence of cadmium molecular effects on Mytilus galloprovincialis (Lamarck, 1819) protamine-like protein properties. Mol. Reprod. Dev. 2019, 86, 1428–1429. [Google Scholar] [CrossRef]
- Gallo, A.; Tosti, E. Effects of ecosystem stress on reproduction and development. Mol. Reprod. Dev. 2019, 86, 1269–1272. [Google Scholar] [CrossRef] [Green Version]
- Tosti, E.; Esposito, M.C. Reprotoxicity of Global Warming in Marine Species. J. Mar. Sci. Res. Dev. 2018, 8, S12-e001. [Google Scholar] [CrossRef]
- Brian, J.V.; Harris, C.A.; Runnalls, T.J.; Fantinati, A.; Pojana, G.; Marcomini, A.; Booy, P.; Lamoree, M.; Kortenkamp, A.; Sumpter, J.P. Evidence of temperature-dependent effects on the estrogenic response of fish: Implications with regard to climate change. Sci. Total Environ. 2008, 397, 72–81. [Google Scholar] [CrossRef] [Green Version]
- Guerriero, G.; Trocchia, S.; Ferraro, C.; Ciarcia, G. Lizard neuroendocrine disruptor assessment by phospholipid hydroperoxide glutathione peroxidase (GPX4/PHGPx) expression. Exp. Clin. Endocrinol. Diabetes 2012, 120, P5. [Google Scholar] [CrossRef]
- Wingfield, J.C. Comparative endocrinology, environment and global change. Gen. Comp. Endocrinol. 2008, 157, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Gentilucci, M.; Materazzi, M.; Pambianchi, G.; Burt, P.; Guerriero, G. Assessment of Variations in the Temperature-Rainfall Trend in the Province of Macerata (Central Italy), Comparing the Last Three Climatological Standard Normals (1961–1990; 1971–2000; 1981–2010) for Biosustainability Studies. Environ. Process. 2019, 6, 391–412. [Google Scholar] [CrossRef]
- Guerriero, G. Vertebrate sex steroid receptors: Evolution, ligands, and neurodistribution. Ann. N. Y. Acad. Sci. 2009, 1163, 154–168. [Google Scholar] [CrossRef] [PubMed]
- Ohlberger, J. Climate warming and ectotherm body size–from individual physiology to community ecology. Funct. Ecol. 2013, 27, 991–1001. [Google Scholar] [CrossRef]
- Walsh, B.S.; Parratt, S.R.; Hoffmann, A.A.; Atkinson, D.; Snook, R.R.; Bretman, A.; Price, T.A. The impact of climate change on fertility. Trends Ecol. Evol. 2019, 34, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zeng, Z.G.; Li, S.R.; Bi, J.H.; Du, W.G. Low precipitation aggravates the impact of extreme high temperatures on lizard reproduction. Oecologia 2016, 182, 961–971. [Google Scholar] [CrossRef]
- Porcelli, D.; Gaston, K.J.; Butlin, R.K.; Snook, R.R. Local adaptation of reproductive performance during thermal stress. J. Evol. Biol. 2017, 30, 422–429. [Google Scholar] [CrossRef]
- Reinhardt, K.; Dobler, R.; Abbott, J. An ecology of sperm: Sperm diversification by natural selection. Annu. Rev. Ecol. Evol. Syst. 2015, 46, 435–459. [Google Scholar] [CrossRef] [Green Version]
- Guerriero, G.; Trocchia, S.; Abdel-Gawad, F.K.; Ciarcia, G. Roles of reactive oxygen species in the spermatogenesis regulation. Front. Endocrinol. 2014, 5, 56. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.H.; Aitken, R.J.; Bromfield, E.G.; Nixon, B. DNA damage and repair in the female germline: Contributions to ART. Hum. Reprod. Update 2018, 25, 180–201. [Google Scholar] [CrossRef]
- Hansen, P.J. Effects of heat stress on mammalian reproduction. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 3341–3350. [Google Scholar] [CrossRef] [PubMed]
- Houston, B.J.; Nixon, B.; Martin, J.H.; De Iuliis, G.N.; Trigg, N.A.; Bromfield, E.G.; McEwan, K.E.; Aitken, R.J. Heat exposure induces oxidative stress and DNA damage in the male germ line. Biol. Reprod. 2018, 98, 593–606. [Google Scholar] [CrossRef] [PubMed]
- Sales, K.; Vasudeva, R.; Dickinson, M.E.; Godwin, J.L.; Lumley, A.J.; Michalczyk, L.; Hebberecht, L.; Thomas, P.; Franco, A.; Gage, M.J. Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect. Nat. Commun. 2018, 9, 4771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Cao, Y.; Wang, F.; Li, C. Scrotal heat induced the Nrf2-driven antioxidant response during oxidative stress and apoptosis in the mouse testis. Acta Histochem. 2014, 116, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Dada, R.; Gupta, N.P.; Kucheria, K. Spermatogenic arrest in men with testicular hyperthermia. Teratog. Carcinog. Mutagenesis 2003, 23, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Li, B.; Xu, K.; Liu, D.; Hu, J.; Yang, Y.; Nie, H.; Fan, L.; Zhu, W. Decline in semen quality among 30,636 young Chinese men from 2001 to 2015. Fertil. Steril. 2017, 107, 83–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aroyo, A.; Yavin, S.; Arav, A.; Roth, Z. Maternal hyperthermia disrupts developmental competence of follicle-enclosed oocytes: In vivo and ex vivo studies in mice. Theriogenology 2007, 67, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Tilly, J.L. Commuting the death sentence: How oocytes strive to survive. Nat. Rev. Mol. Cell Biol. 2001, 2, 838. [Google Scholar] [CrossRef]
- Roth, Z.; Meidan, R.; Braw-Tal, R.; Wolfenson, D. Immediate and delayed effects of heat stress on follicular development and its association with plasma FSH and inhibin concentration in cows. J. Reprod. Fertil. 2000, 120, 83–90. [Google Scholar] [CrossRef]
- Ozawa, M.; Tabayashi, D.; Latief, T.A.; Shimizu, T.; Oshima, I.; Kanai, Y. Alterations in follicular dynamics and steroidogenic abilities induced by heat stress during follicular recruitment in goats. Reproduction 2005, 129, 621–630. [Google Scholar] [CrossRef]
- Argov, N.; Moallem, U.; Sklan, D. Summer heat stress alters the mRNA expression of selective-uptake and endocytotic receptors in bovine ovarian cells. Theriogenology 2005, 64, 1475–1489. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Z.; Sui, H.S.; Miao, D.Q.; Liu, N.; Zhou, P.; Ge, L.; Tan, J.H. Effects of heat stress during in vitro maturation on cytoplasmic versus nuclear components of mouse oocytes. Reproduction 2009, 137, 181–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curry, J.P. Factors affecting the abundance of earthworms in soils. Earthworm Ecol. 2004, 9, 113. [Google Scholar]
- Hackenberger, D.K.; Palijan, G.; Lončarić, Ž.; Glavaš, O.J.; Hackenberger, B.K. Influence of soil temperature and moisture on biochemical biomarkers in earthworm and microbial activity after exposure to propiconazole and chlorantraniliprole. Ecotoxicol. Environ. Saf. 2018, 148, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Geracitano, L.A.; Monserrat, J.M.; Bianchini, A. Oxidative stress in Laeonereis acuta (Polychaeta, Nereididae): Environmental and seasonal effects. Mar. Environ. Res. 2004, 58, 625–630. [Google Scholar] [CrossRef]
- Korayem, A.M.; Khodairy, M.M.; Abdel-Aal, A.A.A.; El-Sonbaty, A.A. The protective strategy of antioxidant enzymes against hydrogen peroxide in honey bee, Apis mellifera during two different seasons. J. Biol. Earth Sci. 2012, 2, 93–109. [Google Scholar]
- Li, X.; Ma, W.; Shen, J.; Long, D.; Feng, Y.; Su, W.; Xu, K.; Du, Y.; Jiang, Y. Tolerance and response of two honeybee species Apis cerana and Apis mellifera to high temperature and relative humidity. PLoS ONE 2019, 14, e0217921. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Du, Y.; Lu, M.; Qiang, C. Antioxidant responses of Chilo suppressalis (Lepidoptera: Pyralidae) larvae exposed to thermal stress. J. Therm. Biol. 2011, 36, 292–297. [Google Scholar] [CrossRef]
- Jena, K.; Kumar Kar, P.; Kausar, Z.; Babu, C.S. Effects of temperature on modulation of oxidative stress and antioxidant defenses in testes of tropical tasar silkworm Antheraea mylitta. J. Therm. Biol. 2013, 38, 199–204. [Google Scholar] [CrossRef]
- Zhang, S.; Fu, W.; Li, N.; Zhang, F.; Liu, T.X. Antioxidant responses of Propylaea japonica (Coleoptera: Coccinellidae) exposed to high temperature stress. J. Insect Physiol. 2015, 73, 47–52. [Google Scholar] [CrossRef]
- Paital, B.; Chainy, G.B.N. Seasonal variability of antioxidant biomarkers in mud crabs (Scylla serrata). Ecotoxicol. Environ. Saf. 2013, 87, 33–41. [Google Scholar] [CrossRef]
- Niyogi, S.; Biswas, S.; Sarker, S.; Datta, A.G. Seasonal variation of antioxidant and biotransformation enzymes in barnacle, Balanus balanoides, and their relation with polyaromatic hydrocarbons. Mar. Environ. Res. 2001, 52, 13–26. [Google Scholar] [CrossRef]
- Vlahogianni, T.; Dassenakis, M.; Scoullos, M.J.; Valavanidis, A. Integrated use of biomarkers (superoxide dismutase, catalase and lipid peroxidation) in mussels Mytilus galloprovincialis for assessing heavy metals’ pollution in coastal areas from the Saronikos Gulf of Greece. Mar. Pollut. Bull. 2007, 54, 1361–1371. [Google Scholar] [CrossRef]
- Verlecar, X.N.; Jena, K.B.; Chainy, G.B.N. Seasonal variation of oxidative biomarkers in gills and digestive gland of green-lipped mussel Perna viridis from Arabian Sea. Estuar. Coast. Shelf Sci. 2008, 76, 745–752. [Google Scholar] [CrossRef]
- Zanette, J.; Monserrat, J.M.; Bianchini, A. Biochemical biomarkers in gills of mangrove oyster Crassostrea rhizophorae from three Brazilian estuaries. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2006, 143, 187–195. [Google Scholar] [CrossRef]
- Repolho, T.; Baptista, M.; Pimentel, M.S.; Dionísio, G.; Trübenbach, K.; Lopes, V.M.; Lopes, A.R.; Calado, R.; Diniz, M.; Rosa, R. Developmental and physiological challenges of octopus (Octopus vulgaris) early life stages under ocean warming. J. Comp. Physiol. B 2014, 184, 55–64. [Google Scholar] [CrossRef]
- Ramos-Vasconcelos, G.R.; Cardoso, L.A.; Hermes-Lima, M. Seasonal modulation of free radical metabolism in estivating land snails Helix aspersa. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2005, 140, 165–174. [Google Scholar] [CrossRef]
- García-Torres, T.; Giuffré, L.; Romaniuk, R.; Ríos, R.P.; Pagano, E.A. Exposure assessment to glyphosate of two species of annelids. Bull. Environ. Contam. Toxicol. 2014, 93, 209–214. [Google Scholar] [CrossRef]
- Gupta, S.C.; Siddique, H.R.; Mathur, N.; Mishra, R.K.; Saxena, D.K.; Chowdhuri, D.K. Adverse effect of organophosphate compounds, dichlorvos and chlorpyrifos in the reproductive tissues of transgenic Drosophila melanogaster: 70 kDa heat shock protein as a marker of cellular damage. Toxicology 2007, 238, 1–14. [Google Scholar] [CrossRef]
- Rukke, B.A.; Sivasubramaniam, R.; Birkemoe, T.; Aak, A. Temperature stress deteriorates bed bug (Cimex lectularius) populations through decreased survival, fecundity and offspring success. PLoS ONE 2018, 13, e0193788. [Google Scholar] [CrossRef] [Green Version]
- Conrad, T.; Stöcker, C.; Ayasse, M. The effect of temperature on male mating signals and female choice in the red mason bee, Osmia bicornis (L.). Ecol. Evol. 2017, 7, 8966–8975. [Google Scholar] [CrossRef]
- Vasudeva, R.; Deeming, D.C.; Eady, P.E. Developmental temperature affects the expression of ejaculatory traits and the outcome of sperm competition in Callosobruchus maculatus. J. Evol. Biol. 2014, 27, 1811–1818. [Google Scholar] [CrossRef]
- Zheng, J.; Cheng, X.; Hoffmann, A.A.; Zhang, B.; Ma, C.S. Are adult life history traits in oriental fruit moth affected by a mild pupal heat stress? J. Insect Physiol. 2017, 102, 36–41. [Google Scholar] [CrossRef]
- Nguyen, T.M.; Bressac, C.; Chevrier, C. Heat stress affects male reproduction in a parasitoid wasp. J. Insect Physiol. 2013, 59, 248–254. [Google Scholar] [CrossRef]
- Nash, S.; Rahman, M.S. Short-term heat stress impairs testicular functions in the American oyster, Crassostrea virginica: Molecular mechanisms and induction of oxidative stress and apoptosis in spermatogenic cells. Mol. Reprod. Dev. 2019, 64, 1444–1458. [Google Scholar] [CrossRef]
- Zapata-Restrepo, L.M.; Hauton, C.; Williams, I.D.; Jensen, A.C.; Hudson, M.D. Effects of the interaction between temperature and steroid hormones on gametogenesis and sex ratio in the European flat oyster (Ostrea edulis). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2019, 236, 110523. [Google Scholar] [CrossRef]
- Santerre, C.; Sourdaine, P.; Marc, N.; Mingant, C.; Robert, R.; Martinez, A.S. Oyster sex determination is influenced by temperature—First clues in spat during first gonadic differentiation and gametogenesis. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2013, 165, 61–69. [Google Scholar] [CrossRef] [Green Version]
- De Silva, P.M.C.; Pathiratne, A.; Van Gestel, C.A. Influence of temperature and soil type on the toxicity of three pesticides to Eisenia andrei. Chemosphere 2009, 76, 1410–1415. [Google Scholar] [CrossRef]
- Khan, M.A.Q.; Ahmed, S.A.; Salazar, A.; Gurumendi, J.; Khan, A.; Vargas, M.; Von Catalin, B. Effect of temperature on heavy metal toxicity to earthworm Lumbricus terrestris (Annelida: Oligochaeta). Environ. Toxicol. Int. J. 2007, 22, 487–494. [Google Scholar] [CrossRef]
- Römbke, J.; Garcia, M.V.; Scheffczyk, A. Effects of the fungicide benomyl on earthworms in laboratory tests under tropical and temperate conditions. Arch. Environ. Contam. Toxicol. 2007, 53, 590–598. [Google Scholar] [CrossRef]
- Aucoin, R.; Guillet, G.; Murray, C.; Philogène, B.J.R.; Arnason, J.T. How do insect herbivores cope with the extreme oxidative stress of phototoxic host plants? How Insects Cope with Phototoxic Host Plants. Arch. Insect Biochem. Physiol. 1995, 29, 211–226. [Google Scholar] [CrossRef]
- Mangel, M.; Munch, S.B. A Life-History Perspective on Short- and Long-Term Consequences of Compensatory Growth. Am. Nat. 2005, 166, E155–E176. [Google Scholar] [CrossRef] [Green Version]
- Nazir, A.; Mukhopadhyay, I.; Saxena, D.K.; Chowdhuri, D.K. Chlorpyrifos-induced hsp70 expression and effect on reproductive performance in transgenic Drosophila melanogaster (hsp70-lacZ) Bg 9. Arch. Environ. Contam. Toxicol. 2001, 41, 443–449. [Google Scholar] [CrossRef]
- Borković, S.S.; Šaponjić, J.S.; Pavlović, S.Z.; Blagojević, D.P.; Milošević, S.M.; Kovačević, T.B.; Radojičić, R.M.; Spasić, M.B.; Žikić, R.V.; Saičić, Z.S. The activity of antioxidant defence enzymes in the mussel Mytilus galloprovincialis from the Adriatic Sea. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2005, 141, 366–374. [Google Scholar] [CrossRef]
- Rosa, R.; O’Dor, R.K.; Pierce, G.J. Advances in Squid Biology, Ecology and Fisheries; Nova Biomedical: Hauppauge, NY, USA, 2013; ISBN 978-1-62808-336-1. [Google Scholar]
- Pimentel, M.S.; Trübenbach, K.; Faleiro, F.; Boavida-Portugal, J.; Repolho, T.; Rosa, R. Impact of ocean warming on the early ontogeny of cephalopods: A metabolic approach. Mar. Biol. 2012, 159, 2051–2059. [Google Scholar] [CrossRef]
- McCormick, L.R.; Levin, L.A.; Oesch, N.W. Vision is highly sensitive to oxygen availability in marine invertebrate larvae. J. Exp. Biol. 2019, 222, jeb200899. [Google Scholar] [CrossRef] [Green Version]
- Anguiano, G.; Llera-Herrera, R.; Rojas, E.; Vazquez-Boucard, C. Subchronic organismal toxicity, cytotoxicity, genotoxicity, and feeding response of pacific oyster (Crassostrea gigas) to lindane (γ-HCH) exposure under experimental conditions. Environ. Toxicol. Chem. Int. J. 2007, 26, 2192–2197. [Google Scholar] [CrossRef]
- Escobedo-Fregoso, C.; Mendez-Rodriguez, L.C.; Monsalvo-Spencer, P.; Llera-Herrera, R.A.; Zenteno-Savin, T.; Acosta-Vargas, B. Assessment of metallothioneins in tissues of the clam Megapitaria squalida as biomarkers for environmental cadmium pollution from areas enriched in phosphorite. Arch. Environ. Contam. Toxicol. 2010, 59, 255–263. [Google Scholar] [CrossRef]
- Gorbi, S.; Baldini, C.; Regoli, F. Seasonal variability of metallothioneins, cytochrome P450, bile metabolites and oxyradical metabolism in the European eel Anguilla anguilla L. (Anguillidae) and striped mullet Mugil cephalus L. (Mugilidae). Arch. Environ. Contam. Toxicol. 2005, 49, 62–70. [Google Scholar] [CrossRef]
- Wilhelm Filho, D.; Torres, M.A.; Tribess, T.B.; Pedrosa, R.C.; Soares, C.H.L. Influence of season and pollution on the antioxidant defenses of the cichlid fish acará (Geophagus brasiliensis). Braz. J. Med. Biol. Res. 2001, 34, 719–726. [Google Scholar] [CrossRef] [Green Version]
- Bacanskas, L.R.; Whitaker, J.; Di Giulio, R.T. Oxidative stress in two populations of killifish (Fundulus heteroclitus) with differing contaminant exposure histories. Mar. Environ. Res. 2004, 58, 597–601. [Google Scholar] [CrossRef]
- Guerriero, G.; Di Finizio, A.; Ciarcia, G. Stress-induced changes of plasma antioxidants in aquacultured sea bass, Dicentrarchus labrax. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2002, 132, 205–211. [Google Scholar] [CrossRef]
- Da Rocha, A.M.; De Freitas, D.S.; Burns, M.; Vieira, J.P.; De La Torre, F.R.; Monserrat, J.M. Seasonal and organ variations in antioxidant capacity, detoxifying competence and oxidative damage in freshwater and estuarine fishes from Southern Brazil. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2009, 150, 512–520. [Google Scholar] [CrossRef]
- Gravato, C.; Guilhermino, L.; Galindo-Riaño, M.D.; Oliva Ramírez, M.; Vicente Martorell, J.J. Oxidative stress biomarkers in Senegal sole, Solea senegalensis, to assess the impact of heavy metal pollution in a Huelva estuary (SW Spain): Seasonal and spatial variation. Ecotoxicol. Environ. Saf. 2012, 75, 151–162. [Google Scholar]
- Braz-Mota, S.; Fé, L.M.L.; Delunardo, F.A.C.; Sadauskas-Henrique, H.; De Almeida-Val, V.M.F.; Val, A.L. Exposure to waterborne copper and high temperature induces the formation of reactive oxygen species and causes mortality in the Amazonian fish Hoplosternum littorale. Hydrobiologia 2017, 789, 157–166. [Google Scholar] [CrossRef]
- Rossi, A.; Bacchetta, C.; Cazenave, J. Effect of thermal stress on metabolic and oxidative stress biomarkers of Hoplosternum littorale (Teleostei, Callichthyidae). Ecol. Indic. 2017, 79, 361–370. [Google Scholar] [CrossRef]
- D’Errico, G.; Vitiello, G.; De Tommaso, G.; Abdel-Gawad, F.K.; Brundo, M.V.; Ferrante, M.; De Maio, A.; Trocchia, S.; Bianchi, A.R.; Ciarcia, G. Electron Spin Resonance (ESR) for the study of Reactive Oxygen Species (ROS) on the isolated frog skin (Pelophylax bergeri): A non-invasive method for environmental monitoring. Environ. Res. 2018, 165, 11–18. [Google Scholar] [CrossRef]
- Guerriero, G.; Trocchia, S.; Ciccodicola, A.; Ciarcia, G. The antioxidant Phospholipid Hydroperoxide Glutathione Peroxidase (GPx4/PHGPx) in the frog hypothalamus of Pelophylax bergeri as tool for its bioconservation assessment. Exp. Clin. Endocrinol. Diabetes 2013, 121, P5. [Google Scholar] [CrossRef]
- Guerriero, G.; Trocchia, S.; Ferrara, C.; Ciarcia, G. Oxidative Stress Responses in Different Tissues and Organs of the Frog, Pelophylax bergeri. Free Radic. Biol. Med. 2011, 51, S28. [Google Scholar] [CrossRef]
- Falfushinska, H.; Loumbourdis, N.; Romanchuk, L.; Stolyar, O. Validation of oxidative stress responses in two populations of frogs from Western Ukraine. Chemosphere 2008, 73, 1096–1101. [Google Scholar] [CrossRef]
- Feidantsis, K.; Anestis, A.; Michaelidis, B. Seasonal variations of anti-/apoptotic and antioxidant proteins in the heart and gastrocnemius muscle of the water frog Pelophylax ridibundus. Cryobiology 2013, 67, 175–183. [Google Scholar] [CrossRef]
- Furtado-Filho, O.V.; Polcheira, C.; Machado, D.P.; Mourão, G.; Hermes-Lima, M. Selected oxidative stress markers in a South American crocodilian species. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2007, 146, 241–254. [Google Scholar] [CrossRef]
- Hermes-Lima, M.; Carreiro, C.; Moreira, D.C.; Polcheira, C.; Machado, D.P.; Campos, É.G. Glutathione status and antioxidant enzymes in a crocodilian species from the swamps of the Brazilian Pantanal. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2012, 163, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Guerriero, G.; D’Errico, G.; Di Giaimo, R.; Rabbito, D.; Olanrewaju, O.S.; Ciarcia, G. Reactive oxygen species and glutathione antioxidants in the testis of the soil biosentinel Podarcis sicula (Rafinesque 1810). Environ. Sci. Pollut. Res. 2018, 25, 18286–18296. [Google Scholar] [CrossRef]
- Azad, M.A.K.; Kikusato, M.; Maekawa, T.; Shirakawa, H.; Toyomizu, M. Metabolic characteristics and oxidative damage to skeletal muscle in broiler chickens exposed to chronic heat stress. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2010, 155, 401–406. [Google Scholar] [CrossRef]
- Yang, L.; Tan, G.Y.; Fu, Y.Q.; Feng, J.H.; Zhang, M.H. Effects of acute heat stress and subsequent stress removal on function of hepatic mitochondrial respiration, ROS production and lipid peroxidation in broiler chickens. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2010, 151, 204–208. [Google Scholar] [CrossRef]
- Raja-aho, S.; Kanerva, M.; Eeva, T.; Lehikoinen, E.; Suorsa, P.; Gao, K.; Vosloo, D.; Nikinmaa, M. Seasonal Variation in the Regulation of Redox State and Some Biotransformation Enzyme Activities in the Barn Swallow (Hirundo rustica L.). Physiol. Biochem. Zool. 2012, 85, 148–158. [Google Scholar] [CrossRef] [Green Version]
- Megahed, G.A.; Anwar, M.M.; Wasfy, S.I.; Hammadeh, M.E. Influence of heat stress on the cortisol and oxidant-antioxidants balance during oestrous phase in buffalo-cows (Bubalus bubalis): Thermo-protective role of antioxidant treatment. Reprod. Domest. Anim. 2008, 43, 672–677. [Google Scholar] [CrossRef]
- Paul, C.; Teng, S.; Saunders, P.T. A single, mild, transient scrotal heat stress causes hypoxia and oxidative stress in mouse testes, which induces germ cell death. Biol. Reprod. 2009, 80, 913–919. [Google Scholar] [CrossRef] [Green Version]
- Matsuzuka, T.; Ozawa, M.; Nakamura, A.; Ushitani, A.; Hirabayashi, M.; Kanai, Y. Effects of heat stress on the redox status in the oviduct and early embryonic development in mice. J. Reprod. Dev. 2005, 51, 281–287. [Google Scholar] [CrossRef] [Green Version]
- Matsuzuka, T.; Sakamoto, N.; Ozawa, M.; Ushitani, A.; Hirabayashi, M.; Kanai, Y. Alleviation of maternal hyperthermia-induced early embryonic death by administration of melatonin to mice. J. Pineal Res. 2005, 39, 217–223. [Google Scholar] [CrossRef]
- Bonda-Ostaszewska, E.; Wlostowski, T.; Krasowska, A.; Kozlowski, P. Seasonal and photoperiodic effects on lipid droplet size and lipid peroxidation in the brown adipose tissue of bank voles (Myodes glareolus). Acta Theriol. 2012, 57, 289–294. [Google Scholar] [CrossRef] [Green Version]
- Pankhurst, N.W.; King, H.R. Temperature and salmonid reproduction: Implications for aquaculture. J. Fish Biol. 2010, 76, 69–85. [Google Scholar] [CrossRef] [Green Version]
- Breckels, R.D.; Neff, B.D. The effects of elevated temperature on the sexual traits, immunology and survivorship of a tropical ectotherm. J. Exp. Biol. 2013, 216, 2658–2664. [Google Scholar] [CrossRef] [Green Version]
- De Maio, A.; Trocchia, S.; Guerriero, G. The amphibian Pelophylax bergeri (Günther, 1986) testis poly (ADP-ribose) polymerases: Relationship to endocrine disruptors during spermatogenesis. Ital. J. Zool. 2014, 81, 256–263. [Google Scholar] [CrossRef] [Green Version]
- Galloy, V.; Denoël, M. Detrimental effect of temperature increase on the fitness of an amphibian (Lissotriton helveticus). Acta Oecologica 2010, 36, 179–183. [Google Scholar] [CrossRef] [Green Version]
- Guerriero, G.; Di Giaimo, R.; Hentati, O.; Abdel-Gawad, F.K.; Trocchia, S.; Rabbito, D.; Ciarcia, G. Reproductive expression dynamics and comparative toxicological perspective of beta estrogen receptor gene in the male wall lizard, Podarcis sicula Rafinesque, 1810 (Chordata: Reptilia). Eur. Zool. J. 2018, 85, 331–341. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Wang, Y.; Tang, W.; Du, W. Experimental evaluation of reproductive response to climate warming in an oviparous skink. Integr. Zool. 2013, 8, 175–183. [Google Scholar] [CrossRef]
- Ma, L.; Sun, B.J.; Li, S.R.; Sha, W.; Du, W.G. Maternal Thermal Environment Induces Plastic Responses in the Reproductive Life History of Oviparous Lizards. Physiol. Biochem. Zool. 2014, 87, 677–683. [Google Scholar] [CrossRef]
- Dubey, S.; Shine, R. Predicting the effects of climate change on reproductive fitness of an endangered montane lizard, Eulamprus leuraensis (Scincidae). Clim. Chang. 2011, 107, 531–547. [Google Scholar] [CrossRef]
- Telemeco, R.S.; Radder, R.S.; Baird, T.A.; Shine, R. Thermal effects on reptile reproduction: Adaptation and phenotypic plasticity in a montane lizard. Biol. J. Linn. Soc. 2010, 100, 642–655. [Google Scholar] [CrossRef]
- Warner, D.A.; Shine, R. The adaptive significance of temperature-dependent sex determination in a reptile. Nature 2008, 451, 566. [Google Scholar] [CrossRef]
- Karaca, A.G.; Parker, H.M.; Yeatman, J.B.; McDaniel, C.D. The effects of heat stress and sperm quality classification on broiler breeder male fertility and semen ion concentrations. Br. Poult. Sci. 2002, 43, 621–628. [Google Scholar] [CrossRef]
- Hurley, L.L.; McDiarmid, C.S.; Friesen, C.R.; Griffith, S.C.; Rowe, M. Experimental heatwaves negatively impact sperm quality in the zebra finch. Proc. R. Soc. B Biol. Sci. 2018, 285, 20172547. [Google Scholar] [CrossRef]
- El-Tarabany, M.S. Impact of temperature-humidity index on egg-laying characteristics and related stress and immunity parameters of Japanese quails. Int. J. Biometeorol. 2016, 60, 957–964. [Google Scholar] [CrossRef]
- Wechalekar, H.; Setchell, B.P.; Peirce, E.J.; Ricci, M.; Leigh, C.; Breed, W.G. Whole-body heat exposure induces membrane changes in spermatozoa from the cauda epididymidis of laboratory mice. Asian J. Androl. 2010, 12, 591. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Crespo, M.; Pintado, B.; Gutiérrez-Adán, A. Scrotal heat stress effects on sperm viability, sperm DNA integrity, and the offspring sex ratio in mice. Mol. Reprod. Dev. Inc. Gamete Res. 2008, 75, 40–47. [Google Scholar] [CrossRef]
- Wechalekar, H.; Setchell, B.P.; Pilkington, K.R.; Leigh, C.; Breed, W.G.; Peirce, E. Effects of whole-body heat on male germ cell development and sperm motility in the laboratory mouse. Reprod. Fertil. Dev. 2016, 28, 545–555. [Google Scholar] [CrossRef]
- Shimizu, T.; Ohshima, I.; Ozawa, M.; Takahashi, S.; Tajima, A.; Shiota, M.; Miyazaki, H.; Kanai, Y. Heat stress diminishes gonadotropin receptor expression and enhances susceptibility to apoptosis of rat granulosa cells. Reproduction 2005, 129, 463–472. [Google Scholar] [CrossRef]
- Roth, Z.; Aroyo, A.; Yavin, S.; Arav, A. The antioxidant epigallocatechin gallate (EGCG) moderates the deleterious effects of maternal hyperthermia on follicle-enclosed oocytes in mice. Theriogenology 2008, 70, 887–897. [Google Scholar] [CrossRef]
- Zhu, B.; Walker, S.K.; Oakey, H.; Setchell, B.P.; Maddocks, S. Effect of paternal heat stress on the development in vitro of preimplantation embryos in the mouse. Andrologia 2004, 36, 384–394. [Google Scholar] [CrossRef]
- Zhu, B.; Maddocks, S. The effect of paternal heat stress on protein profiles of pre-implantation embryos in the mouse. Int. J. Androl. 2005, 28, 128–136. [Google Scholar] [CrossRef]
- Peña, S.T.; Stone, F.; Gummow, B.; Parker, A.J.; Paris, D.B. Tropical summer induces DNA fragmentation in boar spermatozoa: Implications for evaluating seasonal infertility. Reprod. Fertil. Dev. 2019, 31, 590–601. [Google Scholar] [CrossRef]
- De Rensis, F.; Lopez-Gatius, F.; García-Ispierto, I.; Morini, G.; Scaramuzzi, R.J. Causes of declining fertility in dairy cows during the warm season. Theriogenology 2017, 91, 145–153. [Google Scholar] [CrossRef]
- Al-Katanani, Y.M.; Paula-Lopes, F.F.; Hansen, P.J. Effect of season and exposure to heat stress on oocyte competence in Holstein cows. J. Dairy Sci. 2002, 85, 390–396. [Google Scholar] [CrossRef]
- Roth, Z.; Meidan, R.; Shaham-Albalancy, A.; Braw-Tal, R.; Wolfenson, D. Delayed effect of heat stress on steroid production in medium-sized and preovulatory bovine follicles. Reprod. Camb. 2001, 121, 745–751. [Google Scholar] [CrossRef]
- Carvalho, C.S.; Fernandes, M.N. Effect of temperature on copper toxicity and hematological responses in the neotropical fish Prochilodus scrofa at low and high pH. Aquaculture 2006, 251, 109–117. [Google Scholar] [CrossRef]
- Guerriero, G. Seasonal steroids variations and maturity stages in the female chub, Leuciscus cephalus L. (Pisces, Cyprinidae). Ital. J. Zool. 2007, 74, 317–324. [Google Scholar] [CrossRef]
- Guerriero, G.; Di Finizio, A.; Ciarcia, G. Oxidative Defenses in the Sea Bass, Dicentrarchus Labrax. In Oxygen Transport to Tissue XXIV; Dunn, J.F., Swartz, H.M., Eds.; Springer: Boston, MA, USA, 2003; Volume 530, pp. 681–688. ISBN 978-1-4613-4912-9. [Google Scholar]
- King, H.R.; Pankhurst, N.W. Ovarian growth and plasma sex steroid and vitellogenin profiles during vitellogenesis in Tasmanian female Atlantic salmon (Salmo salar). Aquaculture 2003, 219, 797–813. [Google Scholar] [CrossRef]
- Fenoglio, C.; Grosso, A.; Boncompagni, E.; Milanesi, G.; Gandini, C.; Barni, S. Morphofunctional Evidence of Changes in Principal and Mitochondria-Rich Cells in the Epidermis of the Frog Rana kl. esculenta Living in a Polluted Habitat. Arch. Environ. Contam. Toxicol. 2006, 51, 690–702. [Google Scholar] [CrossRef]
- Guerriero, G.; Brundo, M.V.; Labar, S.; Bianchi, A.R.; Trocchia, S.; Rabbito, D.; Palumbo, G.; Abdel-Gawad, F.Kh.; De Maio, A. Frog (Pelophylax bergeri, Günther 1986) endocrine disruption assessment: Characterization and role of skin poly(ADP-ribose) polymerases. Environ. Sci. Pollut. Res. 2018, 25, 18303–18313. [Google Scholar] [CrossRef]
- Prokić, M.D.; Borković-Mitić, S.S.; Krizmanić, I.I.; Mutić, J.J.; Trifković, J.Đ.; Gavrić, J.P.; Despotović, S.G.; Gavrilović, B.R.; Radovanović, T.B.; Pavlović, S.Z.; et al. Bioaccumulation and effects of metals on oxidative stress and neurotoxicity parameters in the frogs from the Pelophylax esculentus complex. Ecotoxicology 2016, 25, 1531–1542. [Google Scholar] [CrossRef]
- Grundy, J.E.; Storey, K.B. Antioxidant defenses and lipid peroxidation damage in estivating toads, Scaphiopus couchii. J. Comp. Physiol. B 1998, 168, 132–142. [Google Scholar] [CrossRef]
- Trocchia, S.; Labar, S.; Abdel Gawad, F.K.; Rabbito, D.; Ciarcia, G.; Guerriero, G. Frog gonad as bio-indicator of Sarno River health. J. Sci. Eng. Res. 2015, 6, 449–456. [Google Scholar]
- Reading, C.J. Linking global warming to amphibian declines through its effects on female body condition and survivorship. Oecologia 2007, 151, 125–131. [Google Scholar] [CrossRef]
- Chamaille-Jammes, S.; Massot, M.; Aragon, P.; Clobert, J. Global warming and positive fitness response in mountain populations of common lizards Lacerta vivipara. Glob. Chang. Biol. 2006, 12, 392–402. [Google Scholar] [CrossRef]
- Marquis, O.; Massot, M.; Le Galliard, J.F. Intergenerational effects of climate generate cohort variation in lizard reproductive performance. Ecology 2008, 89, 2575–2583. [Google Scholar] [CrossRef]
- Willmore, W.G.; Storey, K.B. Antioxidant systems and anoxia tolerance in a freshwater turtle Trachemys scripta elegans. Mol. Cell. Biochem. 1997, 170, 177–185. [Google Scholar] [CrossRef]
- Maiorino, M.; Wissing, J.B.; Brigelius-Flohé, R.; Calabrese, F.; Roveri, A.; Steinert, P.; Ursini, F.; Flohé, L. Testosterone mediates expression of the selenoprotein PHGPx by induction of spermatogenesis and not by direct transcriptional gene activation. FASEB J. 1998, 12, 1359–1370. [Google Scholar] [CrossRef]
- Maiorino, M.; Conrad, M.; Ursini, F. GPx4, Lipid Peroxidation, and Cell Death: Discoveries, Rediscoveries, and Open Issues. Antioxid. Redox Signal. 2018, 29, 61–74. [Google Scholar] [CrossRef]
- Alonso-Alvarez, C.; Bertrand, S.; Devevey, G.; Prost, J.; Faivre, B.; Sorci, G. Increased susceptibility to oxidative stress as a proximate cost of reproduction: Oxidative stress as a cost of reproduction. Ecol. Lett. 2004, 7, 363–368. [Google Scholar] [CrossRef] [Green Version]
- Bertrand, S.; Alonso-Alvarez, C.; Devevey, G.; Faivre, B.; Prost, J.; Sorci, G. Carotenoids modulate the trade-off between egg production and resistance to oxidative stress in zebra finches. Oecologia 2006, 147, 576–584. [Google Scholar] [CrossRef]
- Franson, J.C.; Hoffman, D.J.; Schmutz, J.A. Blood selenium concentrations and enzyme activities related to glutathione metabolism in wild emperor geese. Environ. Toxicol. Chem. 2002, 21, 2179–2184. [Google Scholar] [CrossRef]
- Costantini, D.; Cardinale, M.; Carere, C. Oxidative damage and anti-oxidant capacity in two migratory bird species at a stop-over site. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2007, 144, 363–371. [Google Scholar] [CrossRef]
- Daghir, N.J. Poultry production in hot climate, international center for agriculture and biosciences. In Nutrients requirements of poultry at high temperatures; Cromwell Press: Trowbridge, UK, 1995; pp. 102–114. [Google Scholar]
- Drevet, J.R.; Aitken, R.J. Oxidative Damage to Sperm DNA: Attack and Defense. In Genetic Damage in Human Spermatozoa (Advances in Experimental Medicine and Biology), 2nd ed.; Springer: New York, NY, USA, 2019; pp. 107–117. [Google Scholar]
- Das, J.; Ghosh, J.; Manna, P.; Sil, P.C. Taurine protects rat testes against doxorubicin-induced oxidative stress as well as p53, Fas and caspase 12-mediated apoptosis. Amino Acids 2012, 42, 1839–1855. [Google Scholar] [CrossRef]
Phylum | Class | Order | Family | Genus Species | Temperature Max Reached (°C) | Temperature Increase (°C) | Impact of Temperature on Oxidants and Antioxidants | Gender | Ref. |
---|---|---|---|---|---|---|---|---|---|
Annelida | Clitellata | Haplotaxida | Lumbricidae | Eisenia foetida | 25 | 5 | GST ↓ | nd | [34] |
Polychaeta | Phyllodocida | Nereididae | Laeonereis acuta | 27 | 11 | CAT ↑ GST ↑ | nd | [35] | |
28 | 12 | CAT ↑ GST ↑ | |||||||
Arthropoda | Insecta | Hymenoptera | Apidae | Apis mellifera | 36.2 | 2.2 | SOD ↓; CAT ↑; APOX ↓; H2O2 ↓ | nd | [36] |
44.8 | 4.6 | SOD ↓; CAT ↑; APOX ↓; H2O2 | nd | ||||||
Apis cerana | 45 | 20 | SOD ↑; POD ↑; GR ↑ | M/F | [37] | ||||
Lepidoptera | Crambidae | Chilo suppressalis | 36 | 8 | SOD ↑; ROS ↑; CAT | nd | [38] | ||
33 | 5 | ROS ↑; CAT↑; | |||||||
39 | 11 | ROS ↑; CAT | |||||||
Saturniidae | Antheraea mylitta | 35 | 7 | SOD ↑; CAT ↑; ASA ↑; | M | [39] | |||
40 | 12 | GST ↑; LP ↑; SOD ↑; CAT ↑; ASA↑ | |||||||
Coleoptera | Coccinellidae | Propylaea japonica | 35–41 | 10–16 | CAT ↑; TAC ↑; | nd | [40] | ||
39–41 | 14–16 | GST ↑; MDA ↑; | |||||||
39 | 14 | SOD ↑ | |||||||
41 | 16 | POD ↑ | |||||||
Malacostraca | Decapoda | Portunidae | Scylla serrata | 31.87 | 10.05 | SOD♂ ↓; SOD♀ ↑; CAT♂♀ ↑; GPX♂ ↓; GPX♀ ↑; ASA♀ ↑; | M/F | [41] | |
Maxillopoda | Sessilia | Archaeobalanidae | Balanus balanoides | 29.6 | 0.5 | SOD ↑; CAT ↑ | nd | [42] | |
30.1 | 0.4 | GST ↑ SOD ↑; CAT ↑ | |||||||
Mollusca | Bivalvia | Mytilida | Mytilidae | Mytilus galloprovincialis | 20–25 | 11–14 | SOD ↓; CAT ↓; LP ↑ | nd | [43] |
Perna viridis | 29.43 | 2.91 | GST ↑; SOD ↑; CAT ↑; GR ↑; H2O2 ↑; LP ↑GSH ↑; ASA ↑ | nd | [44] | ||||
32.48 | 5.96 | GPX ↑; SOD ↑; CAT ↑; GR ↑; H2O2 ↑; LP ↑; GSH ↑; ASA ↑ | |||||||
Ostreida | Ostreidae | Crassostrea rhizophorae | 28 | 8 | GST ↑; CAT↑; TOSC ↓ | nd | [45] | ||
30 | 9 | GST ↑; CAT↑; TOSC ↓ | |||||||
Cephalopoda | Octopoda | Octopodidae | Octopus vulgaris | 21 | 3 | GST ↑; MDA ↑ | nd | [46] | |
Gastropoda | Stylommatophora | Helicidae | Helix aspersa | 21–22 | 2–3 | CAT ↑; SOD ↑; GPX↑; GR ↓, GST ↓; G6PDH ↓ | nd | [47] |
Phylum | Class | Order | Family | Genus and Species | Temperature Max Reached (°C) | Temperature Increase (°C) | Impact of Temperature on Fertility | Gender | Ref. |
---|---|---|---|---|---|---|---|---|---|
Annelida | Clitellata | Haplotaxida | Lumbricidae | Eisenia foetida Octolasion tyrtaeum | 22 | - | Fertility rate reduction, decrease in hatched cocoons | F | [48] |
Arthropoda | Insecta | Diptera | Drosophilidae | Drosophila melanogaster | 37 | 13 | Reduced fecundity, reproductive performance alteration, reproduction delay | M/F | [49] |
Rhynchota | Cimicidae | Cimex lectularius | 34 | 12 | Fecundity and offspring success alteration | F | [50] | ||
36 | 14 | ||||||||
38 | 16 | ||||||||
Hymenoptera | Megachilidae | Osmia bicornis | 22–26 | 5 | Perturbation of male mating signals and female choice | M | [51] | ||
Coleoptera | Chrysomelidae | Callosobruchus maculatus | 33 | 8 | Alteration of ejaculatory traits and sperm competition | M | [52] | ||
Coleoptera | Tenebrionidae | Tribolium castaneum | 40–42 | 5–7 | Sperm function and transgenerational damage | M | [23] | ||
Lepidoptera | Tortricidae | Grapholita molesta | 35 | 11 | Adult longevity, fecundity, egg size, and hatching rate | F | [53] | ||
Hymenoptera | Pteromalidae | Anisopteromalus calandrae | 32–34 | 2–4 | Alteration of male reproduction, sperm quantity | M | [54] | ||
Mollusca | Ostreoida | Ostreidae | Crassostrea virginica | 28 | 4 | Decrease in sperm production and apoptotic bodies in testis | M | [55] | |
32 | 8 | ||||||||
Ostrea edulis | 10 | 2 | Alteration of gametogenesis and sex ratio | M/F | [56] | ||||
14 | 6 | ||||||||
18 | 8 | ||||||||
Crassostrea gigas | 25 | 7 | Perturbation of gonadic differentiation | M/F | [57] | ||||
28 | 10 |
Phylum | Class | Order | Family | Genus and Species | Temperature Max Reached (°C) | Temperature Increase (°C) | Impact of Temperature on Oxidants and Antioxidants | Gender | Ref. |
---|---|---|---|---|---|---|---|---|---|
Chordata | Actinopterygii | Anguilliformes | Anguillidae | Anguilla anguilla | 28 | 22 | GST ↑; CAT ↑; GSH ↑; GPX ↑; TOSC ↓; GR ↓ | nd | [70] |
Cichliformes | Cichlidae | Geophagus brasiliensis | 38.2 | 0.8 | CAT ↑; SOD ↓; GST ↓; GSH ↓;GT ↓ | M | [71] | ||
Cyprinodontiformes | Fundulidae | Fundulus heteroclitus | 23 | 17 | GSH ↓; GPX ↑; LPO ↑ | M/F | [72] | ||
Mugiliformes | Mugilidae | Mugil cephalus | 28 | 22 | GST ↑; CAT ↑; GSH ↑;GPX ↑; TOSC ↑; GR ↓ | nd | [70] | ||
Perciformes | Moronidae | Dicentrarchus labrax | 21 | 4.5 | GPX ↓; AA ↓ | M | [73] | ||
Sciaenidae | Micropogonias furnieri | 24 | 12 | GSH ↓; GST ↓; LP ↓;TAC ↑ | nd | [74] | |||
Pleuronectiformes | Soleidae | Solea senegalensis | 24 | 6.7 | LP ↑; GST ↑; GPX ↑ | nd | [75] | ||
Siluriformes | Callichthyidae | Hoplosternum littorale | 34 | 5.0 | ROS ↓ | nd | [76] | ||
33 | 8 | CAT ↑; GR ↑ GST ↑ LPO ↓ | nd | [77] | |||||
Loricariidae | Loricariichthys anus | 24 | 12 | GSH ↓; GST ↓; LP ↓;TAC ↑; GCL ↑ | nd | [74] | |||
Pimelodidae | Parapimelodus nigribarbis | 24 | 12 | GST ↑; LP ↑;TAC ↑; GCL ↑ | nd | [74] | |||
Pimelodus pintado | 24 | 12 | GSH ↓; GST ↑; LP ↓; GCL ↓ | nd | [74] | ||||
Amphibia | Anura | Ranidae | Pelophylax bergeri | 21.8 | 4.3 | ROS ↑; GST ↑ | M | [78,79,80] | |
Rana ridibunda | 24.4 | 16.8 | SOD ↑; CAT ↑, GPX ↓ | nd | [81,82] | ||||
Reptilia | Crocodylia | Alligatoridae | Caiman yacare | 27.3 | 4.3 | LPO ↑ | M | [83,84] | |
Crocodilidae | Crocodylus johnstoni | 27.3 | 4.3 | LPO ↑ | M | [83] | |||
Crocodylus porosus | 27.3 | 4.3 | LPO ↑ | M | [83] | ||||
Squamata | Lacertidae | Podarcis sicula | 31.6 | 17.8 | ROS ↓; GPX ↓↑ | M | [5,85] | ||
Aves | Galliformes | Phasianidae | Gallus gallus | 32–34 | 8–10 | SOD ↑; MDA ↑ | M | [86] | |
35 | 10 | ROS ↑; SOD ↑; CAT ↑; GSH↑; MDA ↑ | M | [87] | |||||
Hirundinidae | Hirundo rustica | 16.7 | 17.05 | SOD ↓; GP ↓; GR ↓; G6PDH ↓; GST ↓; GSH ↓, LHP ↓ | M/F | [88] | |||
Mammalia | Artiodactyla | Bovidae | Bubalus bubalis | 39.46 | 12.26 | SOD ↓; LPO ↓; NO ↑ | F | [89] | |
Rodentia | Muridae | Mus musculus | 42 | 17 | GSH ↓; GPX ↓; CAT ↓; SOD ↓ | M | [24] | ||
40 | 15 | GST ↑ | M | [90] | |||||
42 | 17 | GPX ↑; GST ↑ | M | [90] | |||||
35 | 10 | ROS ↑; GSH ↑; TBARS ↑ | F | [91] | |||||
FRSA ↑ | F | [92] | |||||||
Cricetidae | Myodes glareolus | 16.5 | 19.3 | LP ↑ | M | [93] |
Phylum | Class | Order | Family | Genus and Species | Temperature Max Reached (°C) | Temperature Increase (°C) | Impact of Temperature on Fertility | Gender | Ref. |
---|---|---|---|---|---|---|---|---|---|
Chordata | Osteichthyes | Salmoniformes | Salmonidae | Salmo salar | 22 | 4 | Preovulatory shift inhibition, female reproductive development, reduced fertility, decreased egg survival | F | [94] |
Actinopterygii | Cyprinodontiformes | Poeciliidae | Poecilia reticulata | 30 | 5; 7 | Shorter and slower sperm | M | [95] | |
Amphibia | Anura | Ranidae | Pelophylax bergeri | 21.8 | 4.3 | Testis DNA damage | M | [96] | |
Urodela | Salamandridae | Lissotriton helveticus | 22 | 14 | Number Alteration of deposited eggs and oviposition period | F | [97] | ||
Reptilia | Squamata | Lacertidae | Podarcis sicula | 31.6 | 17.8 | Male fertility alteration, morphological defects | M | [98] | |
Scincidae | Scincella modesta | 24 | 4 | Reduction of incubation period, increase of embryonic mortality and alteration of locomotor performance | F | [99] | |||
28 | 8 | Maternally mediated changes in reproductive life history and induction of plastic responses in egg retention and offspring size | F | [100] | |||||
Eulamprus leuraensis | 20–33 | 3–16 | Reduced incubation period leading to earlier ovoposition | F | [101] | ||||
Acritoscincus duperreyi | 22 | 1.80 | Advanced embryonic development, increased hatching success | F | [102] | ||||
Agamidae | Amphibolurus muricatu | 33 | 3–6 | Alteration of reproductive success | F | [103] | |||
Aves | Galliformes | Phasianidae | Gallus gallus domesticus | 35 | 12 | Fertility, sperm viability, | M | [104] | |
Passeriformes | Estrildidae | Taeniopygia guttata | 30 | 7 | Male fertility, sperm concentration reduction, altered sperm viability | M | [105] | ||
40 | 17 | ||||||||
Galliformes | Phasianidae | Coturnix japonica | 35.8 | 12 | Alteration of fertility and hatchability percentage | F | [106] | ||
Mammalia | Rodentia | Muridae | Mus musculus | 35 | 2–7 | DNA fragmentation in germ cell and spermatozoa, alteration of spermatogenesis, epididymal structure, epididymal sperm maturation and declines in sperm quality | M | [22] | |
37–38 | 12–14 | Impaired sperm motility and spermatozoa with plasma membrane changes within the cauda epididymidis | M | [107] | |||||
42 | 9 | Reduced sperm viability and low motility | M | [108] | |||||
37–38 | 12–14 | Reduced testes weights, increase in germ cell apoptosis, reduced sperm motility and higher percentage of spermatozoa showing membrane damage | M | [109] | |||||
35 | 10 | Ovarian dysfunction, estrogenic activity attenuation of growing follicles | F | [110] | |||||
40 | 15 | Disruption of developmental competence of germinal vesicle stage oocytes | F | [27] | |||||
40 | 18 | Developmental disruption of competence of the follicle-enclosed oocyte | F | [111] | |||||
36 | 9 | Damaged germ cells, impairment of embryos development in offspring | M | [112,113] | |||||
Artiodactyla | Suidae | Scrofa domesticus | 38 | 14 | Alteration of quality and DNA integrity of spermatozoa | M | [114] | ||
Artiodactyla | Bovidae | Bos taurus | >25 | <29 | Inhibition of ovarian activity | F | [115] | ||
39.8 | 1.1 | Oocyte competence decrease | F | [116] | |||||
40.7 | 2 | delayed effect on mediumsized and preovulatory follicles | F | [117] | |||||
40.3 | 1.6 | Delay of follicular development Increase of preovulatory plasma FSH | F | [29] | |||||
Artiodactyla | Bovidae | Capra aegagrus | 36 | 11 | Growth ovulation suppression, decrease of estradiol synthesis activity in the follicles | F | [30] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parisi, C.; Guerriero, G. Antioxidative Defense and Fertility Rate in the Assessment of Reprotoxicity Risk Posed by Global Warming. Antioxidants 2019, 8, 622. https://doi.org/10.3390/antiox8120622
Parisi C, Guerriero G. Antioxidative Defense and Fertility Rate in the Assessment of Reprotoxicity Risk Posed by Global Warming. Antioxidants. 2019; 8(12):622. https://doi.org/10.3390/antiox8120622
Chicago/Turabian StyleParisi, Costantino, and Giulia Guerriero. 2019. "Antioxidative Defense and Fertility Rate in the Assessment of Reprotoxicity Risk Posed by Global Warming" Antioxidants 8, no. 12: 622. https://doi.org/10.3390/antiox8120622
APA StyleParisi, C., & Guerriero, G. (2019). Antioxidative Defense and Fertility Rate in the Assessment of Reprotoxicity Risk Posed by Global Warming. Antioxidants, 8(12), 622. https://doi.org/10.3390/antiox8120622