Characterization of Polyphenolic Compounds Extracted from Different Varieties of Almond Hulls (Prunus dulcis L.)
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemicals
2.2. Samples
2.3. Extraction Procedure
2.3.1. Ultrasound-Assisted Extraction (UAE)
2.3.2. Conventional Solid–Solvent Extraction (CSE)
2.4. Experimental Design
Verification of the Model and Application
2.5. Analytical Determination
2.5.1. Total Phenolic Content
2.5.2. DPPH Radical Scavenging Activity
2.5.3. Condensed Tannin Content
2.5.4. Total Flavonoid Content
2.5.5. HPLC-DAD Analysis
2.5.6. Statistical Analysis
3. Results and Discussion
3.1. Selection range of CCD
3.2. Optimization of UAE parameters
3.3. Determination of the Optimal Conditions and Validation of the Model
3.4. Polyphenolic Content and Antioxidant Capacity of Almond Hulls Extracts
3.5. Identification and Quantification of Polyphenolic Compounds
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 14 September 2019).
- Prgomet, I.; Gonçalves, B.; Domínguez-Perles, R.; Pascual-Seva, N.; Barros, A. Valorization challenges to almond residues: Phytochemical composition and functional application. Molecules 2017, 22, 1774. [Google Scholar] [CrossRef] [Green Version]
- Amarowicz, R.; Troszyńska, A.; Shahidi, F. Antioxidant activity of almond seed extract and its fractions. J. Food Lipids. 2005, 12, 344–358. [Google Scholar] [CrossRef]
- Esfahlan, A.J.; Jamei, R.; Esfahlan, R.J. The importance of almond (Prunus amygdalus L.) and its by-products. Food Chem. 2010, 120, 349–360. [Google Scholar] [CrossRef]
- Takeoka, G.; Dao, L.; Teranishi, R.; Wong, R.; Flessa, S.; Harden, L.; Edwards, R. Identification of three triterpenoids in almond hulls. J. Agric. Food Chem. 2000, 48, 3437–3439. [Google Scholar] [CrossRef] [PubMed]
- Safarian, S.; Azarmi, Y.; Jahanban-Esfahlan, A.; Jahanban-Esfahlan, H. The beneficial effects of almond (Prunus amygdalus Batsch) hull on serum lipid profile and antioxidant capacity in male rats. Turk. J. Med. Sci. 2016, 46, 1223–1232. [Google Scholar] [CrossRef] [PubMed]
- Bolling, B.; Dolnikowski, W.; Gregoryn, B.; Jeffrey, B.; Chen, C.-Y. Polyphenol content and antioxidant activity of California almonds depend on cultivar and harvest year. Food Chem. 2010, 122, 819–825. [Google Scholar] [CrossRef] [Green Version]
- Taha, F.S.; Mohamed, G.F.; Mohamed, S.H.; Mohamed, S.S.; Kamil, M.M. Optimization of the extraction of total phenolic compounds from sunflower meal and evaluation of the bioactivities of chosen extracts. Am. J. Food Technol. 2011, 6, 1002–1020. [Google Scholar] [CrossRef]
- Zardo, I.; De Espíndola Sobczyk, A.; Marczak, L.D.F.; Sarkis, J. Optimization of ultrasound assisted extraction of phenolic compounds from sunflower seed cake using Response Surface Methodology. Waste Biomass Valor. 2017, 10, 33–44. [Google Scholar] [CrossRef]
- Fan, T.; Hu, J.; Fu, L.; Zhang, L.J. Optimization of enzymolysis-ultrasonic assisted extraction of polysaccharides from Momordica charabtia L. by response surface methodology. Carbohydr. Polym. 2015, 115, 701–706. [Google Scholar] [CrossRef]
- Pongmalai, P.; Devahastin, S.; Chiewchan, N.; Soponronnarit, S. Enhancement of microwave-assisted extraction of bioactive compounds from cabbage outer leaves via the application of ultrasonic pre-treatment. Sep. Purif. Technol. 2015, 144, 37–45. [Google Scholar] [CrossRef]
- Şahin, S.; Aybastıer, Ö.; Işık, E. Optimisation of ultrasonic-assisted extraction of antioxidant compounds from Artemisia absinthium using response surface methodology. Food Chem. 2013, 141, 1361–1368. [Google Scholar] [CrossRef] [PubMed]
- Vilkhu, K.; Raymond, M.; Lloyd, S.; Darren, B. Applications and opportunities for ultrasound assisted extraction in the food industry—A review. Innov. Food Sci. Emerg. 2008, 9, 161–169. [Google Scholar] [CrossRef]
- Pan, Y.; Hao, Y.; Chu, T.; Li, C.; Zhang, Z.; Zhou, Y. Ultrasonic-assisted extraction, chemical characterization of polysaccharides from Yunzhi mushroom and its effect on osteoblast cells. Carbohydr. Polym. 2010, 80, 922–926. [Google Scholar] [CrossRef]
- Tabaraki, R.; Ashraf, N. Optimization of ultrasonic-assisted extraction of natural antioxidants from rice bran using response surface methodology. Ultrason. Sonochem. 2011, 18, 1279–1286. [Google Scholar] [CrossRef]
- Guglielmetti, A.; D’Ignoti, V.; Ghirardello, D.; Belviso, S.; Zeppa, G. Optimisation of ultrasound and microwave-assisted extraction of caffeoylquinic acids and caffeine from coffee silver skin using response surface methodology. Ital. J. Food Sci. 2017, 29, 409–424. [Google Scholar]
- Jablonský, M.A.; Škulcová, A.; Malvis, A.; Šima, J. Extraction of value-added components from food industry based and agro-forest biowastes by deep eutectic solvents. J. Biotechnol. 2018, 282, 46–66. [Google Scholar] [CrossRef]
- Azadeh, M. Acetone extract of almond hulls provides protection against oxidative damage and membrane protein degradation. J. Acupunct. Meridian Stud. 2016, 9, 134–142. [Google Scholar]
- Singleton, V.L.; Rossi, J.A., Jr. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar]
- Von Gadow, A.V.; Joubert, E.; Hansmann, C.F. Comparison of the antioxidant activity of rooibos tea (Aspalathus linearis) with green, oolong and black tea. Food Chem. 1997, 60, 73–77. [Google Scholar] [CrossRef]
- Lin, J.T.; Liu, S.C.; Hu, C.C.; Shyu, Y.S.; Hsu, C.Y.; Yang, D.J. Effects of roasting temperature and duration on fatty acid composition, phenolic composition, Maillard reaction degree and antioxidant attribute of almond (Prunus dulcis) kernel. Food Chem. 2016, 190, 520. [Google Scholar] [CrossRef]
- Barbosa-Pereira, L.; Guglielmetti, A.; Zeppa, G. Pulsed electric field assisted extraction of bioactive compounds from cocoa bean shell and coffee silverskin. Food Bioprocess Technol. 2018, 11, 818–835. [Google Scholar] [CrossRef]
- Pan, X.; Niu, G.; Liu, H. Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chem. Eng. Process. 2003, 42, 129–133. [Google Scholar] [CrossRef]
- Spigno, G.; Tramelli, L.; De Faveri, D.M. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng. 2007, 81, 200–208. [Google Scholar] [CrossRef]
- Liu, Y.; Shoulian, W.; Liao, M. Optimization of ultrasonic extraction of phenolic compounds from Euryale ferox seed shells using response surface methodology. Ind. Crops. Prod. 2013, 49, 837–843. [Google Scholar] [CrossRef]
- He, Q.; Du, B.; Xu, B. Extraction optimization of phenolics and antioxidants from black goji berry by accelerated solvent extractor using response surface methodology. Appl. Sci. 2018, 8, 1905. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Sun, B.; Cao, Y.; Tian, Y.; Li, X. Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chem. 2008, 106, 804–810. [Google Scholar] [CrossRef]
- Cacace, J.; Mazza, G. Optimization of extraction of anthocyanin is from black currants with aqueous ethanol. J. Food Sci. 2003, 68, 240–248. [Google Scholar] [CrossRef]
- Jiang, Z.; Shi, R.; Chen, H.; Wang, Y. Ultrasonic microwawe-assisted extraction coupled with macroporous resin chromatography for the purification of antioxidant phenolics from waste jackfruit (Artocarpus heterophyllus Lam.) peels. J. Food Sci. Technol. 2019, 56, 3877–3886. [Google Scholar] [CrossRef]
- Yang, L.; Jiang, J.G.; Li, W.F.; Chen, J.; Wang, D.Y.; Zhu, L. Optimum extraction process of polyphenols from the bark of Phyllanthus emblica L. based on the response surface methodology. J. Sep. Sci. 2009, 32, 1437–1444. [Google Scholar] [CrossRef]
- Dahmoune, F.; Boulekbache, L.; Moussi, K.; Aoun, O.; Spigno, G.; Madani, K. Vaporization of Citrus lemon residues for the recovery of antioxidants: Evaluation and optimization of microwave and ultrasound application to solvent extraction. Ind. Crops. Prod. 2013, 50, 77–87. [Google Scholar] [CrossRef]
- Dahmoune, F.; Nayak, B.; Moussi, K.; Remini, H.; Madani, K. Optimization of microwave-assisted extraction of phenolics from Mirtus communis L. leaves. Food Chem. 2015, 166, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Carini, M.; Aldini, G.; Bombardelli, E.; Morazzoni, P.; Maffei Facino, R. UVB-induced haemolysis of rat erythrocytes: Protective effect of procyanidins from grape seeds. Life Sci. 2000, 67, 1799–1814. [Google Scholar] [CrossRef]
- Juntachote, T.; Berghofer, E.; Bauer, F.; Siebenhandl, S. The application of response surface methodology to the production of phenolic extracts of lemon grass, galangal, holy basil and rosemary. J. Food Sci. Technol. 2006, 41, 121–133. [Google Scholar] [CrossRef]
- Hifza, A.; Tariq, M.I.; Sultana, N.; Nosheen, S.; Habib, F.; Shafiq, M. Extraction and bio analysis of ultrasonic assisted Pakistani cultivar Prunus Dulcis seed: An optimization study. Pak. J. Sci. 2018, 70, 1. [Google Scholar]
- Ryu, D.; Koh, E. Application of response surface methodology to acidified water extraction of black soybeans for improving anthocyanin content, total phenols content and antioxidant activity. Food Chem. 2018, 261, 260–266. [Google Scholar] [CrossRef]
- Pinelo, M.; Rubilar, M.; Sineiro, J.; Nunez, M.J. Extraction of antioxidant phenolics from almond hulls (Prunus amygdalus) and pine sawdust (Pinus pinaster). Food Chem. 2004, 85, 267–273. [Google Scholar] [CrossRef]
- Subhashinee, S.K.; Siriwardhana, W.; Shahidi, F. Antiradical activity of extracts of almond and its by-products. J. Am. Oil. Chem. Soc. 2002, 79, 903–908. [Google Scholar]
- Takeoka, G.R.; Dao, L.T. Antioxidant constituents of almond [Prunus dulcis (Mill.) DA Webb] hulls. J. Agric. Food Chem. 2003, 51, 496–5015. [Google Scholar] [CrossRef]
- Wijeratne, S.S.L.; Abou-Zaid, M.M.; Shahidi, F. Antioxidant polyphenols in almond and its coproducts. J. Agric. Food Chem. 2006, 54, 312–318. [Google Scholar] [CrossRef]
- Sang, S.; Lapsley, K.; Rosen, R.T.; Ho, C.T. New prenylated benzoic acid and other constituents from almond hulls (Prunus amygdalus Batsch). J. Agric. Food Chem. 2002, 50, 607–609. [Google Scholar] [CrossRef]
- Rubilar, M.; Pinelo, M.; Shene, C.; Sineiro, J.; Nuñez, M.J. Separation and HPLC-MS identification of phenolic antioxidants from agricultural residues: Almond hulls and grape pomace. J. Agric. Food Chem. 2007, 55, 10101–10109. [Google Scholar] [CrossRef] [PubMed]
Solid:Solvent Ratio (g/100mL) | TPC (mgGAE/gdw) | Extraction Time (min) | TPC (mgGAE/gdw) | Ethanol Concentration (% v/v) | TPC (mgGAE/gdw) |
---|---|---|---|---|---|
2 | 6.44 ± 0.25 | 1 | 5.05 ± 0.11 a | 20 | 4.47 ± 0.09 b |
2.5 | 6.37 ± 0.44 | 5 | 5.81 ± 0.24 b | 40 | 7.69 ± 0.13 d |
3.3 | 6.52 ± 0.46 | 10 | 6.22 ± 0.06 b | 60 | 6.52 ± 0.47 c |
5 | 6.28 ± 0.14 | 15 | 6.52 ± 0.47 c | 80 | 3.77 ± 0.14 b |
10 | 6.02 ± 0.27 | 20 | 6.64 ± 0.13 c | 100 | 0.49 ± 0.01 a |
25 | 6.87 ± 0.13 c | ||||
30 | 6.75 ± 0.29 c | ||||
Significance | ns | ** | *** |
Independent Variables | Code | Coded Variable Levels | ||||
---|---|---|---|---|---|---|
−1.6818 | −1 | 0 | 1 | 1.6818 | ||
Solid:solvent ratio (g/100 mL) | X1 | 2 | 2.6 | 3.5 | 4.4 | 5 |
Extraction Time (min) | X2 | 10 | 13 | 18 | 22 | 25 |
Ethanol concentration (%, v/v) | X3 | 40 | 44 | 50 | 56 | 60 |
Runs | Uncoded Variables | Responses | |||
---|---|---|---|---|---|
X1 (g/100 mL) | X2 (min) | X3 (%, v/v) | TPC (mgGAE/gdw) | RSA (µMTE/gdw) | |
1 | 2.0 | 18 | 50 | 7.25 ± 0.08 | 55.30 ± 2.74 |
2 | 2.6 | 13 | 44 | 6.90 ± 0.11 | 50.6 ± 2.09 |
3 | 2.6 | 13 | 56 | 6.72 ± 0.11 | 49.82 ± 2.56 |
4 | 2.6 | 22 | 44 | 7.22 ± 0.07 | 47.54 ± 1.77 |
5 | 2.6 | 22 | 56 | 7.28 ± 0.16 | 49.88 ± 0.31 |
6 | 3.5 | 10 | 50 | 7.07 ± 0.05 | 44.29 ± 0,56 |
7 | 3.5 | 18 | 40 | 7.71 ± 0.10 | 44.56 ± 1.13 |
8 | 3.5 | 18 | 60 | 7.02 ± 0.40 | 39.87 ± 1.35 |
9 | 3.5 | 25 | 50 | 7.61 ± 0.15 | 44.23 ± 2.29 |
10 | 4.4 | 13 | 44 | 6.95 ± 0.26 | 38.0 ± 1.63 |
11 | 4.4 | 13 | 56 | 6.95 ± 0.26 | 37.57 ± 1.63 |
12 | 4.4 | 22 | 44 | 8.03 ± 0.06 | 44.41 ± 1.60 |
13 | 4.4 | 22 | 56 | 7.66 ± 0.30 | 39.19 ± 1.61 |
14 | 5.0 | 18 | 50 | 7.71 ± 0.29 | 39.57 ± 0.76 |
15 | 3.5 | 18 | 50 | 7.94 ± 0.21 | 47.8 ± 2.31 |
16 | 3.5 | 18 | 50 | 8.09 ± 0.02 | 48.00 ± 2.96 |
17 | 3.5 | 18 | 50 | 8.01 ± 0.22 | 47.82 ± 1.62 |
18 | 3.5 | 18 | 50 | 8.02 ± 0.21 | 50.32 ± 1.57 |
19 | 3.5 | 18 | 50 | 7.88 ± 0.06 | 46.09 ± 1.53 |
20 | 3.5 | 18 | 50 | 8.06 ± 0.25 | 46.49 ± 1.89 |
TPC (mgGAE/gdw) | RSA (µMTE/gdw) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
SS | df | MS | F value | P value | SS | df | MS | F value | P value | |
Model | 10.04 | 9 | 1.12 | 24.55 | <0.0001 | 1243.40 | 9 | 138.16 | 32.81 | < 0.0001 |
X1 | 1.54 | 1 | 1.54 | 33.95 | <0.0001 | 931.50 | 1 | 931.50 | 221.20 | < 0.0001 |
X2 | 2.23 | 1 | 2.23 | 49.09 | <0.0001 | 5.33 | 1 | 5.33 | 1.26 | 0.2661 |
X3 | 0.9285 | 1 | 0.9285 | 20.43 | <0.0001 | 31.52 | 1 | 31.52 | 7.48 | 0.0086 |
X1X2 | 0.1019 | 1 | 0.1019 | 2.24 | 0.1405 | 45.50 | 1 | 45.50 | 10.81 | 0.0019 |
X1X3 | 0.1498 | 1 | 0.1498 | 3.30 | 0.0754 | 19.45 | 1 | 19.45 | 4.62 | 0.0365 |
X2X3 | 0.0264 | 1 | 0.0264 | 0.5809 | 0.4495 | 1.05 | 1 | 1.05 | 0.25 | 0.6192 |
X12 | 1.48 | 1 | 1.48 | 32.64 | <0.0001 | 0.35 | 1 | 0.35 | 0.083 | 0.7743 |
X22 | 2.36 | 1 | 2.36 | 52.01 | <0.0001 | 63.55 | 1 | 63.55 | 15.09 | 0.0003 |
X32 | 2.21 | 1 | 2.21 | 48.58 | <0.0001 | 161.94 | 1 | 161.94 | 38.45 | <0.0001 |
Residual | 2.27 | 50 | 0.0454 | 210.26 | 50 | 4.21 | ||||
Lack of fit | 0.4513 | 5 | 0.0903 | 2.23 | 0.0675 | 35.76 | 5 | 7.15 | 1.84 | 0.1240 |
Pure error | 1.82 | 45 | 0.0405 | 174.80 | 45 | 3.88 | ||||
Cor Total | 12.31 | 59 | 1453.96 | 59 |
TPC (mgGAE/gdw) | TCT (mgCE/gdw) | |||||
UAE | CSE | Significance | UAE | CSE | Significance | |
Pizzuta | 210.49 ± 1.79 d | 31.98 ± 12.05 c | *** | 123.54 ± 2.8 d | 23.54 ± 11.59 c | *** |
Fascionello | 146.47 ± 5.83 bc | 19.78 ± 1.69 b | *** | 80.21 ± 0.62 c | 9.62 ± 0.53 b | *** |
Romana | 160.03 ± 25.44 c | 25.66 ± 5.55 b | *** | 74.36 ± 5.78 b | 13.11 ± 3.39 b | *** |
Achaak | 138.70 ± 4.52 bc | 24.23 ± 4.57 b | *** | 81.34 ± 1.01 c | 11.30 ± 2.98 b | *** |
Fakhfekh | 207.77 ± 4.23 d | 25.79 ± 4.04 b | *** | 123.49 ± 4.40 d | 15.20 ± 2.71 bc | *** |
Laurane | 133.69 ± 5.89 b | 16.32 ± 2.21 b | *** | 70.76 ± 1.33 b | 8.73 ± 1.36 b | *** |
Zahaf | 8.37 ± 0.83 a | 3.08 ± 0.09 a | ** | 1.78 ± 0.22 a | 0.09 ± 0.02 a | ** |
Significance | *** | * | *** | * | ||
TFC (mgCE/gdw) | RSA (µMTE/gdw) | |||||
UAE | CSE | Significance | UAE | CSE | Significance | |
Pizzuta | 117.77 ± 4.84 d | 16.83 ± 7.99 c | *** | 1938.07 ± 18.69 d | 183.62 ± 25.22 cd | *** |
Fascionello | 80.29 ± 4.17 bc | 9.07 ± 0.74 b | *** | 1606.83 ± 62.92 c | 142.97 ± 10.44 bc | *** |
Romana | 73.37 ± 2.77 b | 12.36 ± 3.56 bc | *** | 1565.18 ± 42.14 c | 168.96 ± 22.90 c | *** |
Achaak | 81.29 ± 4.48 c | 11.17 ± 3.14 bc | *** | 1450.47 ± 131.03 b | 167.74 ± 26.50 c | *** |
Fakhfekh | 120.04 ± 4.96 d | 12.65 ± 2.52 bc | *** | 1990.78 ± 39.58 d | 203.43 ± 8.72 d | *** |
Laurane | 77.30 ± 3.04 bc | 7.19 ± 1.45 ab | *** | 1607.18 ± 36.74 c | 129.49 ± 12.32 b | *** |
Zahaf | 3.08 ± 0.28 a | 0.87 ± 0.04 a | ** | 64.83 ± 3.04 a | 23.43 ± 7.36 a | *** |
Significance | *** | * | *** | *** |
Compound | Rt (min) | λmax (nm) | Linear Range (mg/L) | Linear Equation | r2 | LOD | LOQ |
---|---|---|---|---|---|---|---|
(mg/L) | (mg/L) | ||||||
Protocatechuic acid | 4.36 | 293 | 0.2-202 | y = 78697x + 19672 | 0.9997 | 0.1 | 0.2 |
Catechin | 8.7 | 279 | 0.5-194 | y = 32326x − 13902 | 0.9999 | 0.2 | 0.5 |
Caffeic acid | 10.87 | 325 | 0.2-23.6 | y = 234675x − 53489 | 0.9997 | 0.1 | 0.2 |
Chlorogenic acid | 11.54 | 325 | 0.5-119 | y = 116431x + 47158 | 0.9996 | 0.2 | 0.5 |
Epicatechin | 13.48 | 279 | 0.5-198 | y = 31724x + 35810 | 0.9998 | 0.2 | 0.5 |
p-Coumaric acid | 16.34 | 325 | 0.2-113 | y = 178167x + 12076 | 0.9999 | 0.1 | 0.2 |
Quercetin-3-glucoside | 24.36 | 355 | 0.5-110.0 | y = 84895x + 14596 | 0.9996 | 0.1 | 0.5 |
Quercetin-3-glucoside | p-coumaric acid | |||||
UAE | CSE | Significance | UAE | CSE | Significance | |
Pizzuta | 0.02 ± 0.00 b | nd | *** | 0.03 ± 0.01 b | nd | *** |
Fascionello | 0.003 ± 0.01 ab | nd | *** | 0.006 ± 0.01 a | nd | *** |
Romana | 0.006 ± 0.01 a | nd | ** | nd | nd | |
Achaak | nd | nd | nd | nd | ||
Fakhfekh | nd | nd | nd | nd | ||
Laurane | nd | nd | nd | nd | ||
Zahaf | nd | nd | nd | nd | ||
Significance | ** | ** | ||||
Chlorogenic acid | Epicatechin | |||||
UAE | CSE | Significance | UAE | CSE | Significance | |
Pizzuta | 4.76 ± 0.25 e | 0.12 ± 0.09 b | *** | 0.03 ± 0.00 b | nd | *** |
Fascionello | 1.60 ± 0.12 d | 0.003 ± 0.001 a | *** | 0.006 ± 0.01 a | nd | *** |
Romana | 0.67 ± 0.24 b | nd | *** | nd | nd | |
Achaak | 1.25 ± 0.08 c | nd | *** | nd | nd | |
Fakhfekh | 3.35 ± 0.07 e | 0.006 ± 0.01 a | *** | nd | nd | |
Laurane | 0.92 ± 0.28 b | 0.006 ± 0.01 a | *** | nd | nd | |
Zahaf | 0.006 ± 0.01 a | nd | *** | nd | nd | |
Significance | *** | * | ||||
Protocatechuic acid | Catechin | |||||
UAE | CSE | Significance | UAE | CSE | Significance | |
Pizzuta | 0.22 ± 0.01 b | nd | *** | 2.40 ± 0.08 d | 0.06 ± 0.04 ab | *** |
Fascionello | 0.07 ± 0.000 a | nd | *** | 0.51 ± 0.05 b | 0.003 ± 0.001 a | *** |
Romana | 0.06 ± 0.03 a | nd | *** | 0.47 ± 0.09 b | 0.01 ± 0.0001 b | *** |
Achaak | 0.04 ± 0.01 a | nd | *** | 1.51 ± 0.03 c | 0.01 ± 0.0001 b | *** |
Fakhfekh | 0.18 ± 0.01 b | nd | *** | 6.91 ± 0.16 e | 0.02 ± 0.0001 b | *** |
Laurane | 0.19 ± 0.01 b | nd | *** | 0.53 ± 0.20 b | 0.01 ± 0.0001 b | *** |
Zahaf | 0.11 ± 0.08 ab | nd | *** | 0.15 ± 0.01 a | 0.006 ± 0.01 a | *** |
Significance | *** | ns | *** | * | ||
Caffeic Acid | ||||||
UAE | CSE | Significance | ||||
Pizzuta | 0.08 ± 0.01ab | nd | *** | |||
Fascionello | nd | nd | ||||
Romana | 0.02 ± 0.01 a | nd | *** | |||
Achaak | 0.17 ± 0.01 b | nd | *** | |||
Fakhfekh | 0.17 ± 0.05 b | nd | *** | |||
Laurane | nd | nd | ||||
Zahaf | nd | nd | ||||
Significance | *** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kahlaoui, M.; Borotto Dalla Vecchia, S.; Giovine, F.; Ben Haj Kbaier, H.; Bouzouita, N.; Barbosa Pereira, L.; Zeppa, G. Characterization of Polyphenolic Compounds Extracted from Different Varieties of Almond Hulls (Prunus dulcis L.). Antioxidants 2019, 8, 647. https://doi.org/10.3390/antiox8120647
Kahlaoui M, Borotto Dalla Vecchia S, Giovine F, Ben Haj Kbaier H, Bouzouita N, Barbosa Pereira L, Zeppa G. Characterization of Polyphenolic Compounds Extracted from Different Varieties of Almond Hulls (Prunus dulcis L.). Antioxidants. 2019; 8(12):647. https://doi.org/10.3390/antiox8120647
Chicago/Turabian StyleKahlaoui, Maher, Stefania Borotto Dalla Vecchia, Francesco Giovine, Hayet Ben Haj Kbaier, Nabiha Bouzouita, Letricia Barbosa Pereira, and Giuseppe Zeppa. 2019. "Characterization of Polyphenolic Compounds Extracted from Different Varieties of Almond Hulls (Prunus dulcis L.)" Antioxidants 8, no. 12: 647. https://doi.org/10.3390/antiox8120647
APA StyleKahlaoui, M., Borotto Dalla Vecchia, S., Giovine, F., Ben Haj Kbaier, H., Bouzouita, N., Barbosa Pereira, L., & Zeppa, G. (2019). Characterization of Polyphenolic Compounds Extracted from Different Varieties of Almond Hulls (Prunus dulcis L.). Antioxidants, 8(12), 647. https://doi.org/10.3390/antiox8120647