Comprehensive Evaluation of the Postharvest Antioxidant Capacity of Majiayou Pomelo Harvested at Different Maturities Based on PCA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experiment Design and Storage Conditions
2.3. Determination of Antioxidant Components
2.3.1. Ascorbic Acid Assay
2.3.2. Lycopene and Carotenoids Assay
2.3.3. The Total Phenolic and Total Flavonoid Contents Assay
2.4. Enzyme Extraction and Activity Assays
2.4.1. SOD, POD, and CAT Activity Assays
2.4.2. APX Activity Assay
2.5. Assessment of Antioxidant Capacity
2.5.1. Antioxidants Extraction
2.5.2. DPPH Radical Scavenging Assay
2.5.3. Superoxide Radical Scavenging Assay
2.5.4. Hydroxyl radicals scavenging assay
2.5.5. Ferric-Reducing Antioxidant Power Assay
2.6. Statistical Analysis
3. Results
3.1. Changes of the Antioxidant Components of MP
3.2. Changes of Antioxidant Enzyme of MP
3.3. Changes of the Antioxidant Capacity of MP
3.4. Correlation Analysis of Different Indexes of MP
3.5. PCA on the Postharvest Antioxidant Capacity of MP
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cao, L.X. The Investigation of Pummelo Germplasms and the Origin Analysis of Majiayou in Guangfeng, Jiangxi Province. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2012. [Google Scholar]
- Yu, J.T. Study on the Development of Famous and Special Agricultural Products in Jiangxi Province—Above Example of Raomajia Grapefruit. Master’s Thesis, Nanchang University, Nanchang, China, 2018. [Google Scholar]
- Liu, S.Z.; Jiang, Y.L.; Li, X.M.; Zhang, Z.Q.; Hu, W.R. Research progress in postharvest physiology and storage technology of pomelo fruit. Food Sci. 2010, 31, 394–399. [Google Scholar] [CrossRef]
- Ding, X.; Guo, L.; Zhang, Y.; Fan, S.; Gu, M.; Lu, Y.; Jiang, D.; Li, Y.; Huang, C.; Zhou, Z. Extracts of pomelo peels prevent high-fat diet-induced metabolic disorders in c57bl/6 mice through activating the PPARalpha and GLUT4 pathway. PLoS ONE 2013, 8, e77915. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.; Lim, J.W.; Kim, H. Lycopene inhibits reactive oxygen species-mediated NF-κB signaling and induces apoptosis in pancreatic cancer cells. Nutrients 2019, 11, 762. [Google Scholar] [CrossRef]
- Lim, H.K.; Moon, J.Y.; Kim, H.; Cho, M.; Cho, S.K. Induction of apoptosis in U937 human leukaemia cells by the hexane fraction of an extract of immature Citrus grandis Osbeck fruits. Food Chem. 2009, 114, 1245–1250. [Google Scholar] [CrossRef]
- Mokbel, M.S.; Hashinaga, F. Evaluation of the antioxidant activity of extracts from buntan (Citrus grandis Osbeck) fruit tissues. Food Chem. 2006, 94, 529–534. [Google Scholar] [CrossRef]
- Xu, J.; Deng, X.X. Red juice sac of citrus and its main pigments. J. Fruit Sci. 2002, 19, 307–313. [Google Scholar] [CrossRef]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Chen, S.W.; Hsu, M.C.; Fang, H.H.; Tsai, S.H.; Liang, Y.S. Effect of harvest season, maturity and storage temperature on storability of carambola ‘Honglong’ fruit. Sci. Hortic. 2017, 220, 42–51. [Google Scholar] [CrossRef]
- Ceccarelli, A.; Farneti, B.; Frisina, C.; Allen, D.; Donati, I.; Cellini, A.; Costa, G.; Spinelli, F.; Stefanelli, D. Harvest maturity stage and cold storage length influence on flavour development in peach fruit. Agronomy 2018, 9, 10. [Google Scholar] [CrossRef]
- Elena, G.M.; Moreno, D.A.; Cristina, G.V. Genotype and harvest time influence the phytochemical quality of Fino lemon juice (Citrus limon (L.) Burm. F.) for industrial use. J. Agric. Food Chem. 2008, 56, 1669–1675. [Google Scholar] [CrossRef]
- Huang, X.M.; Wang, H.C.; Yuan, W.Q.; Lu, J.M.; Yin, J.H. A study of rapid senescence of detached litchi: roles of water loss and calcium. Postharvest Biol. Tech. 2005, 36, 177–189. [Google Scholar] [CrossRef]
- Valero, D.; Guillén, F.; Martínezromero, D.; Castillo, S.; Zapata, P.J.; Díazmula, H.M.; Serrano, M. The quality and antioxidant capacity during storage of sweet cherries are affected by ripening stage at harvest. Acta Hortic. 2010, 880, 57–64. [Google Scholar] [CrossRef]
- Moore, B. Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Trans. Autom. Control 2003, 26, 17–32. [Google Scholar] [CrossRef]
- Liu, H.F.; Wu, B.H.; Fan, P.G.; Li, S.H.; Li, L.S. Sugar and acid concentrations in 98 grape cultivars analyzed by principal component analysis. J. Sci. Food Agric. 2006, 86, 1526–1536. [Google Scholar] [CrossRef]
- Wu, B.; Quilot, B.; Kervella, J.; Génard, M.; Li, S. Analysis of genotypic variation of sugar and acid contents in peaches and nectarines through the Principle Component Analysis. Euphytica 2003, 132, 375–384. [Google Scholar] [CrossRef]
- Soufleros, E.H.; Pissa, I.; Petridis, D.; Lygerakis, M.; Mermelas, K.; Boukouvalas, G.; Tsimitakis, E. Instrumental analysis of volatile and other compounds of Greek kiwi wine; sensory evaluation and optimisation of its composition. Food Chem. 2001, 75, 487–500. [Google Scholar] [CrossRef]
- Cheong, M.W.; Shao, Q.L.; Zhou, W.; Curran, P.; Yub, B. Chemical composition and sensory profile of pomelo (Citrus grandis (L.) Osbeck) juice. Food Chem. 2012, 135, 2505–2513. [Google Scholar] [CrossRef]
- Akah, N.P.; Onweluzo, J.C. Evaluation of water-soluble vitamins and optimum cooking time of fresh edible portions of elephant grass (Pennisetum purpureum L. Schumach) shoot. Nig. Food J. 2014, 32, 120–127. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, L.F.; Xu, X.Y.; Pan, S.Y. Optimization of lycopene extraction from red grapefruit by response surface methodology. Food Sci. 2010, 31, 255–259. [Google Scholar] [CrossRef]
- Martínez-Valverde, I.; Periago, M.J.; Provan, G.; Chesson, A. Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersium esculentum). J. Sci. Food Agric. 2002, 82, 323–330. [Google Scholar] [CrossRef]
- Lee, H.S. Characterization of carotenoids in juice of red navel orange (Cara Cara). J. Agric. Food Chem. 2001, 49, 2563–2568. [Google Scholar] [CrossRef] [PubMed]
- Goulas, V.; Manganaris, G.A. Exploring the phytochemical content and the antioxidant potential of Citrus fruits grown in Cyprus. Food Chem. 2012, 131, 39–47. [Google Scholar] [CrossRef]
- Wang, Y.C.; Chuang, Y.C.; Hsu, H.W. The flavonoid, carotenoid and pectin content in peels of citrus cultivated in Taiwan. Food Chem. 2008, 106, 277–284. [Google Scholar] [CrossRef]
- Pasquariello, M.S.; Patre, D.D.; Mastrobuoni, F.; Zampella, L.; Scortichini, M.; Petriccione, M. Influence of postharvest chitosan treatment on enzymatic browning and antioxidant enzyme activity in sweet cherry fruit. Postharvest Biol. Tech. 2015, 109, 45–56. [Google Scholar] [CrossRef]
- Amako, K.; Chen, G.X.; Asada, K. Separate Assays Specific for Ascorbate Peroxidase and Guaiacol Peroxidase and for the Chloroplastic and Cytosolic Isozymes of Ascorbate Peroxidase in Plants. Plant Cell Physiol. 1994, 35, 497–504. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Takamura, H.; Matoba, T.; Terao, J. HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1-diphenyl-2-picrylhydrazyl. Biosci. Biotech. Bioch. 1998, 62, 1201–1204. [Google Scholar] [CrossRef]
- Li, X. Improved pyrogallol autoxidation method: a reliable and cheap superoxide-scavenging assay suitable for all antioxidants. J. Agric. Food Chem. 2012, 60, 6418. [Google Scholar] [CrossRef]
- Chang, C.Y.; Hsieh, Y.H.; Cheng, K.Y.; Hsieh, L.L.; Cheng, T.C.; Yao, K.S. Effect of pH on Fenton process using estimation of hydroxyl radical with salicylic acid as trapping reagent. Water Sci. Tech. 2008, 58, 873–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Chang, J.; Ma, Q.; Chen, L.; Liu, S.; Jin, S.; Han, J.; Xu, R.; Zhu, A.; Guo, J. Network analysis of postharvest senescence process in citrus fruits revealed by transcriptomic and metabolomic profiling. Plant Physiol. 2015, 168, 357. [Google Scholar] [CrossRef]
- Silalahi, J. Anticancer and health protective properties of citrus fruit components. Asia Pac. J. Clin. Nutr. 2002, 11, 79–84. [Google Scholar] [CrossRef]
- Xu, J.; Deng, X.X. Identification of main pigments in red flesh Navel Orange (Citrus sinensis L.) and evaluation of their concentration changes during fruit development and storage. Acta Hortic. Sin. 2002, 29, 203–208. [Google Scholar] [CrossRef]
- Doshi, P.J.; Adsule, P.G. Effect of storage on physicochemical parameters, phenolic compounds and antioxidant activity in grapes. Acta Hortic. 2008, 785, 447–456. [Google Scholar] [CrossRef]
- Yu, J.; Hou, S.; Wu, H.; Zhang, Z.; Lv, Z.; Zhou, Z. Phenolic compositions and antioxidant capacity of the fruit pulp of popular pomelo cultivars in chongqing. Food Sci. 2016, 37, 83–88. [Google Scholar] [CrossRef]
- Seel, W.; Hendry, G.; Atherton, N.; Lee, J. Radical formation and accumulation in vivo, in desiccation tolerant and intolerant mosses. Free Rad. Res. Commun. 1991, 15, 133–141. [Google Scholar] [CrossRef]
- Gardner, P.T.; White, T.A.C.; McPhail, D.B.; Duthie, G.G. The relative contributions of vitamin C, carotenoids and phenolics to the antioxidant potential of fruit juices. Food Chem. 2000, 68, 471–474. [Google Scholar] [CrossRef]
- Vera-Guzmána, A.M.; Aispuro-Hernándeza, E.; Vargas-Arispuroa, I.; Islas-Osunaa, M.A.; Martínez-Télleza, M.Á. Expression of antioxidant-related genes in flavedo of cold-stored grapefruit (Citrus paradisi Macfad cv. Rio Red) treated with pectic oligosaccharides. Sci. Hortic. 2019, 243, 274–280. [Google Scholar] [CrossRef]
- Ahmadiafzadi, M.; Tahir, I.; Nybom, H. Impact of harvesting time and fruit firmness on the tolerance to fungal storage diseases in an apple germplasm collection. Postharvest Biol. Tech. 2013, 82, 51–58. [Google Scholar] [CrossRef]
- Hossain, M.B.; Patras, A.; Barry-Ryan, C.; Martin-Diana, A.B.; Brunton, N.P. Application of principal component and hierarchical cluster analysis to classify different spices based on in vitro antioxidant activity and individual polyphenolic antioxidant compounds. J. Funct. Foods 2011, 3, 179–189. [Google Scholar] [CrossRef] [Green Version]
- Patras, A.; Brunton, N.P.; Downey, G.; Rawson, A.; Warriner, K.; Gernigon, G. Application of principal component and hierarchical cluster analysis to classify fruits and vegetables commonly consumed in Ireland based on in vitro antioxidant activity. J. Food Compos. Anal. 2011, 24, 250–256. [Google Scholar] [CrossRef]
Principal Component | Characteristic Value | Variance Contribution Rate (%) | The Cumulative Variance Contribution (%) |
---|---|---|---|
1 | 5.866 | 45.124 | 45.124 |
2 | 3.933 | 30.256 | 75.381 |
3 | 1.333 | 10.252 | 85.633 |
Standardized Code Name | Indexes | Principal Components | ||
---|---|---|---|---|
1 | 2 | 3 | ||
X1 | Ascorbic acid | 0.844 | 0.458 | −0.130 |
X2 | Lycopene | 0.868 | 0.380 | 0.117 |
X3 | Carotenoid | 0.382 | 0.858 | −0.032 |
X4 | Total phenols | 0.436 | 0.856 | 0.160 |
X5 | Total flavonoids | −0.234 | 0.562 | 0.699 |
X6 | SOD | 0.448 | −0.153 | 0.809 |
X7 | POD | 0.317 | 0.858 | −0.137 |
X8 | CAT | 0.583 | 0.737 | −0.155 |
X9 | APX | 0.932 | 0.245 | 0.028 |
X10 | DPPH scavenging capacity | 0.855 | 0.270 | 0.026 |
X11 | •OH scavenging capacity | 0.931 | 0.118 | 0.203 |
X12 | O2−• scavenging capacity | 0.947 | 0.229 | 0.123 |
X13 | FRAP | 0.054 | 0.539 | 0.179 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, Z.; Wan, C.; Chen, C.; Chen, J. Comprehensive Evaluation of the Postharvest Antioxidant Capacity of Majiayou Pomelo Harvested at Different Maturities Based on PCA. Antioxidants 2019, 8, 136. https://doi.org/10.3390/antiox8050136
Nie Z, Wan C, Chen C, Chen J. Comprehensive Evaluation of the Postharvest Antioxidant Capacity of Majiayou Pomelo Harvested at Different Maturities Based on PCA. Antioxidants. 2019; 8(5):136. https://doi.org/10.3390/antiox8050136
Chicago/Turabian StyleNie, Zhengpeng, Chunpeng Wan, Chuying Chen, and Jinyin Chen. 2019. "Comprehensive Evaluation of the Postharvest Antioxidant Capacity of Majiayou Pomelo Harvested at Different Maturities Based on PCA" Antioxidants 8, no. 5: 136. https://doi.org/10.3390/antiox8050136
APA StyleNie, Z., Wan, C., Chen, C., & Chen, J. (2019). Comprehensive Evaluation of the Postharvest Antioxidant Capacity of Majiayou Pomelo Harvested at Different Maturities Based on PCA. Antioxidants, 8(5), 136. https://doi.org/10.3390/antiox8050136