Molecular Mechanisms of Zinc as a Pro-Antioxidant Mediator: Clinical Therapeutic Implications
Abstract
:1. Introduction
2. Physiological and Biological Functions of Zinc
3. Immunological Functions of Zinc
4. ROS, Oxidative Stress, and Inflammatory Response
5. Zinc as an Anti-Oxidative Stress and Anti-Inflammatory Agent
6. Molecular Mechanisms of Zinc as an Anti-Oxidative Stress Agent
6.1. NF-κB
6.2. A20
6.3. TTP
6.4. PPAR
6.5. Nrf2
6.6. HNF-4α
6.7. KRAB Proteins
6.8. MT and MTF-1
7. Applications of Zinc Supplement as a Pro-Antioxidant Mediator in Human Health
7.1. Normal Adult Subjects
7.2. Elderly Subjects
7.3. Age-Related Macular Degeneration Disease
7.4. Sickle Cell Anemia
7.5. Diabetes Mellitus
7.6. Alcohol-Related Liver Disease
8. Conclusions and Perspectives
Funding
Conflicts of Interest
References
- Prasad, A.S.; Miale, A., Jr.; Farid, Z.; Sandstead, H.H.; Schulert, A.R. Zinc Metabolism in Patients with the Syndrome of Iron Deficiency Anemia, Hepatosplenomegaly, Dwarfism, and Hypognadism. J. Lab. Clin. Med. 1963, 61, 537–549. [Google Scholar] [PubMed]
- Motadi, S.A.; Mbhenyane, X.G.; Mbhatsani, H.V.; Mabapa, N.S.; Mamabolo, R.L. Prevalence of Iron and Zinc Deficiencies Among Preschool Children Ages 3 to 5 y in Vhembe District, Limpopo Province, South Africa. Nutrition 2015, 31, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, M.; Safdarian, F.; Zakeri, M.; Zare, S. The Prevalence of Zinc Deficiency in 6-Month to 12-Year Old Children in Bandar Abbas in 2013. Electron. Physician 2017, 9, 5088–5091. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S.; Beck, F.W.; Snell, D.C.; Kucuk, O. Zinc in Cancer Prevention. Nutr. Cancer 2009, 61, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S.; Fitzgerald, J.T.; Hess, J.W.; Kaplan, J.; Pelen, F.; Dardenne, M. Zinc Deficiency in Elderly Patients. Nutrition 1993, 9, 218–224. [Google Scholar]
- Prasad, A.S.; Beck, F.W.; Bao, B.; Fitzgerald, J.T.; Snell, D.C.; Steinberg, J.D.; Cardozo, L.J. Zinc Supplementation Decreases Incidence of Infections in the Elderly: Effect of Zinc on Generation of Cytokines and Oxidative Stress. Am. J. Clin. Nutr. 2007, 85, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Bao, B.; Prasad, A.S.; Beck, F.W.; Fitzgerald, J.T.; Snell, D.; Bao, G.W.; Singh, T.; Cardozo, L.J. Zinc Decreases C-Reactive Protein, Lipid Peroxidation, and Inflammatory Cytokines in Elderly Subjects: A Potential Implication of Zinc As an Atheroprotective Agent. Am. J. Clin. Nutr. 2010, 91, 1634–1641. [Google Scholar] [CrossRef]
- Prasad, A.S. Zinc in Growth and Development and Spectrum of Human Zinc Deficiency. J. Am. Coll. Nutr. 1988, 7, 377–384. [Google Scholar] [CrossRef]
- Prasad, A.S. Impact of the Discovery of Human Zinc Deficiency on Health. J. Am. Coll. Nutr. 2009, 28, 257–265. [Google Scholar] [CrossRef]
- Ahmad, W.M.; Bdul Hamid, F.S.; Boul-Khair, M.R. Zinc in Human Health and Disease. Ric. Clin. Lab. 1988, 18, 9–16. [Google Scholar]
- Kelleher, S.L.; Seo, Y.A.; Lopez, V. Mammary Gland Zinc Metabolism: Regulation and Dysregulation. Genes Nutr. 2009, 4, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Kloubert, V.; Rink, L. Zinc As a Micronutrient and Its Preventive Role of Oxidative Damage in Cells. Food Funct. 2015, 6, 3195–3204. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, L.D.; Shalhoub, R.J.; Schechter, G.P. The Effect of Zinc on Cellular Immunity in Chronic Uremia. Am. J. Clin. Nutr. 1981, 34, 1912–1917. [Google Scholar] [CrossRef] [PubMed]
- Fraker, P.J.; Gershwin, M.E.; Good, R.A.; Prasad, A. Interrelationships between Zinc and Immune Function. Fed. Proc. 1986, 45, 1474–1479. [Google Scholar] [PubMed]
- Prasad, A.S.; Dardenne, M.; Abdallah, J.; Meftah, S.; Brewer, G.J.; Bach, J.F. Serum Thymulin and Zinc Deficiency in Humans. Trans. Assoc. Am. Physicians 1987, 100, 222–231. [Google Scholar] [CrossRef]
- Prasad, A.S.; Meftah, S.; Abdallah, J.; Kaplan, J.; Brewer, G.J.; Bach, J.F.; Dardenne, M. Serum Thymulin in Human Zinc Deficiency. J. Clin. Investig. 1988, 82, 1202–1210. [Google Scholar] [CrossRef]
- Bao, B.; Prasad, A.S.; Beck, F.W.; Bao, G.W.; Singh, T.; Ali, S.; Sarkar, F.H. Intracellular Free Zinc Up-Regulates IFN-Gamma and T-Bet Essential for Th1 Differentiation in Con-A Stimulated HUT-78 Cells. Biochem. Biophys. Res. Commun. 2011, 407, 703–707. [Google Scholar] [CrossRef]
- Prasad, A.S.; Bao, B.; Beck, F.W.; Sarkar, F.H. Zinc Activates NF-KappaB in HUT-78 Cells. J. Lab. Clin. Med. 2001, 138, 250–256. [Google Scholar] [CrossRef]
- Prasad, A.S.; Bao, B.; Beck, F.W.; Sarkar, F.H. Zinc Enhances the Expression of Interleukin-2 and Interleukin-2 Receptors in HUT-78 Cells by Way of NF-KappaB Activation. J. Lab. Clin. Med. 2002, 140, 272–289. [Google Scholar] [CrossRef]
- Falchuk, K.H. The Molecular Basis for the Role of Zinc in Developmental Biology. In Molecular and Cellular Effects of Nutrition on Disease Processes; Springer: Boston, MA, USA, 1998; pp. 41–48. [Google Scholar]
- Wellinghausen, N.; Rink, L. The Significance of Zinc for Leukocyte Biology. J. Leukoc. Biol. 1998, 64, 571–577. [Google Scholar] [CrossRef]
- Han, D.; Antunes, F.; Canali, R.; Rettori, D.; Cadenas, E. Voltage-Dependent Anion Channels Control the Release of the Superoxide Anion from Mitochondria to Cytosol. J. Biol. Chem. 2003, 278, 5557–5563. [Google Scholar] [CrossRef] [PubMed]
- Schafer, F.Q.; Buettner, G.R. Redox Environment of the Cell As Viewed Through the Redox State of the Glutathione Disulfide/Glutathione Couple. Free Radic. Biol. Med. 2001, 30, 1191–1212. [Google Scholar] [CrossRef]
- Lushchak, V.I. Free Radicals, Reactive Oxygen Species, Oxidative Stress and Its Classification. Chem. Biol. Interact. 2014, 224, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Castro, L.; Alvarez, M.N.; Radi, R. Modulatory Role of Nitric Oxide on Superoxide-Dependent Luminol Chemiluminescence. Arch. Biochem. Biophys. 1996, 333, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Castro, L.; Freeman, B.A. Reactive Oxygen Species in Human Health and Disease. Nutrition 2001, 2, 161–165. [Google Scholar] [CrossRef]
- Lachance, P.A.; Nakat, Z.; Jeong, W.S. Antioxidants: An Integrative Approach. Nutrition 2001, 17, 835–838. [Google Scholar] [CrossRef]
- Landmesser, U.; Harrison, D.G. Oxidative Stress and Vascular Damage in Hypertension. Coron. Artery Dis. 2001, 12, 455–461. [Google Scholar] [CrossRef] [PubMed]
- DeCoursey, T.E.; Morgan, D.; Cherny, V.V. The Voltage Dependence of NADPH Oxidase Reveals Why Phagocytes Need Proton Channels. Nature 2003, 422, 531–534. [Google Scholar] [CrossRef]
- Touyz, R.M. Reactive Oxygen Species and Angiotensin II Signaling in Vascular Cells—Implications in Cardiovascular Disease. Braz. J. Med. Biol. Res. 2004, 37, 1263–1273. [Google Scholar] [CrossRef]
- Forman, H.J.; Torres, M. Reactive Oxygen Species and Cell Signaling: Respiratory Burst in Macrophage Signaling. Am. J. Respir. Crit. Care Med. 2002, 166, S4–S8. [Google Scholar] [CrossRef] [PubMed]
- Zalba, G.; San, J.G.; Moreno, M.U.; Fortuno, M.A.; Fortuno, A.; Beaumont, F.J.; Diez, J. Oxidative Stress in Arterial Hypertension: Role of NAD(P)H Oxidase. Hypertension 2001, 38, 1395–1399. [Google Scholar] [CrossRef] [PubMed]
- Grivennikov, S.I.; Karin, M. Inflammation and Oncogenesis: A Vicious Connection. Curr. Opin. Genet. Dev. 2010, 20, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Hansson, G.K. Inflammation, Atherosclerosis, and Coronary Artery Disease. N. Engl. J. Med. 2005, 352, 1685–1695. [Google Scholar] [CrossRef] [PubMed]
- Khatami, M. Inflammation, Aging, and Cancer: Tumoricidal Versus Tumorigenesis of Immunity: A Common Denominator Mapping Chronic Diseases. Cell Biochem. Biophys. 2009, 55, 55–79. [Google Scholar] [CrossRef] [PubMed]
- Koh, K.K.; Han, S.H.; Quon, M.J. Inflammatory Markers and the Metabolic Syndrome: Insights from Therapeutic Interventions. J. Am. Coll. Cardiol. 2005, 46, 1978–1985. [Google Scholar] [CrossRef] [PubMed]
- Sutcliffe, S.; Platz, E.A. Inflammation in the Etiology of Prostate Cancer: An Epidemiologic Perspective. Urol. Oncol. 2007, 25, 242–249. [Google Scholar] [CrossRef]
- Fleshner, N.E.; Klotz, L.H. Diet, Androgens, Oxidative Stress and Prostate Cancer Susceptibility. Cancer Metastasis Rev. 1998, 17, 325–330. [Google Scholar] [CrossRef]
- Minelli, A.; Bellezza, I.; Conte, C.; Culig, Z. Oxidative Stress-Related Aging: A Role for Prostate Cancer? Biochim. Biophys. Acta 2009, 1795, 83–91. [Google Scholar] [CrossRef]
- Khandrika, L.; Kumar, B.; Koul, S.; Maroni, P.; Koul, H.K. Oxidative Stress in Prostate Cancer. Cancer Lett. 2009, 282, 125–136. [Google Scholar] [CrossRef]
- Maret, W. The Redox Biology of Redox-Inert Zinc Ions. Free Radic. Biol. Med. 2019, 134, 311–326. [Google Scholar] [CrossRef]
- Lee, S.R. Critical Role of Zinc As Either an Antioxidant or a Prooxidant in Cellular Systems. Oxid. Med. Cell. Longev. 2018, 2018, 9156285. [Google Scholar] [CrossRef]
- Andrews, G.K. Regulation of Metallothionein Gene Expression by Oxidative Stress and Metal Ions. Biochem. Pharmacol. 2000, 59, 95–104. [Google Scholar] [CrossRef]
- Kagi, J.H.; Schaffer, A. Biochemistry of Metallothionein. Biochemistry 1988, 27, 8509–8515. [Google Scholar] [CrossRef]
- Prasad, A.S. Clinical, Immunological, Anti-Inflammatory and Antioxidant Roles of Zinc. Exp. Gerontol. 2008, 43, 370–377. [Google Scholar] [CrossRef]
- Ho, E.; Ames, B.N. Low Intracellular Zinc Induces Oxidative DNA Damage, Disrupts P53, NFkappa B, and AP1 DNA Binding, and Affects DNA Repair in a Rat Glioma Cell Line. Proc. Natl. Acad. Sci. USA 2002, 99, 16770–16775. [Google Scholar] [CrossRef]
- Ho, E.; Courtemanche, C.; Ames, B.N. Zinc Deficiency Induces Oxidative DNA Damage and Increases P53 Expression in Human Lung Fibroblasts. J. Nutr. 2003, 133, 2543–2548. [Google Scholar] [CrossRef]
- Ho, E.; Quan, N.; Tsai, Y.H.; Lai, W.; Bray, T.M. Dietary Zinc Supplementation Inhibits NFkappaB Activation and Protects Against Chemically Induced Diabetes in CD1 Mice. Exp. Biol. Med. 2001, 226, 103–111. [Google Scholar] [CrossRef]
- Hennig, B.; Meerarani, P.; Toborek, M.; McClain, C.J. Antioxidant-Like Properties of Zinc in Activated Endothelial Cells. J. Am. Coll. Nutr. 1999, 18, 152–158. [Google Scholar] [CrossRef]
- Yousef, M.I.; El-Hendy, H.A.; El-Demerdash, F.M.; Elagamy, E.I. Dietary Zinc Deficiency Induced-Changes in the Activity of Enzymes and the Levels of Free Radicals, Lipids and Protein Electrophoretic Behavior in Growing Rats. Toxicology 2002, 175, 223–234. [Google Scholar] [CrossRef]
- Candan, F.; Gultekin, F.; Candan, F. Effect of Vitamin C and Zinc on Osmotic Fragility and Lipid Peroxidation in Zinc-Deficient Haemodialysis Patients. Cell Biochem. Funct. 2002, 20, 95–98. [Google Scholar] [CrossRef]
- Roussel, A.M.; Kerkeni, A.; Zouari, N.; Mahjoub, S.; Matheau, J.M.; Anderson, R.A. Antioxidant Effects of Zinc Supplementation in Tunisians with Type 2 Diabetes Mellitus. J. Am. Coll. Nutr. 2003, 22, 316–321. [Google Scholar] [CrossRef]
- Hopkins, M.H.; Fedirko, V.; Jones, D.P.; Terry, P.D.; Bostick, R.M. Antioxidant Micronutrients and Biomarkers of Oxidative Stress and Inflammation in Colorectal Adenoma Patients: Results from a Randomized, Controlled Clinical Trial. Cancer Epidemiol. Biomark. Prev. 2010, 19, 850–858. [Google Scholar] [CrossRef] [Green Version]
- Dimitrova, A.A.; Strashimirov, D.S.; Russeva, A.L.; Andreeva-Gateva, P.A.; Lakova, E.T.; Tzachev, K.N. Effect of Zinc on the Activity of Cu/Zn Superoxide Dismutase and Lipid Profile in Wistar Rats. Folia Med. 2005, 47, 42–46. [Google Scholar]
- Goel, A.; Dani, V.; Dhawan, D.K. Protective Effects of Zinc on Lipid Peroxidation, Antioxidant Enzymes and Hepatic Histoarchitecture in Chlorpyrifos-Induced Toxicity. Chem. Biol. Interact. 2005, 156, 131–140. [Google Scholar] [CrossRef]
- Vallabhapurapu, S.; Karin, M. Regulation and Function of NF-KappaB Transcription Factors in the Immune System. Annu. Rev. Immunol. 2009, 27, 693–733. [Google Scholar] [CrossRef]
- Barnes, P.J. Nuclear Factor-Kappa, B. Int. J. Biochem. Cell Biol. 1997, 29, 867–870. [Google Scholar] [CrossRef]
- Perkins, N.D. Achieving Transcriptional Specificity with NF-Kappa, B. Int. J. Biochem. Cell Biol. 1997, 29, 1433–1448. [Google Scholar] [CrossRef]
- Baldwin, A.S., Jr. The NF-Kappa B and I Kappa B Proteins: New Discoveries and Insights. Annu. Rev. Immunol. 1996, 14, 649–683. [Google Scholar] [CrossRef]
- Oeckinghaus, A.; Ghosh, S. The NF-KappaB Family of Transcription Factors and Its Regulation. Cold Spring Harb. Perspect. Biol. 2009, 1, a000034. [Google Scholar] [CrossRef]
- Prasad, A.S. Zinc Is an Antioxidant and Anti-Inflammatory Agent: Its Role in Human Health. Front. Nutr. 2014, 1, 14. [Google Scholar] [CrossRef]
- Vasto, S.; Mocchegiani, E.; Malavolta, M.; Cuppari, I.; Listi, F.; Nuzzo, D.; Ditta, V.; Candore, G.; Caruso, C. Zinc and Inflammatory/Immune Response in Aging. Ann. N. Y. Acad. Sci. 2007, 1100, 111–122. [Google Scholar] [CrossRef]
- Otsuka, M.; Fujita, M.; Aoki, T.; Ishii, S.; Sugiura, Y.; Yamamoto, T.; Inoue, J. Novel Zinc Chelators with Dual Activity in the Inhibition of the Kappa B Site-Binding Proteins HIV-EP1 and NF-Kappa, B. J. Med. Chem. 1995, 38, 3264–3270. [Google Scholar] [CrossRef]
- Zabel, U.; Schreck, R.; Baeuerle, P.A. DNA Binding of Purified Transcription Factor NF-Kappa, B. Affinity, Specificity, Zn2+ Dependence, and Differential Half-Site Recognition. J. Biol. Chem. 1991, 266, 252–260. [Google Scholar]
- Oteiza, P.I.; Clegg, M.S.; Keen, C.L. Short-Term Zinc Deficiency Affects Nuclear Factor-Kappab Nuclear Binding Activity in Rat Testes. J. Nutr. 2001, 131, 21–26. [Google Scholar] [CrossRef]
- Bao, B.; Prasad, A.S.; Beck, F.W.; Snell, D.; Suneja, A.; Sarkar, F.H.; Doshi, N.; Fitzgerald, J.T.; Swerdlow, P. Zinc Supplementation Decreases Oxidative Stress, Incidence of Infection, and Generation of Inflammatory Cytokines in Sickle Cell Disease Patients. Transl. Res. 2008, 152, 67–80. [Google Scholar] [CrossRef]
- Connell, P.; Young, V.M.; Toborek, M.; Cohen, D.A.; Barve, S.; McClain, C.J.; Hennig, B. Zinc Attenuates Tumor Necrosis Factor-Mediated Activation of Transcription Factors in Endothelial Cells. J. Am. Coll. Nutr. 1997, 16, 411–417. [Google Scholar] [CrossRef]
- Prasad, A.S.; Bao, B.; Beck, F.W.; Kucuk, O.; Sarkar, F.H. Antioxidant Effect of Zinc in Humans. Free Radic. Biol. Med. 2004, 37, 1182–1190. [Google Scholar] [CrossRef]
- Prasad, A.S.; Bao, B.; Beck, F.W.; Sarkar, F.H. Zinc-Suppressed Inflammatory Cytokines by Induction of A20-Mediated Inhibition of Nuclear Factor-KappaB. Nutrition 2011, 27, 816–823. [Google Scholar] [CrossRef]
- Uzzo, R.G.; Leavis, P.; Hatch, W.; Gabai, V.L.; Dulin, N.; Zvartau, N.; Kolenko, V.M. Zinc Inhibits Nuclear Factor-Kappa B Activation and Sensitizes Prostate Cancer Cells to Cytotoxic Agents. Clin. Cancer Res. 2002, 8, 3579–3583. [Google Scholar]
- Uzzo, R.G.; Crispen, P.L.; Golovine, K.; Makhov, P.; Horwitz, E.M.; Kolenko, V.M. Diverse Effects of Zinc on NF-KappaB and AP-1 Transcription Factors: Implications for Prostate Cancer Progression. Carcinogenesis 2006, 27, 1980–1990. [Google Scholar] [CrossRef]
- Oteiza, P.I.; Clegg, M.S.; Zago, M.P.; Keen, C.L. Zinc Deficiency Induces Oxidative Stress and AP-1 Activation in 3T3 Cells. Free Radic. Biol. Med. 2000, 28, 1091–1099. [Google Scholar] [CrossRef]
- Heyninck, K.; Beyaert, R. The Cytokine-Inducible Zinc Finger Protein A20 Inhibits IL-1-Induced NF-KappaB Activation at the Level of TRAF6. FEBS Lett. 1999, 442, 147–150. [Google Scholar] [CrossRef]
- Jaattela, M.; Mouritzen, H.; Elling, F.; Bastholm, L. A20 Zinc Finger Protein Inhibits TNF and IL-1 Signaling. J. Immunol. 1996, 156, 1166–1173. [Google Scholar]
- Song, H.Y.; Rothe, M.; Goeddel, D.V. The Tumor Necrosis Factor-Inducible Zinc Finger Protein A20 Interacts with TRAF1/TRAF2 and Inhibits NF-KappaB Activation. Proc. Natl. Acad. Sci. USA 1996, 93, 6721–6725. [Google Scholar] [CrossRef]
- Lee, E.G.; Boone, D.L.; Chai, S.; Libby, S.L.; Chien, M.; Lodolce, J.P.; Ma, A. Failure to Regulate TNF-Induced NF-KappaB and Cell Death Responses in A20-Deficient Mice. Science 2000, 289, 2350–2354. [Google Scholar] [CrossRef]
- Beyaert, R.; Heyninck, K.; Van, H.S. A20 and A20-Binding Proteins As Cellular Inhibitors of Nuclear Factor-Kappa B-Dependent Gene Expression and Apoptosis. Biochem. Pharmacol. 2000, 60, 1143–1151. [Google Scholar] [CrossRef]
- Hymowitz, S.G.; Wertz, I.E. A20: From Ubiquitin Editing to Tumour Suppression. Nat. Rev. Cancer 2010, 10, 332–341. [Google Scholar] [CrossRef]
- Malynn, B.A.; Ma, A. A20 Takes on Tumors: Tumor Suppression by an Ubiquitin-Editing Enzyme. J. Exp. Med. 2009, 206, 977–980. [Google Scholar] [CrossRef]
- Kim, M.H.; Jeong, H.J. Zinc Oxide Nanoparticles Suppress LPS-Induced NF-KappaB Activation by Inducing A20, a Negative Regulator of NF-KappaB, in RAW 264.7 Macrophages. J. Nanosci. Nanotechnol. 2015, 15, 6509–6515. [Google Scholar] [CrossRef]
- Blackshear, P.J. Tristetraprolin and Other CCCH Tandem Zinc-Finger Proteins in the Regulation of MRNA Turnover. Biochem. Soc. Trans. 2002, 30, 945–952. [Google Scholar] [CrossRef]
- Brooks, S.A.; Blackshear, P.J. Tristetraprolin (TTP): Interactions with MRNA and Proteins, and Current Thoughts on Mechanisms of Action. Biochim. Biophys. Acta 2013, 1829, 666–679. [Google Scholar] [CrossRef]
- Kang, J.G.; Amar, M.J.; Remaley, A.T.; Kwon, J.; Blackshear, P.J.; Wang, P.Y.; Hwang, P.M. Zinc Finger Protein Tristetraprolin Interacts with CCL3 MRNA and Regulates Tissue Inflammation. J. Immunol. 2011, 187, 2696–2701. [Google Scholar] [CrossRef]
- Carrick, D.M.; Lai, W.S.; Blackshear, P.J. The Tandem CCCH Zinc Finger Protein Tristetraprolin and Its Relevance to Cytokine MRNA Turnover and Arthritis. Arthritis Res. Ther. 2004, 6, 248–264. [Google Scholar] [CrossRef]
- Carballo, E.; Lai, W.S.; Blackshear, P.J. Feedback Inhibition of Macrophage Tumor Necrosis Factor-Alpha Production by Tristetraprolin. Science 1998, 281, 1001–1005. [Google Scholar] [CrossRef]
- Carballo, E.; Gilkeson, G.S.; Blackshear, P.J. Bone Marrow Transplantation Reproduces the Tristetraprolin-Deficiency Syndrome in Recombination Activating Gene-2 (-/-) Mice. Evidence That Monocyte/Macrophage Progenitors May Be Responsible for TNFalpha Overproduction. J. Clin. Investig. 1997, 100, 986–995. [Google Scholar] [CrossRef]
- Taylor, G.A.; Carballo, E.; Lee, D.M.; Lai, W.S.; Thompson, M.J.; Patel, D.D.; Schenkman, D.I.; Gilkeson, G.S.; Broxmeyer, H.E.; Haynes, B.F.; et al. A Pathogenetic Role for TNF Alpha in the Syndrome of Cachexia, Arthritis, and Autoimmunity Resulting from Tristetraprolin (TTP) Deficiency. Immunity 1996, 4, 445–454. [Google Scholar] [CrossRef]
- Bollmann, F.; Wu, Z.; Oelze, M.; Siuda, D.; Xia, N.; Henke, J.; Daiber, A.; Li, H.; Stumpo, D.J.; Blackshear, P.J.; et al. Endothelial Dysfunction in Tristetraprolin-Deficient Mice Is Not Caused by Enhanced Tumor Necrosis Factor-Alpha Expression. J. Biol. Chem. 2014, 289, 15653–15665. [Google Scholar] [CrossRef]
- Carballo, E.; Blackshear, P.J. Roles of Tumor Necrosis Factor-Alpha Receptor Subtypes in the Pathogenesis of the Tristetraprolin-Deficiency Syndrome. Blood 2001, 98, 2389–2395. [Google Scholar] [CrossRef]
- Taylor, G.A.; Blackshear, P.J. Zinc Inhibits Turnover of Labile MRNAs in Intact Cells. J. Cell Physiol. 1995, 162, 378–387. [Google Scholar] [CrossRef]
- Blaschke, F.; Takata, Y.; Caglayan, E.; Law, R.E.; Hsueh, W.A. Obesity, Peroxisome Proliferator-Activated Receptor, and Atherosclerosis in Type 2 Diabetes. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 28–40. [Google Scholar] [CrossRef] [Green Version]
- Ceni, E.; Mello, T.; Galli, A. Pathogenesis of Alcoholic Liver Disease: Role of Oxidative Metabolism. World J. Gastroenterol. 2014, 20, 17756–17772. [Google Scholar] [CrossRef]
- Shen, H.; Oesterling, E.; Stromberg, A.; Toborek, M.; MacDonald, R.; Hennig, B. Zinc Deficiency Induces Vascular Pro-Inflammatory Parameters Associated with NF-KappaB and PPAR Signaling. J. Am. Coll. Nutr. 2008, 27, 577–587. [Google Scholar] [CrossRef]
- Jiang, C.; Ting, A.T.; Seed, B. PPAR-Gamma Agonists Inhibit Production of Monocyte Inflammatory Cytokines. Nature 1998, 391, 82–86. [Google Scholar] [CrossRef]
- Ricote, M.; Li, A.C.; Willson, T.M.; Kelly, C.J.; Glass, C.K. The Peroxisome Proliferator-Activated Receptor-Gamma Is a Negative Regulator of Macrophage Activation. Nature 1998, 391, 79–82. [Google Scholar] [CrossRef]
- Graham, T.L.; Mookherjee, C.; Suckling, K.E.; Palmer, C.N.; Patel, L. The PPARdelta Agonist GW0742X Reduces Atherosclerosis in LDLR(-/-) Mice. Atherosclerosis 2005, 181, 29–37. [Google Scholar] [CrossRef]
- Han, S.H.; Quon, M.J.; Koh, K.K. Beneficial Vascular and Metabolic Effects of Peroxisome Proliferator-Activated Receptor-Alpha Activators. Hypertension 2005, 46, 1086–1092. [Google Scholar] [CrossRef]
- Li, A.C.; Brown, K.K.; Silvestre, M.J.; Willson, T.M.; Palinski, W.; Glass, C.K. Peroxisome Proliferator-Activated Receptor Gamma Ligands Inhibit Development of Atherosclerosis in LDL Receptor-Deficient Mice. J. Clin. Investig. 2000, 106, 523–531. [Google Scholar] [CrossRef]
- Li, A.C.; Binder, C.J.; Gutierrez, A.; Brown, K.K.; Plotkin, C.R.; Pattison, J.W.; Valledor, A.F.; Davis, R.A.; Willson, T.M.; Witztum, J.L.; et al. Differential Inhibition of Macrophage Foam-Cell Formation and Atherosclerosis in Mice by PPARalpha, Beta/Delta, and Gamma. J. Clin. Investig. 2004, 114, 1564–1576. [Google Scholar] [CrossRef]
- Israelian-Konaraki, Z.; Reaven, P.D. Peroxisome Proliferator-Activated Receptor-Alpha and Atherosclerosis: From Basic Mechanisms to Clinical Implications. Cardiol. Rev. 2005, 13, 240–246. [Google Scholar] [CrossRef]
- Delerive, P.; De, B.K.; Besnard, S.; Vanden, B.W.; Peters, J.M.; Gonzalez, F.J.; Fruchart, J.C.; Tedgui, A.; Haegeman, G.; Staels, B. Peroxisome Proliferator-Activated Receptor Alpha Negatively Regulates the Vascular Inflammatory Gene Response by Negative Cross-Talk with Transcription Factors NF-KappaB and AP-1. J. Biol. Chem. 1999, 274, 32048–32054. [Google Scholar] [CrossRef]
- Meerarani, P.; Reiterer, G.; Toborek, M.; Hennig, B. Zinc Modulates PPARgamma Signaling and Activation of Porcine Endothelial Cells. J. Nutr. 2003, 133, 3058–3064. [Google Scholar] [CrossRef]
- Reiterer, G.; Toborek, M.; Hennig, B. Peroxisome Proliferator Activated Receptors Alpha and Gamma Require Zinc for Their Anti-Inflammatory Properties in Porcine Vascular Endothelial Cells. J. Nutr. 2004, 134, 1711–1715. [Google Scholar] [CrossRef]
- Alam, J.; Stewart, D.; Touchard, C.; Boinapally, S.; Choi, A.M.; Cook, J.L. Nrf2, a Cap’n’Collar Transcription Factor, Regulates Induction of the Heme Oxygenase-1 Gene. J. Biol. Chem. 1999, 274, 26071–26078. [Google Scholar] [CrossRef]
- Mastaloudis, A.; Wood, S.M. Age-Related Changes in Cellular Protection, Purification, and Inflammation-Related Gene Expression: Role of Dietary Phytonutrients. Ann. N. Y. Acad. Sci. 2012, 1259, 112–120. [Google Scholar] [CrossRef]
- Hybertson, B.M.; Gao, B.; Bose, S.K.; McCord, J.M. Oxidative Stress in Health and Disease: The Therapeutic Potential of Nrf2 Activation. Mol. Asp. Med. 2011, 32, 234–246. [Google Scholar] [CrossRef]
- Mehta, A.J.; Joshi, P.C.; Fan, X.; Brown, L.A.; Ritzenthaler, J.D.; Roman, J.; Guidot, D.M. Zinc Supplementation Restores PU.1 and Nrf2 Nuclear Binding in Alveolar Macrophages and Improves Redox Balance and Bacterial Clearance in the Lungs of Alcohol-Fed Rats. Alcohol Clin. Exp. Res. 2011, 35, 1519–1528. [Google Scholar] [CrossRef]
- Lee, J.H.; Khor, T.O.; Shu, L.; Su, Z.Y.; Fuentes, F.; Kong, A.N. Dietary Phytochemicals and Cancer Prevention: Nrf2 Signaling, Epigenetics, and Cell Death Mechanisms in Blocking Cancer Initiation and Progression. Pharmacol. Ther. 2013, 137, 153–171. [Google Scholar] [CrossRef]
- Zhou, S.; Ye, W.; Zhang, M.; Liang, J. The Effects of Nrf2 on Tumor Angiogenesis: A Review of the Possible Mechanisms of Action. Crit Rev. Eukaryot. Gene Expr. 2012, 22, 149–160. [Google Scholar] [CrossRef]
- Sinha, D.; Biswas, J.; Bishayee, A. Nrf2-Mediated Redox Signaling in Arsenic Carcinogenesis: A Review. Arch. Toxicol. 2013, 87, 383–396. [Google Scholar] [CrossRef]
- Zhao, Y.; Tan, Y.; Dai, J.; Li, B.; Guo, L.; Cui, J.; Wang, G.; Shi, X.; Zhang, X.; Mellen, N.; et al. Exacerbation of Diabetes-Induced Testicular Apoptosis by Zinc Deficiency Is Most Likely Associated with Oxidative Stress, P38 MAPK Activation, and P53 Activation in Mice. Toxicol. Lett. 2011, 200, 100–106. [Google Scholar] [CrossRef]
- Smith, A.F.; Loo, G. Upregulation of Haeme Oxygenase-1 by Zinc in HCT-116 Cells. Free Radic. Res. 2012, 46, 1099–1107. [Google Scholar] [CrossRef]
- Cortese, M.M.; Suschek, C.V.; Wetzel, W.; Kroncke, K.D.; Kolb-Bachofen, V. Zinc Protects Endothelial Cells from Hydrogen Peroxide Via Nrf2-Dependent Stimulation of Glutathione Biosynthesis. Free Radic. Biol. Med. 2008, 44, 2002–2012. [Google Scholar] [CrossRef]
- Schrem, H.; Klempnauer, J.; Borlak, J. Liver-Enriched Transcription Factors in Liver Function and Development. Part I: The Hepatocyte Nuclear Factor Network and Liver-Specific Gene Expression. Pharmacol. Rev. 2002, 54, 129–158. [Google Scholar] [CrossRef] [Green Version]
- Schaeffer, E.; Guillou, F.; Part, D.; Zakin, M.M. A Different Combination of Transcription Factors Modulates the Expression of the Human Transferrin Promoter in Liver and Sertoli Cells. J. Biol. Chem. 1993, 268, 23399–23408. [Google Scholar]
- Guo, H.; Wei, J.; Inoue, Y.; Gonzalez, F.J.; Kuo, P.C. Serine/Threonine Phosphorylation Regulates HNF-4alpha-Dependent Redox-Mediated INOS Expression in Hepatocytes. Am. J. Physiol. Cell Physiol. 2003, 284, C1090–C1099. [Google Scholar] [CrossRef]
- Kang, X.; Zhong, W.; Liu, J.; Song, Z.; McClain, C.J.; Kang, Y.J.; Zhou, Z. Zinc Supplementation Reverses Alcohol-Induced Steatosis in Mice Through Reactivating Hepatocyte Nuclear Factor-4alpha and Peroxisome Proliferator-Activated Receptor-Alpha. Hepatology 2009, 50, 1241–1250. [Google Scholar] [CrossRef]
- Zhou, Z. Zinc and Alcoholic Liver Disease. Dig. Dis. 2010, 28, 745–750. [Google Scholar] [CrossRef]
- Matsuo, S.; Ogawa, M.; Muckenthaler, M.U.; Mizui, Y.; Sasaki, S.; Fujimura, T.; Takizawa, M.; Ariga, N.; Ozaki, H.; Sakaguchi, M.; et al. Hepatocyte Nuclear Factor 4alpha Controls Iron Metabolism and Regulates Transferrin Receptor 2 in Mouse Liver. J. Biol. Chem. 2015, 290, 30855–30865. [Google Scholar] [CrossRef]
- Kang, Y.J.; Zhou, Z. Zinc Prevention and Treatment of Alcoholic Liver Disease. Mol. Asp. Med. 2005, 26, 391–404. [Google Scholar] [CrossRef]
- Bellefroid, E.J.; Poncelet, D.A.; Lecocq, P.J.; Revelant, O.; Martial, J.A. The Evolutionarily Conserved Kruppel-Associated Box Domain Defines a Subfamily of Eukaryotic Multifingered Proteins. Proc. Natl. Acad. Sci. USA 1991, 88, 3608–3612. [Google Scholar] [CrossRef]
- Urrutia, R. KRAB-Containing Zinc-Finger Repressor Proteins. Genome Biol. 2003, 4, 231–234. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, B.; Fan, X.; Wang, Y.; Tang, M.; Mo, X.; Li, Y.; Ying, Z.; Wan, Y.; Luo, N.; et al. ZNF552, a Novel Human KRAB/C2H2 Zinc Finger Protein, Inhibits AP-1- and SRE-Mediated Transcriptional Activity. BMB Rep. 2010, 43, 193–198. [Google Scholar] [CrossRef]
- Yang, H.; Yuan, W.; Wang, Y.; Zhu, C.; Liu, B.; Wang, Y.; Yang, D.; Li, Y.; Wang, C.; Wu, X.; et al. ZNF649, a Novel Kruppel Type Zinc-Finger Protein, Functions As a Transcriptional Suppressor. Biochem. Biophys. Res. Commun. 2005, 333, 206–215. [Google Scholar] [CrossRef]
- Ou, Y.; Wang, S.; Cai, Z.; Wang, Y.; Wang, C.; Li, Y.; Li, F.; Yuan, W.; Liu, B.; Wu, X.; et al. ZNF328, a Novel Human Zinc-Finger Protein, Suppresses Transcriptional Activities of SRE and AP-1. Biochem. Biophys. Res. Commun. 2005, 333, 1034–1044. [Google Scholar] [CrossRef]
- Juarez-Rebollar, D.; Rios, C.; Nava-Ruiz, C.; Mendez-Armenta, M. Metallothionein in Brain Disorders. Oxid. Med. Cell Longev. 2017, 2017, 5828056. [Google Scholar] [CrossRef]
- Kagi, J.H. Overview of Metallothionein. Methods Enzymol. 1991, 205, 613–626. [Google Scholar]
- Sharma, S.; Ebadi, M. Significance of Metallothioneins in Aging Brain. Neurochem. Int. 2014, 65, 40–48. [Google Scholar] [CrossRef]
- Thornalley, P.J.; Vasak, M. Possible Role for Metallothionein in Protection Against Radiation-Induced Oxidative Stress. Kinetics and Mechanism of Its Reaction with Superoxide and Hydroxyl Radicals. Biochim. Biophys. Acta 1985, 827, 36–44. [Google Scholar] [CrossRef]
- Abel, J.; de, R.N. Inhibition of Hydroxyl-Radical-Generated DNA Degradation by Metallothionein. Toxicol. Lett. 1989, 47, 191–196. [Google Scholar] [CrossRef]
- Thomas, J.P.; Bachowski, G.J.; Girotti, A.W. Inhibition of Cell Membrane Lipid Peroxidation by Cadmium- and Zinc-Metallothioneins. Biochim. Biophys. Acta 1986, 884, 448–461. [Google Scholar] [CrossRef]
- Asmussen, J.W.; Von Sperling, M.L.; Penkowa, M. Intraneuronal Signaling Pathways of Metallothionein. J. Neurosci. Res. 2009, 87, 2926–2936. [Google Scholar] [CrossRef]
- Rahman, M.T.; Karim, M.M. Metallothionein: A Potential Link in the Regulation of Zinc in Nutritional Immunity. Biol. Trace Elem. Res. 2018, 182, 1–3. [Google Scholar] [CrossRef]
- Haase, H.; Mazzatti, D.J.; White, A.; Ibs, K.H.; Engelhardt, G.; Hebel, S.; Powell, J.R.; Rink, L. Differential Gene Expression After Zinc Supplementation and Deprivation in Human Leukocyte Subsets. Mol. Med. 2007, 13, 362–370. [Google Scholar] [CrossRef]
- Langmade, S.J.; Ravindra, R.; Daniels, P.J.; Andrews, G.K. The Transcription Factor MTF-1 Mediates Metal Regulation of the Mouse ZnT1 Gene. J. Biol. Chem. 2000, 275, 34803–34809. [Google Scholar] [CrossRef] [Green Version]
- Medici, V.; Santon, A.; Sturniolo, G.C.; D’Inca, R.; Giannetto, S.; Albergoni, V.; Irato, P. Metallothionein and Antioxidant Enzymes in Long-Evans Cinnamon Rats Treated with Zinc. Arch. Toxicol. 2002, 76, 509–516. [Google Scholar] [CrossRef]
- Radtke, F.; Heuchel, R.; Georgiev, O.; Hergersberg, M.; Gariglio, M.; Dembic, Z.; Schaffner, W. Cloned Transcription Factor MTF-1 Activates the Mouse Metallothionein I Promoter. EMBO J. 1993, 12, 1355–1362. [Google Scholar] [CrossRef]
- Laity, J.H.; Andrews, G.K. Understanding the Mechanisms of Zinc-Sensing by Metal-Response Element Binding Transcription Factor-1 (MTF-1). Arch. Biochem. Biophys. 2007, 463, 201–210. [Google Scholar] [CrossRef]
- Andrews, G.K. Cellular Zinc Sensors: MTF-1 Regulation of Gene Expression. Biometals 2001, 14, 223–237. [Google Scholar] [CrossRef]
- Gunes, C.; Heuchel, R.; Georgiev, O.; Muller, K.H.; Lichtlen, P.; Bluthmann, H.; Marino, S.; Aguzzi, A.; Schaffner, W. Embryonic Lethality and Liver Degeneration in Mice Lacking the Metal-Responsive Transcriptional Activator MTF-1. EMBO J. 1998, 17, 2846–2854. [Google Scholar] [CrossRef]
- Bittel, D.C.; Smirnova, I.V.; Andrews, G.K. Functional Heterogeneity in the Zinc Fingers of Metalloregulatory Protein Metal Response Element-Binding Transcription Factor-1. J. Biol. Chem. 2000, 275, 37194–37201. [Google Scholar] [CrossRef]
- Hardyman, J.E.; Tyson, J.; Jackson, K.A.; Aldridge, C.; Cockell, S.J.; Wakeling, L.A.; Valentine, R.A.; Ford, D. Zinc Sensing by Metal-Responsive Transcription Factor 1 (MTF1) Controls Metallothionein and ZnT1 Expression to Buffer the Sensitivity of the Transcriptome Response to Zinc. Metallomics 2016, 8, 337–343. [Google Scholar] [CrossRef]
- Jiang, H.; Daniels, P.J.; Andrews, G.K. Putative Zinc-Sensing Zinc Fingers of Metal-Response Element-Binding Transcription Factor-1 Stabilize a Metal-Dependent Chromatin Complex on the Endogenous Metallothionein-I Promoter. J. Biol. Chem. 2003, 278, 30394–30402. [Google Scholar] [CrossRef]
- Prasad, A.S.; Beck, F.W.; Bao, B.; Snell, D.; Fitzgerald, J.T. Duration and Severity of Symptoms and Levels of Plasma Interleukin-1 Receptor Antagonist, Soluble Tumor Necrosis Factor Receptor, and Adhesion Molecules in Patients with Common Cold Treated with Zinc Acetate. J. Infect. Dis. 2008, 197, 795–802. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.S.; Fitzgerald, J.T.; Bao, B.; Beck, F.W.; Chandrasekar, P.H. Duration of Symptoms and Plasma Cytokine Levels in Patients with the Common Cold Treated with Zinc Acetate. A Randomized, Double-Blind, Placebo-Controlled Trial. Ann. Intern. Med. 2000, 133, 245–252. [Google Scholar] [CrossRef]
- Hodkinson, C.F.; Kelly, M.; Coudray, C.; Gilmore, W.S.; Hannigan, B.M.; O’Connor, J.M.; Strain, J.J.; Wallace, J.M. Zinc Status and Age-Related Changes in Peripheral Blood Leukocyte Subpopulations in Healthy Men and Women Aged 55-70 Y: The ZENITH Study. Eur. J. Clin. Nutr. 2005, 59 (Suppl. 2), S63–S67. [Google Scholar] [CrossRef]
- Andriollo-Sanchez, M.; Hininger-Favier, I.; Meunier, N.; Toti, E.; Zaccaria, M.; Brandolini-Bunlon, M.; Polito, A.; O’Connor, J.M.; Ferry, M.; Coudray, C.; et al. Zinc Intake and Status in Middle-Aged and Older European Subjects: The ZENITH Study. Eur. J. Clin. Nutr. 2005, 59 (Suppl. 2), S37–S41. [Google Scholar] [CrossRef]
- Stewart-Knox, B.J.; Simpson, E.E.; Parr, H.; Rae, G.; Polito, A.; Intorre, F.; Meunier, N.; Andriollo-Sanchez, M.; O’Connor, J.M.; Coudray, C.; et al. Zinc Status and Taste Acuity in Older Europeans: The ZENITH Study. Eur. J. Clin. Nutr. 2005, 59 (Suppl. 2), S31–S36. [Google Scholar] [CrossRef]
- Meunier, N.; O’Connor, J.M.; Maiani, G.; Cashman, K.D.; Secker, D.L.; Ferry, M.; Roussel, A.M.; Coudray, C. Importance of Zinc in the Elderly: The ZENITH Study. Eur. J. Clin. Nutr. 2005, 59 (Suppl. 2), S1–S4. [Google Scholar] [CrossRef]
- Mocchegiani, E. Zinc and Ageing: Third Zincage Conference. Immun. Ageing 2007, 4, 5. [Google Scholar] [CrossRef]
- Prasad, A.S.; Bao, B.; Beck, F.W.; Sarkar, F.H. Correction of Interleukin-2 Gene Expression by in Vitro Zinc Addition to Mononuclear Cells from Zinc-Deficient Human Subjects: A Specific Test for Zinc Deficiency in Humans. Transl. Res. 2006, 148, 325–333. [Google Scholar] [CrossRef]
- Cabreiro, F.; Perichon, M.; Jatje, J.; Malavolta, M.; Mocchegiani, E.; Friguet, B.; Petropoulos, I. Zinc Supplementation in the Elderly Subjects: Effect on Oxidized Protein Degradation and Repair Systems in Peripheral Blood Lymphocytes. Exp. Gerontol. 2008, 43, 483–487. [Google Scholar] [CrossRef]
- Gordois, A.; Cutler, H.; Pezzullo, L.; Gordon, K.; Cruess, A.; Winyard, S.; Hamilton, W.; Chua, K. An Estimation of the Worldwide Economic and Health Burden of Visual Impairment. Glob. Public Health. 2012, 7, 465–481. [Google Scholar] [CrossRef]
- Nita, M.; Grzybowski, A. The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxid. Med. Cell Longev. 2016, 2016, 3164734. [Google Scholar] [CrossRef]
- Beatty, S.; Koh, H.; Phil, M.; Henson, D.; Boulton, M. The Role of Oxidative Stress in the Pathogenesis of Age-Related Macular Degeneration. Surv. Ophthalmol. 2000, 45, 115–134. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Hackett, S.F.; Mincey, A.; Lai, H.; Campochiaro, P.A. Effects of Different Types of Oxidative Stress in RPE Cells. J. Cell Physiol. 2006, 206, 119–125. [Google Scholar] [CrossRef]
- Zarbin, M.A. Current Concepts in the Pathogenesis of Age-Related Macular Degeneration. Arch. Ophthalmol. 2004, 122, 598–614. [Google Scholar] [CrossRef] [Green Version]
- Ung, L.; Pattamatta, U.; Carnt, N.; Wilkinson-Berka, J.L.; Liew, G.; White, A.J.R. Oxidative Stress and Reactive Oxygen Species: A Review of Their Role in Ocular Disease. Clin. Sci. 2017, 131, 2865–2883. [Google Scholar] [CrossRef]
- A Randomized, Placebo-Controlled, Clinical Trial of High-Dose Supplementation with Vitamins C and E, Beta Carotene, and Zinc for Age-Related Macular Degeneration and Vision Loss: AREDS Report No. 8. Arch. Ophthalmol. 2001, 119, 1417–1436. [CrossRef]
- Clemons, T.E.; Kurinij, N.; Sperduto, R.D. Associations of Mortality with Ocular Disorders and an Intervention of High-Dose Antioxidants and Zinc in the Age-Related Eye Disease Study: AREDS Report No. 13. Arch. Ophthalmol. 2004, 122, 716–726. [Google Scholar]
- Chew, E.Y.; Klein, M.L.; Clemons, T.E.; Agron, E.; Abecasis, G.R. Genetic Testing in Persons with Age-Related Macular Degeneration and the Use of the AREDS Supplements: To Test or Not to Test? Ophthalmology 2015, 122, 212–215. [Google Scholar] [CrossRef]
- Ho, L.; van, L.R.; Witteman, J.C.; van Duijn, C.M.; Uitterlinden, A.G.; Hofman, A.; de Jong, P.T.; Vingerling, J.R.; Klaver, C.C. Reducing the Genetic Risk of Age-Related Macular Degeneration with Dietary Antioxidants, Zinc, and Omega-3 Fatty Acids: The Rotterdam Study. Arch. Ophthalmol. 2011, 129, 758–766. [Google Scholar] [CrossRef]
- Evans, J.R.; Lawrenson, J.G. Antioxidant Vitamin and Mineral Supplements for Slowing the Progression of Age-Related Macular Degeneration. Cochrane. Database. Syst. Rev. 2017, 7, CD000254. [Google Scholar] [CrossRef]
- Prasad, A.S.; Schoomaker, E.B.; Ortega, J.; Brewer, G.J.; Oberleas, D.; Oelshlegel, F.J., Jr. Zinc Deficiency in Sickle Cell Disease. Clin. Chem. 1975, 21, 582–587. [Google Scholar]
- Prasad, A.S.; Cossack, Z.T. Zinc Supplementation and Growth in Sickle Cell Disease. Ann. Intern. Med. 1984, 100, 367–371. [Google Scholar] [CrossRef]
- Prasad, A.S.; Abbasi, A.A.; Rabbani, P.; DuMouchelle, E. Effect of Zinc Supplementation on Serum Testosterone Level in Adult Male Sickle Cell Anemia Subjects. Am. J. Hematol. 1981, 10, 119–127. [Google Scholar] [CrossRef]
- Warth, J.A.; Prasad, A.S.; Zwas, F.; Frank, R.N. Abnormal Dark Adaptation in Sickle Cell Anemia. J. Lab Clin. Med. 1981, 98, 189–194. [Google Scholar]
- Ballester, O.F.; Abdallah, J.M.; Prasad, A.S. Lymphocyte Subpopulation Abnormalities in Sickle Cell Anemia: A Distinctive Pattern from That of AIDS. Am. J. Hematol. 1986, 21, 23–27. [Google Scholar] [CrossRef]
- Niell, H.B.; Leach, B.E.; Kraus, A.P. Zinc Metabolism in Sickle Cell Anemia. JAMA. 1979, 242, 2686–2687. [Google Scholar] [CrossRef]
- Beck, F.W.; Kaplan, J.; Fine, N.; Handschu, W.; Prasad, A.S. Decreased Expression of CD73 (Ecto-5′-Nucleotidase) in the CD8+ Subset Is Associated with Zinc Deficiency in Human Patients. J. Lab. Clin. Med. 1997, 130, 147–156. [Google Scholar] [CrossRef]
- Maritim, A.C.; Sanders, R.A.; Watkins, J.B., III. Diabetes, Oxidative Stress, and Antioxidants: A Review. J. Biochem. Mol. Toxicol. 2003, 17, 24–38. [Google Scholar] [CrossRef]
- Beletate, V.; El Dib, R.P.; Atallah, A.N. Zinc Supplementation for the Prevention of Type 2 Diabetes Mellitus. Cochrane Database Syst. Rev. 2007, 28, CD005525. [Google Scholar]
- DiSilvestro, R.A. Zinc in Relation to Diabetes and Oxidative Disease. J. Nutr. 2000, 130, 1509S–1511S. [Google Scholar] [CrossRef]
- Islam, M.S.; Loots, D.T. Diabetes, Metallothionein, and Zinc Interactions: A Review. Biofactors 2007, 29, 203–212. [Google Scholar] [CrossRef]
- Jansen, J.; Karges, W.; Rink, L. Zinc and Diabetes--Clinical Links and Molecular Mechanisms. J. Nutr. Biochem. 2009, 20, 399–417. [Google Scholar] [CrossRef]
- Faure, P.; Benhamou, P.Y.; Perard, A.; Halimi, S.; Roussel, A.M. Lipid Peroxidation in Insulin-Dependent Diabetic Patients with Early Retina Degenerative Lesions: Effects of an Oral Zinc Supplementation. Eur. J. Clin. Nutr. 1995, 49, 282–288. [Google Scholar]
- Anderson, R.A.; Roussel, A.M.; Zouari, N.; Mahjoub, S.; Matheau, J.M.; Kerkeni, A. Potential Antioxidant Effects of Zinc and Chromium Supplementation in People with Type 2 Diabetes Mellitus. J. Am. Coll. Nutr. 2001, 20, 212–218. [Google Scholar] [CrossRef]
- Jayawardena, R.; Ranasinghe, P.; Galappatthy, P.; Malkanthi, R.; Constantine, G.; Katulanda, P. Effects of Zinc Supplementation on Diabetes Mellitus: A Systematic Review and Meta-Analysis. Diabetol. Metab Syndr. 2012, 19, 13–14. [Google Scholar] [CrossRef]
- Ranasinghe, P.; Pigera, S.; Galappatthy, P.; Katulanda, P.; Constantine, G.R. Zinc and Diabetes Mellitus: Understanding Molecular Mechanisms and Clinical Implications. DARU 2015, 23, 44. [Google Scholar] [CrossRef]
- Islam, M.R.; Attia, J.; Ali, L.; McEvoy, M.; Selim, S.; Sibbritt, D.; Akhter, A.; Akter, S.; Peel, R.; Faruque, O.; et al. Zinc Supplementation for Improving Glucose Handling in Pre-Diabetes: A Double Blind Randomized Placebo Controlled Pilot Study. Diabetes Res. Clin. Pract. 2016, 115, 39–46. [Google Scholar] [CrossRef]
- Altamirano, J.; Bataller, R. Alcoholic Liver Disease: Pathogenesis and New Targets for Therapy. Nat. Rev. Gastroenterol. Hepatol. 2011, 8, 491–501. [Google Scholar] [CrossRef]
- Ghorbani, Z.; Hajizadeh, M.; Hekmatdoost, A. Dietary Supplementation in Patients with Alcoholic Liver Disease: A Review on Current Evidence. Hepatobiliary. Pancreat. Dis. Int. 2016, 15, 348–360. [Google Scholar] [CrossRef]
- Ambade, A.; Mandrekar, P. Oxidative Stress and Inflammation: Essential Partners in Alcoholic Liver Disease. Int. J. Hepatol. 2012, 2012, 853175. [Google Scholar] [CrossRef]
- McClain, C.J.; Barve, S.S.; Barve, A.; Marsano, L. Alcoholic Liver Disease and Malnutrition. Alcohol Clin. Exp. Res. 2011, 35, 815–820. [Google Scholar] [CrossRef] [Green Version]
- Kaur, J.; Shalini, S.; Bansal, M.P. Influence of Vitamin E on Alcohol-Induced Changes in Antioxidant Defenses in Mice Liver. Toxicol. Mech. Methods 2010, 20, 82–89. [Google Scholar] [CrossRef]
- Dinsmore, W.; Callender, M.E.; McMaster, D.; Todd, S.J.; Love, A.H. Zinc Absorption in Alcoholics Using Zinc-65. Digestion 1985, 32, 238–242. [Google Scholar] [CrossRef]
- Valberg, L.S.; Flanagan, P.R.; Ghent, C.N.; Chamberlain, M.J. Zinc Absorption and Leukocyte Zinc in Alcoholic and Nonalcoholic Cirrhosis. Dig. Dis. Sci. 1985, 30, 329–333. [Google Scholar] [CrossRef]
- Mohammad, M.K.; Zhou, Z.; Cave, M.; Barve, A.; McClain, C.J. Zinc and Liver Disease. Nutr. Clin. Pract. 2012, 27, 8–20. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, L.; Song, Z.; Saari, J.T.; McClain, C.J.; Kang, Y.J. Zinc Supplementation Prevents Alcoholic Liver Injury in Mice Through Attenuation of Oxidative Stress. Am. J. Pathol. 2005, 166, 1681–1690. [Google Scholar] [CrossRef]
- Szuster-Ciesielska, A.; Plewka, K.; Daniluk, J.; Kandefer-Szerszen, M. Zinc Supplementation Attenuates Ethanol- and Acetaldehyde-Induced Liver Stellate Cell Activation by Inhibiting Reactive Oxygen Species (ROS) Production and by Influencing Intracellular Signaling. Biochem. Pharmacol. 2009, 78, 301–314. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasad, A.S.; Bao, B. Molecular Mechanisms of Zinc as a Pro-Antioxidant Mediator: Clinical Therapeutic Implications. Antioxidants 2019, 8, 164. https://doi.org/10.3390/antiox8060164
Prasad AS, Bao B. Molecular Mechanisms of Zinc as a Pro-Antioxidant Mediator: Clinical Therapeutic Implications. Antioxidants. 2019; 8(6):164. https://doi.org/10.3390/antiox8060164
Chicago/Turabian StylePrasad, Ananda S., and Bin Bao. 2019. "Molecular Mechanisms of Zinc as a Pro-Antioxidant Mediator: Clinical Therapeutic Implications" Antioxidants 8, no. 6: 164. https://doi.org/10.3390/antiox8060164
APA StylePrasad, A. S., & Bao, B. (2019). Molecular Mechanisms of Zinc as a Pro-Antioxidant Mediator: Clinical Therapeutic Implications. Antioxidants, 8(6), 164. https://doi.org/10.3390/antiox8060164