Optimization of Ultrasound-Assisted Extraction of Antioxidant Polyphenols from the Seed Coats of Red Sword Bean (Canavalia gladiate (Jacq.) DC.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Preparation
2.3. Experimental Design
2.4. Extraction Process
2.4.1. UAE procedure
2.4.2. Maceration
2.4.3. Soxhlet Extraction
2.5. Determination of Antioxidant Capacity
2.6. Determination of Total Phenolic Contents
2.7. Determination of Total Flavonoid Contents
2.8. Identification and Quantification of Main Antioxidant Polyphenols based on HPLC–DAD–MS/MS
2.9. Statistical Analysis
3. Results and Discussion
3.1. Results from Single-Factor Experiments
3.1.1. The Effect of Ethanol Concentration
3.1.2. The Effect of Liquid/Solid Ratio
3.1.3. The Effect of Extraction Time
3.1.4. The Effect of Extraction Temperature
3.1.5. The Effect of Ultrasound Power
3.2. Response Surface Methodology
3.2.1. Response Surface Design and Experimental Results
3.2.2. Fitting the Model
3.2.3. Model Analysis
3.2.4. Verification of the Optimal Extraction Condition
3.2.5. Total Phenolic and Flavonoid Contents of RSB Seed Coats
3.2.6. Analysis of Main Antioxidant Polyphenols in RSB Seed Coats
3.2.7. Comparison of Extraction Methods
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Santilli, F.; D’Ardes, D.; Davi, G. Oxidative stress in chronic vascular disease: From prediction to prevention. Vasc. Pharmacol. 2015, 74, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Gan, R.Y.; Li, S.; Zhou, Y.; Li, A.N.; Xu, D.P.; Li, H.B. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 2015, 20, 21138–21156. [Google Scholar] [CrossRef] [PubMed]
- Deng, G.F.; Lin, X.; Xu, X.R.; Gao, L.L.; Xie, J.F.; Li, H.B. Antioxidant capacities and total phenolic contents of 56 vegetables. J. Funct. Food. 2013, 5, 260–266. [Google Scholar] [CrossRef]
- Kim, J.P.; Yang, Y.S.; Kim, J.H.; Lee, H.H.; Kim, E.S.; Moon, Y.W.; Kim, J.Y.; Chung, J.K. Chemical properties and DPPH radical scavenging ability of sword bean (Canavalia gladiata) extract. Korean J. Food Sci. Technol. 2012, 44, 441–446. [Google Scholar] [CrossRef]
- Ekanayake, S.; Jansz, E.R.; Nair, B.M. Nutritional evaluation of protein and starch of mature Canavalia gladiata seeds. Int. J. Food Sci. Nutr. 2000, 51, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Gan, R.Y.; Wang, M.F.; Lui, W.L.; Wu, K.; Dai, S.H.; Sui, Z.Q.; Corke, H. Diversity in antioxidant capacity, phenolic and flavonoid contents of 42 edible beans from China. Cereal Chem. 2016, 94, 291–297. [Google Scholar] [CrossRef]
- Ekanayake, S.; Jansz, E.R.; Nair, B.M. Literature review of an underutilized legume: Canavalia gladiata L. Plant Foods Hum. Nutr. 2000, 55, 305–321. [Google Scholar] [CrossRef] [PubMed]
- Gan, R.Y.; Lui, W.Y.; Corke, H. Sword bean (Canavalia gladiata) as a source of antioxidant phenolics. Int. J. Food Sci. Tech. 2016, 51, 156–162. [Google Scholar] [CrossRef]
- Jeon, K.S.; Na, H.J.; Kim, Y.M.; Kwon, H.J. Antiangiogenic activity of 4-O-methylgallic acid from Canavalia gladiata, a dietary legume. Biochem. Biophys. Res. Commun. 2005, 330, 1268–1274. [Google Scholar] [CrossRef]
- Byun, J.S.; Han, Y.S.; Lee, S.S. The effects of yellow soybean, black soybean, and sword bean on lipid levels and oxidative stress in ovariectomized rats. Int. J. Vitam. Nutr. Res. 2010, 80, 97–106. [Google Scholar] [CrossRef]
- Kim, B.; Park, J.; Yoon, H.G.; Choi, K.C.; Kim, K.; Lee, J.; Chung, J.W.; Shim, S.; You, Y.; Jun, W. Effect of ethanol extract of Canavalia gladiata on endurance swimming capacity in mice. J. Med. Food 2016, 19, 990–993. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Zill-e-Huma; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 2011, 18, 813–835. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Reinoso, B.; Moure, A.; Dominguez, H.; Parajo, J.C. Supercritical CO2 extraction and purification of compounds with antioxidant activity. J. Agric. Food Chem. 2006, 54, 2441–2469. [Google Scholar] [CrossRef] [PubMed]
- Xia, E.Q.; Wang, B.W.; Xu, X.R.; Zhu, L.; Song, Y.; Li, H.B. Microwave-Assisted extraction of oleanolic acid and ursolic acid from Ligustrum lucidum Ait. Int. J. Mol. Sci. 2011, 12, 5319–5329. [Google Scholar] [CrossRef] [PubMed]
- Skalicka-Wozniak, K.; Szypowski, J.; Glowniak, K. HPLC analysis of kaempherol and quercetin derivatives isolated by different extraction techniques from plant matrix. J. AOAC Int. 2011, 94, 17–21. [Google Scholar] [PubMed]
- Shirsath, S.R.; Sonawane, S.H.; Gogate, P.R. Intensification of extraction of natural products using ultrasonic irradiations—A review of current status. Chem. Eng. Process. 2012, 53, 10–23. [Google Scholar] [CrossRef]
- Knorr, D.; Ade-Omowaye, B.I.; Heinz, V. Nutritional improvement of plant foods by non-thermal processing. Proc. Nutr. Soc. 2002, 61, 311–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toma, M.; Vinatoru, M.; Paniwnyk, L.; Mason, T.J. Investigation of the effects of ultrasound on vegetal tissues during solvent extraction. Ultrason. Sonochem. 2001, 8, 137–142. [Google Scholar] [CrossRef]
- Roselló-Soto, E.; Galanakis, C.M.; Brnčić, M.; Orlien, V.; Trujillo, F.J.; Mawson, R.; Knoerzer, K.; Tiwari, B.K.; Barba, F.J. Clean recovery of antioxidant compounds from plant foods, by-products and algae assisted by ultrasounds processing: Modeling approaches to optimize processing conditions. Trends Food Sci. Tech. 2015, 42, 134–149. [Google Scholar] [CrossRef]
- Eren, İ.; Kaymak-Ertekin, F. Optimization of osmotic dehydration of potato using response surface methodology. J. Food Eng. 2007, 79, 344–352. [Google Scholar] [CrossRef]
- Belwal, T.; Dhyani, P.; Bhatt, I.D.; Rawal, R.S.; Pande, V. Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM). Food Chem. 2016, 207, 115–124. [Google Scholar] [CrossRef]
- Li, A.N.; Li, S.; Li, Y.; Xu, D.P.; Li, H.B. Optimization of ultrasound-assisted extraction of natural antioxidants from the Osmanthus fragrans flower. Molecules 2016, 21, 218. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Xu, B.T.; Xu, X.R.; Qin, X.S.; Gan, R.Y.; Li, H.B. Antioxidant capacities and total phenolic contents of 56 wild fruits from south China. Molecules 2010, 15, 8602–8617. [Google Scholar] [CrossRef] [PubMed]
- Deng, G.F.; Xu, D.P.; Li, S.; Li, H.B. Optimization of ultrasound-assisted extraction of natural antioxidants from sugar apple (Annona squamosa L.) peel using response surface methodology. Molecules 2015, 20, 20448–20459. [Google Scholar] [CrossRef] [PubMed]
- Sahin, S.; Samli, R. Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology. Ultrason. Sonochem. 2013, 20, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Kalia, K.; Sharma, K.; Singh, H.P.; Singh, B. Effects of extraction methods on phenolic contents and antioxidant activity in aerial parts of Potentilla atrosanguinea lodd and quantification of its phenolic constituents by RP-HPLC. J. Agric. Food Chem. 2008, 56, 10129–10134. [Google Scholar] [CrossRef]
- Oroian, M.; Escriche, I. Antioxidants: Characterization, natural sources, extraction and analysis. Food Res. Int. 2015, 74, 10–36. [Google Scholar] [CrossRef]
- Tabaraki, R.; Heidarizadi, E.; Benvidi, A. Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) peel antioxidants by response surface methodology. Sep. Purif. Technol. 2012, 98, 16–23. [Google Scholar] [CrossRef]
- Xu, D.P.; Zhou, Y.; Zheng, J.; Li, S.; Li, A.N.; Li, H.B. Optimization of ultrasound-assisted extraction of natural antioxidants from the flower of Jatropha integerrima by response surface methodology. Molecules 2016, 21, 18. [Google Scholar] [CrossRef]
- Ghafoor, K.; Choi, Y.H.; Jeon, J.Y.; Jo, I.H. Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. J. Agric. Food Chem. 2009, 57, 4988–4994. [Google Scholar] [CrossRef] [PubMed]
- Chukwumah, Y.C.; Walker, L.T.; Verghese, M.; Ogutu, S. Effect of frequency and duration of ultrasonication on the extraction efficiency of selected isoflavones and trans-resveratrol from peanuts (Arachis hypogaea). Ultrason. Sonochem. 2009, 16, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.P.; Zheng, J.; Zhou, Y.; Li, Y.; Li, S.; Li, H.B. Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: Optimization and comparison with conventional methods. Food Chem. 2017, 217, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Samaram, S.; Mirhosseini, H.; Tan, C.P.; Ghazali, H.M.; Bordbar, S.; Serjouie, A. Optimisation of ultrasound-assisted extraction of oil from papaya seed by response surface methodology: Oil recovery, radical scavenging antioxidant activity, and oxidation stability. Food Chem. 2015, 172, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Maran, J.P.; Priya, B. Ultrasound-assisted extraction of polysaccharide from Nephelium lappaceum L. fruit peel. Int. J. Biol. Macromol. 2014, 70, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Badhani, B.; Sharma, N.; Kakkar, R. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 2015, 5, 27540–27557. [Google Scholar] [CrossRef]
- Rasool, M.K.; Sabina, E.P.; Ramya, S.R.; Preety, P.; Patel, S.; Mandal, N.; Mishra, P.P.; Samuel, J. Hepatoprotective and antioxidant effects of gallic acid in paracetamol-induced liver damage in mice. J. Pharm. Pharmacol. 2010, 62, 638–643. [Google Scholar] [CrossRef]
- Subramanian, A.P.; Jaganathan, S.K.; Mandal, M.; Supriyanto, E.; Muhamad, I.I. Gallic acid induced apoptotic events in HCT-15 colon cancer cells. World J. Gastroenterol. 2016, 22, 3952–3961. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, J.; Li, Y.; Xu, D.P.; Li, S.; Chen, Y.M.; Li, H.B. Natural polyphenols for prevention and treatment of cancer. Nutrients 2016, 8, 515. [Google Scholar] [CrossRef]
- Both, S.; Chemat, F.; Strube, J. Extraction of polyphenols from black tea—Conventional and ultrasound assisted extraction. Ultrason. Sonochem. 2014, 21, 1030–1034. [Google Scholar] [CrossRef]
- Tabaraki, R.; Rastgoo, S. Comparison between conventional and ultrasound-assisted extractions of natural antioxidants from walnut green husk. Korean J. Chem. Eng. 2014, 31, 676–683. [Google Scholar] [CrossRef]
- Zhao, C.N.; Zhang, J.J.; Li, Y.; Meng, X.; Li, H.B. Microwave-Assisted extraction of phenolic compounds from Melastoma sanguineum Fruit: Optimization and identification. Molecules 2018, 23, 2498. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cao, S.Y.; Lin, S.J.; Zhang, J.R.; Gan, R.Y.; Li, H.B. Polyphenolic profile and antioxidant capacity of extracts from Gordonia axillaris Fruits. Antioxidants 2019, 8, 150. [Google Scholar] [CrossRef] [PubMed]
Run | X1 (%) | X2 (mL/g) | X3 (min) | Y (μmol Trolox/g DW) |
---|---|---|---|---|
1 | 1 (70) | 1 (30) | −1 (10) | 636.57 |
2 | 1 (70) | −1 (20) | −1 (10) | 622.94 |
3 | 0 (60) | 0 (25) | 0 (15) | 743.16 |
4 | 1 (70) | −1 (20) | 1 (20) | 667.62 |
5 | −1 (50) | −1 (20) | −1 (10) | 600.60 |
6 | 0 (60) | 0 (25) | 0 (15) | 750.10 |
7 | 0 (60) | 1.68 (33.4) | 0 (15) | 710.77 |
8 | 0 (60) | −1.68 (16.6) | 0 (15) | 634.98 |
9 | 0 (60) | 0 (25) | 0 (15) | 737.80 |
10 | 0 (60) | 0 (25) | −1.68 (6.6) | 624.60 |
11 | −1.68 (43.2) | 0 (25) | 0 (15) | 562.01 |
12 | 0 (60) | 0 (25) | 0 (15) | 723.58 |
13 | 0 (60) | 0 (25) | 1.68 (23.4) | 704.19 |
14 | 0 (60) | 0 (25) | 0 (15) | 729.93 |
15 | 0 (60) | 0 (25) | 0 (15) | 728.16 |
16 | 1 (70) | 1 (30) | 1 (20) | 712.37 |
17 | −1 (50) | −1 (20) | 1 (20) | 610.75 |
18 | −1 (50) | 1 (30) | 1 (20) | 705.13 |
19 | −1 (50) | 1 (30) | −1 (10) | 670.09 |
20 | 1.68 (76.8) | 0 (25) | 0 (15) | 586.38 |
Effects | Source | Sum of Squares | df | Mean Square | F-Value | p-Value Prob > F |
---|---|---|---|---|---|---|
Total effect | Model | 63,299.95 | 9 | 7033.33 | 32.18 | <0.0001 a |
Linear effect | X1 | 646.04 | 1 | 646.04 | 2.96 | 0.1163 |
X2 | 8954.26 | 1 | 8954.26 | 40.97 | <0.0001 a | |
X3 | 6569.21 | 1 | 6569.21 | 30.06 | 0.0003 a | |
Interactive effect | X1X2 | 1390.95 | 1 | 1390.95 | 6.36 | 0.0302 a |
X1X3 | 708.40 | 1 | 708.40 | 3.24 | 0.102 | |
X2X3 | 392.06 | 1 | 392.06 | 1.79 | 0.2101 | |
Quadratic effect | X12 | 39,505.70 | 1 | 39,505.70 | 180.75 | <0.0001 a |
X22 | 4397.55 | 1 | 4397.55 | 20.12 | 0.0012 a | |
X32 | 6036.71 | 1 | 6036.71 | 27.62 | 0.0004 a | |
Residual | 2185.65 | 10 | 218.57 | |||
Lack of Fit | 1681.82 | 5 | 336.36 | 3.34 | 0.106 | |
Pure Error | 503.83 | 5 | 100.77 | |||
Corrected Total | 65,485.61 | 19 | ||||
R2 | 0.97 | |||||
Adjusted R2 | 0.94 |
Antioxidant Polyphenols | Retention Time (min) | Molecular Ion M− (m/z) | MS2 Fragment Ions (m/z) | Content (mg/g DW) |
---|---|---|---|---|
Digalloyl hexoside | 24.9 | 483 | 331, 313, 271, 241, 211, 179, 169, 125 | 15.30 ± 0.98 |
Methyl gallate | 17.0 | 183 | 124 | 8.85 ± 0.51 |
Gallic acid | 8.0 | 169 | 125 | 8.76 ± 0.36 |
Trigalloyl hexoside | 40.3 | 635 | 483, 465, 331, 313, 271, 169, 125 | 4.27 ± 0.21 |
Digallic acid | 29.6 | 321 | 169, 125 | 2.89 ± 0.13 |
Extraction Methods | Ethanol Concentration | Time | Temperature | TEAC Value (μmol Trolox/g DW) | TPC (mg GAE/g DW) | TFC (mg CE/g DW) |
---|---|---|---|---|---|---|
UAE | 60.2% | 18.4 min | 50 °C | 755.98 ± 10.23 a | 59.62 ± 2.77 a | 4.46 ± 0.15 a |
Maceration | 60.2% | 24 h | 30 °C | 558.77 ± 14.42 b | 40.78 ± 3.17 b | 2.74 ± 0.14 b |
Soxhlet | 60.2% | 4 h | 95 °C | 479.81 ± 12.75 c | 31.52 ± 1.20 c | 1.97 ± 0.08 c |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Xu, X.-Y.; Gan, R.-Y.; Zheng, J.; Li, Y.; Zhang, J.-J.; Xu, D.-P.; Li, H.-B. Optimization of Ultrasound-Assisted Extraction of Antioxidant Polyphenols from the Seed Coats of Red Sword Bean (Canavalia gladiate (Jacq.) DC.). Antioxidants 2019, 8, 200. https://doi.org/10.3390/antiox8070200
Zhou Y, Xu X-Y, Gan R-Y, Zheng J, Li Y, Zhang J-J, Xu D-P, Li H-B. Optimization of Ultrasound-Assisted Extraction of Antioxidant Polyphenols from the Seed Coats of Red Sword Bean (Canavalia gladiate (Jacq.) DC.). Antioxidants. 2019; 8(7):200. https://doi.org/10.3390/antiox8070200
Chicago/Turabian StyleZhou, Yue, Xiao-Yu Xu, Ren-You Gan, Jie Zheng, Ya Li, Jiao-Jiao Zhang, Dong-Ping Xu, and Hua-Bin Li. 2019. "Optimization of Ultrasound-Assisted Extraction of Antioxidant Polyphenols from the Seed Coats of Red Sword Bean (Canavalia gladiate (Jacq.) DC.)" Antioxidants 8, no. 7: 200. https://doi.org/10.3390/antiox8070200
APA StyleZhou, Y., Xu, X. -Y., Gan, R. -Y., Zheng, J., Li, Y., Zhang, J. -J., Xu, D. -P., & Li, H. -B. (2019). Optimization of Ultrasound-Assisted Extraction of Antioxidant Polyphenols from the Seed Coats of Red Sword Bean (Canavalia gladiate (Jacq.) DC.). Antioxidants, 8(7), 200. https://doi.org/10.3390/antiox8070200