Increase of 4-Hydroxybenzoic, a Bioactive Phenolic Compound, after an Organic Intervention Diet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Study Design
2.3. Assessment of Diet and Physical Activity
2.4. Anthropometric and Clinical Data Measurements
2.5. Sample Collection
2.6. Laboratory Evaluations
2.7. Analysis of Inorganic Elements in Plasma
2.8. Extraction and Quantification of Phenolic Acids from Urine
2.9. Extraction and Quantification of Carotenoids from Plasma
2.10. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Mean Dietary Composition of Participants During the Interventions
3.3. Physiological Parameters of Participants After the Interventions
3.4. Inorganic Elements in Plasma
3.5. Phenolic Acids in Urine
3.6. Carotenoids in Plasma
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Magnusson, M.K.; Arvola, A.; Koivisto Hursti, U.-K.; Åberg, L.; Sjödén, P.-O. Choice of organic foods is related to perceived consequences for human health and to environmentally friendly behaviour. Appetite 2003, 40, 109–117. [Google Scholar] [CrossRef]
- Dean, M.; Lampila, P.; Shepherd, R.; Arvola, A.; Saba, A.; Vassallo, M.; Claupein, E.; Winkelmann, M.; Lähteenmäki, L. Perceived relevance and foods with health-related claims. Food Qual. Prefer. 2012, 24, 129–135. [Google Scholar] [CrossRef]
- Hoefkens, C.; Verbeke, W.; Aertsens, J.; Mondelaers, K.; Van Camp, J. The nutritional and toxicological value of organic vegetables. Br. Food J. 2009, 111, 1062–1077. [Google Scholar] [CrossRef] [Green Version]
- Curl, C.L.; Fenske, R.A.; Elgethun, K. Organophosphorus pesticide exposure of urban and suburban preschool children with organic and conventional diets. Environ. Health Perspect. 2003, 111, 377–382. [Google Scholar] [CrossRef]
- Lu, C.; Toepel, K.; Irish, R.; Fenske, R.A.; Barr, D.B.; Bravo, R. Organic diets significantly lower children’s dietary exposure to organophosphorus pesticides. Environ. Health Perspect. 2006, 114, 260–263. [Google Scholar] [CrossRef]
- Bradman, A.; Quirós-Alcalá, L.; Castorina, R.; Schall, R.A.; Camacho, J.; Holland, N.T.; Barr, D.B.; Eskenazi, B. Effect of Organic Diet Intervention on Pesticide Exposures in Young Children Living in Low-Income Urban and Agricultural Communities. Environ. Health Perspect. 2015, 123, 1086–1093. [Google Scholar] [CrossRef] [Green Version]
- Oates, L.; Cohen, M.; Braun, L.; Schembri, A.; Taskova, R. Reduction in urinary organophosphate pesticide metabolites in adults after a week-long organic diet. Environ. Res. 2014, 132, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Baudry, J.; Debrauwer, L.; Durand, G.; Limon, G.; Delcambre, A.; Vidal, R.; Taupier-Letage, B.; Druesne-Pecollo, N.; Galan, P.; Hercberg, S.; et al. Urinary pesticide concentrations in French adults with low and high organic food consumption: Results from the general population-based NutriNet-Santé. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 366–378. [Google Scholar] [CrossRef]
- Hurtado-Barroso, S.; Tresserra-Rimbau, A.; Vallverdú-Queralt, A.; Lamuela-Raventós, R.M. Organic food and the impact on human health. Crit. Rev. Food Sci. Nutr. 2019, 59, 704–714. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Lamuela-Raventós, R.M. Foodomics: A new tool to differentiate between organic and conventional foods. Electrophoresis 2016, 37, 1784–1794. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Medina-Remón, A.; Casals-Ribes, I.; Amat, M.; Lamuela-Raventós, R.M. A metabolomic approach differentiates between conventional and organic ketchups. J. Agric. Food Chem. 2011, 59, 11703–11710. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Medina-Remón, A.; Casals-Ribes, I.; Lamuela-Raventos, R.M. Is there any difference between the phenolic content of organic and conventional tomato juices? Food Chem. 2012, 130, 222–227. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Martínez-Huélamo, M.; Casals-Ribes, I.; Lamuela-Raventós, R.M. Differences in the carotenoid profile of commercially available organic and conventional tomato-based products. J. Berry Res. 2014, 4, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Borguini, R.G. Avaliação do Potencial Antioxidante e de Algumas Características Físico-Químicas do Tomate (Lycopersicon Esculentum) Orgânico em Comparação ao Convencional; Biblioteca Digital de Teses e Dissertações, Universidade de São Paulo: São Paulo, Brazil, 2006. [Google Scholar]
- Györe-Kis, G.; Deák, K.; Lugasi, A.; Csúr-Vargaa, A.; Helyes, L. Comparison of conventional and organic tomato yield from a three-year-term experiment. Acta Aliment. 2012, 41, 486–493. [Google Scholar] [CrossRef]
- Roussos, P.A.; Gasparatos, D. Apple tree growth and overall fruit quality under organic and conventional orchard management. Sci. Hortic. 2009, 123, 247–252. [Google Scholar] [CrossRef]
- Williamson, G.; Manach, C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am. J. Clin. Nutr. 2005, 81, 243S–255S. [Google Scholar] [CrossRef]
- Thilakarathna, S.; Rupasinghe, H. Flavonoid Bioavailability and Attempts for Bioavailability Enhancement. Nutrients 2013, 5, 3367–3387. [Google Scholar] [CrossRef]
- Barański, M.; Średnicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Markellou, E.; Giotis, C.; et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analyses. Br. J. Nutr. 2014, 112, 794–811. [Google Scholar] [CrossRef]
- Palupi, E.; Jayanegara, A.; Ploeger, A.; Kahl, J. Comparison of nutritional quality between conventional and organic dairy products: A meta-analysis. J. Sci. Food Agric. 2012, 92, 2774–2781. [Google Scholar] [CrossRef]
- Średnicka-Tober, D.; Barański, M.; Seal, C.J.; Sanderson, R.; Benbrook, C.; Steinshamn, H.; Gromadzka-Ostrowska, J.; Rembiałkowska, E.; Skwarło-Sona, K.; Eyre, M.; et al. Higher PUFA and n-3 PUFA, conjugated linoleic acid, α-tocopherol and iron, but lower iodine and selenium concentrations in organic milk: A systematic literature review and meta-and redundancy analyses. Br. J. Nutr. 2016, 115, 1043–1060. [Google Scholar] [CrossRef]
- Magkos, F.; Arvaniti, F.; Zampelas, A. Organic food: Nutritious food or food for thought? A review of the evidence. Int. J. Food Sci. Nutr. 2003, 54, 357–371. [Google Scholar] [CrossRef]
- Średnicka-Tober, D.; Barański, M.; Seal, C.; Sanderson, R.; Benbrook, C.; Steinshamn, H.; Gromadzka-Ostrowska, J.; Rembiałkowska, E.; Skwarło-Sońta, K.; Eyre, M.; et al. Composition differences between organic and conventional meat: A systematic literature review and meta-analysis. Br. J. Nutr. 2016, 23, 1–18. [Google Scholar] [CrossRef]
- Baudry, J.; Allès, B.; Péneau, S.; Touvier, M.; Méjean, C.; Hercberg, S.; Galan, P.; Lairon, D.; Kesse-Guyot, E. Dietary intakes and diet quality according to levels of organic food consumption by French adults: Cross-sectional findings from the NutriNet-Santé Cohort Study. Public Health Nutr. 2016, 20, 638–648. [Google Scholar] [CrossRef]
- Eisinger-Watzl, M.; Wittig, F.; Heuer, T.; Hoffmann, I.; Verhagen, H.; Scientific Advisor, S. Customers Purchasing Organic Food—Do They Live Healthier? Results of the German National Nutrition Survey II. Eur. J. Nutr. Food Saf. 2015, 5, 59–71. [Google Scholar] [CrossRef]
- Baudry, J.; Méjean, C.; Allès, B.; Péneau, S.; Touvier, M.; Hercberg, S.; Lairon, D.; Galan, P.; Kesse-Guyot, E. Contribution of organic food to the diet in a large sample of French adults (The NutriNet-Santé cohort study). Nutrients 2015, 7, 8615–8632. [Google Scholar] [CrossRef]
- Goetzke, B.; Nitzko, S.; Spiller, A. Consumption of organic and functional food. A matter of well-being and health? Appetite 2014, 77, 96–105. [Google Scholar] [CrossRef]
- Schröder, H.; Fitó, M.; Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventós, R.; Ros, E.; Salaverría, I.; Fiol, M.; et al. A Short Screener Is Valid for Assessing Mediterranean Diet Adherence among Older Spanish Men and Women. J. Nutr. 2011, 141, 1140–1145. [Google Scholar] [CrossRef] [Green Version]
- Elosua, R.; Marrugat, J.; Molina, L.; Pons, S.; Pujol, E. Validation of the Minnesota Leisure Time Physical Activity Questionnaire in Spanish men. The MARATHOM Investigators. Am. J. Epidemiol. 1994, 139, 1197–1209. [Google Scholar] [CrossRef]
- Fernández-Ballart, J.D.; Piñol, J.L.; Zazpe, I.; Corella, D.; Carrasco, P.; Toledo, E.; Perez-Bauer, M.; Martínez-González, M.Á.; Salas-Salvadó, J.; Martín-Moreno, J.M. Relative validity of a semi-quantitative food-frequency questionnaire in an elderly Mediterranean population of Spain. Br. J. Nutr. 2010, 103, 1808–1816. [Google Scholar] [CrossRef] [Green Version]
- Larsen, K. Creatinine assay by a reaction-kinetic principle. Clin. Chim. Acta 1972, 41, 209–217. [Google Scholar] [CrossRef]
- Martínez-Huélamo, M.; Tulipani, S.; Jáuregui, O.; Valderas-Martinez, P.; Vallverdú-Queralt, A.; Estruch, R.; Torrado, X.; Lamuela-Raventós, R. Sensitive and Rapid UHPLC-MS/MS for the Analysis of Tomato Phenolics in Human Biological Samples. Molecules 2015, 20, 20409–20425. [Google Scholar] [CrossRef] [Green Version]
- Colmán-Martínez, M.; Martínez-Huélamo, M.; Miralles, E.; Estruch, R.; Lamuela-Raventós, R.M. A New Method to Simultaneously Quantify the Antioxidants: Carotenes, Xanthophylls, and Vitamin A in Human Plasma. Oxid. Med. Cell Longev. 2016, 2016, 1–10. [Google Scholar] [CrossRef]
- de Ferrars, R.M.; Czank, C.; Zhang, Q.; Botting, N.P.; Kroon, P.A.; Cassidy, A.; Kay, C.D. The pharmacokinetics of anthocyanins and their metabolites in humans. Br. J. Pharmacol. 2014, 171, 3268–3282. [Google Scholar] [CrossRef] [Green Version]
- Amini, A.M.; Muzs, K.; Spencer, J.P.; Yaqoob, P. Pelargonidin-3-O-glucoside and its metabolites have modest anti-inflammatory effects in human whole blood cultures. Nutr. Res. 2017, 46, 88–95. [Google Scholar] [CrossRef]
- El Mohsen, M.A.; Marks, J.; Kuhnle, G.; Moore, K.; Debnam, E.; Kaila Srai, S.; Rice-Evans, C.; Spencer, J.P.E. Absorption, tissue distribution and excretion of pelargonidin and its metabolites following oral administration to rats. Br. J. Nutr. 2006, 95, 51–58. [Google Scholar] [CrossRef]
- Sannino, F.; Sansone, C.; Galasso, C.; Kildgaard, S.; Tedesco, P.; Fani, R.; Marino, G.; de Pascale, D.; Ianora, A.; Parrilli, E.; et al. Pseudoalteromonas haloplanktis TAC125 produces 4-hydroxybenzoic acid that induces pyroptosis in human A459 lung adenocarcinoma cells. Sci. Rep. 2018, 8, 1190. [Google Scholar] [CrossRef]
- Wang, X.-N.; Wang, K.-Y.; Zhang, X.-S.; Yang, C.; Li, X.-Y. 4-Hydroxybenzoic acid (4-HBA) enhances the sensitivity of human breast cancer cells to adriamycin as a specific HDAC6 inhibitor by promoting HIPK2/p53 pathway. Biochem. Biophys. Res. Commun. 2018, 504, 812–819. [Google Scholar] [CrossRef]
- Winter, A.N.; Brenner, M.C.; Punessen, N.; Snodgrass, M.; Byars, C.; Arora, Y.; Linseman, D.A. Comparison of the Neuroprotective and Anti-Inflammatory Effects of the Anthocyanin Metabolites, Protocatechuic Acid and 4-Hydroxybenzoic Acid. Oxid. Med. Cell Longev. 2017, 2017, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Distelmaier, F. 4-Hydroxybenzoic acid for multiple system atrophy? Parkinsonism Relat. Disord. 2018, 50, 119–120. [Google Scholar] [CrossRef]
- Timoshchuk, S.V.; Vavilova, H.L.; Strutyns’ka, N.A.; Talanov, S.A.; Petukhov, D.M.; Kuchmenko, O.B.; Donchenko, H.V.; Sahach, V.F. Cardioprotective action of coenzyme Q in conditions of its endogenous synthesis activation in cardiac ischemia-reperfusion in old rats. BMC Pharmacol. Texicol. 2009, 55, 58–63. [Google Scholar]
- Kumchenko, E.B.; Petukhov, D.N.; Donchenko, G.V.; Mkhitarian, L.S.; Timoshchuk, S.V.; Strutinskaia, N.A.; Vavilova, G.L.; Sagach, V.F. Effect of precursors and modulators of coenzyme Q biosynthesis on the heart mitochondria function in aged rats. Biomed. Khim. 2010, 56, 244–256. [Google Scholar]
- Stracke, B.A.; Rüfer, C.E.; Bub, A.; Seifert, S.; Weibel, F.P.; Kunz, C.; Watzl, B. No effect of the farming system (organic/conventional) on the bioavailability of apple (Malus domestica Bork., cultivar Golden Delicious) polyphenols in healthy men: A comparative study. Eur. J. Nutr. 2010, 49, 301–310. [Google Scholar] [CrossRef]
- Cardoso, P.C.; Tomazini, A.P.B.; Stringheta, P.C.; Ribeiro, S.M.R.; Pinheiro-Sant’Ana, H.M. Vitamin C and carotenoids in organic and conventional fruits grown in Brazil. Food Chem. 2011, 126, 411–416. [Google Scholar] [CrossRef] [Green Version]
- Baudry, J.; Ducros, V.; Druesne-Pecollo, N.; Galan, P.; Hercberg, S.; Debrauwer, L.; Amiot, M.J.; Lairon, D.; Kesse-Guyot, E. Some Differences in Nutritional Biomarkers are Detected Between Consumers and Nonconsumers of Organic Foods: Findings from the BioNutriNet Project. Curr. Dev. Nutr. 2019, 3, nzy090. [Google Scholar] [CrossRef]
- Mark, A.B.; Kápolna, E.; Laursen, K.H.; Halekoh, U.; Rasmussen, S.K.; Husted, S.; Larsen, E.H.; Bügel, S. Consumption of organic diets does not affect intake and absorption of zinc and copper in men-evidence from two cross-over trials. Food Funct. 2013, 4, 409–419. [Google Scholar] [CrossRef]
- Rembiałkowska, E. Review Quality of plant products from organic agriculture. J. Sci. Food Agric. 2007, 87, 2757–2762. [Google Scholar] [CrossRef]
- Kratz, S.; Schick, J.; Schnug, E. Trace elements in rock phosphates and P containing mineral and organo-mineral fertilizers sold in Germany. Sci. Total Environ. 2016, 542, 1013–1019. [Google Scholar] [CrossRef]
- Marchioni, C.; de Oliveira, F.M.; de Magalhães, C.S.; Luccas, P.O. Assessment of Cadmium and Lead Adsorption in Organic and Conventional Coffee. Anal. Sci. 2015, 31, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Schnug, E.; Haneklaus, N. Uranium in Phosphate Fertilizers—Review and Outlook. Uranium—Past and Future Challenges; Springer International Publishing: Cham, Switzerland, 2015; pp. 123–130. [Google Scholar]
- De Kok, L.J.; Luit, J.; Schnug, E. Loads and Fate of Fertilizer-Derived Uranium; Backhuys Publishers, 2008; p. 229. [Google Scholar]
- Mie, A.; Andersen, H.R.; Gunnarsson, S.; Kahl, J.; Kesse-Guyot, E.; Rembiałkowska, E.; Quaglio, G.; Grandjean, P. Human health implications of organic food and organic agriculture: A comprehensive review. Environ. Health 2017, 16, 111. [Google Scholar] [CrossRef]
- Syers, J.K.; Johnston, A.E.; Curtin, D. Efficiency of Soil and Fertilizer Phosphorus Use Reconciling Changing Concepts of Soil Phosphorus Behaviour with Agronomic Information. 2008. Available online: http://www.fao.org/3/a-a1595e.pdf (accessed on 10 June 2019).
- Environmental Defense Fund (EDF). Consumer Reports Study Finds “Concerning Levels” of Heavy Metals in Baby and Toddler Foods. Available online: https://www.edf.org/media/consumer-reports-study-finds-concerning-levels-heavy-metals-baby-and-toddler-foods (accessed on 10 June 2019).
Characteristics | |
---|---|
Males, n (%) | 9 (47) |
Occasional intake of organic products, n (%) | 14 (74) |
Age (years) | 30 ± 1 |
Physical activity in leisure time (METS-min/week) | 3814 ± 489 |
14-item MedDiet score (points) | 9 ± 0.3 |
Weight (kg) | 63 ± 2 |
BMI (kg/m2) | 22.1 ± 0.4 |
Waist (cm) | 76 ± 1 |
WHR | 0.79 ± 0.01 |
DBP (mmHg) | 75 ± 2 |
SBP (mmHg) | 116 ± 2 |
Heart rate (bpm) | 68 ± 2 |
CRP (mg/dL) | 0.14 ± 0.03 |
HDL (mg/dL) | 62 ± 3 |
LDL (mg/dL) | 93 ± 5 |
Total cholesterol (mg/dL) | 169 ± 6 |
Triglycerides (mg/dL) | 69 ± 4 |
Urea (mg/dL) | 29 ± 1 |
Creatinine (mg/dL) | 0.80 ± 0.02 |
Uric acid (mg/dL) | 4.60 ± 0.18 |
Total proteins (g/L) | 72 ± 1 |
Albumin (g/L) | 44 ± 0 |
OD | CD | p | |
---|---|---|---|
Nutrient intake | |||
Energy (kcal/d) | 1965 ± 203 | 2062 ± 204 | 0.070 |
Carbohydrates (g/d) | 211 ± 21 | 220 ± 22 | 0.260 |
Total fat (g/d) | 88 ± 9 | 92 ± 9 | 0.091 |
SFA (g/d) | 22 ± 3 | 23 ± 3 | 0.064 |
MUFA (g/d) | 45 ± 4 | 46 ± 4 | 0.136 |
PUFA (g/d) | 12 ± 2 | 12 ± 1 | 0.136 |
Protein (g/d) | 68 ± 9 | 72 ± 9 | 0.036 * |
Ca (mg/d) | 780 ± 111 | 847 ± 110 | 0.024 * |
Mg (mg/d) | 344 ± 37 | 353 ± 39 | 0.376 |
P (mg/d) | 1352 ± 171 | 1433 ± 169 | 0.018 * |
Fe (mg/d) | 16 ± 1 | 16 ± 2 | 0.376 |
Food intake | |||
Dairy products (g/d) | 192 ± 52 | 207 ± 50 | 0.051 |
Meat (g/d) | 98 ± 20 | 102 ± 19 | 0.202 |
Eggs (g/d) | 28 ± 3 | 31 ± 3 | 0.180 |
Fish and seafood (g/d) | 56 ± 16 | 66 ± 16 | 0.042 * |
Vegetables (g/d) | 296 ± 32 | 366 ± 39 | 0.055 |
Fruits (g/d) | 360 ± 68 | 377 ± 70 | 0.650 |
Nuts (g/d) | 13 ± 5 | 12 ± 5 | 0.950 |
Legumes (g/d) | 26 ± 5 | 26 ± 5 | 0.528 |
Cereals (g/d) | 98 ± 11 | 98 ± 10 | 0.717 |
Oils (g/d) | 40 ± 4 | 40 ± 4 | 0.317 |
Cocoa (g/d) | 18 ± 5 | 21 ± 8 | 0.812 |
Coffee (g/d) | 62 ± 16 | 59 ± 16 | 0.600 |
Tea (g/d) | 22 ± 7 | 17 ± 7 | 0.106 |
Wine (g/d) | 54 ± 23 | 62 ± 28 | 0.634 |
OD | CD | p | |
---|---|---|---|
Anthropometric measurements | |||
Weight (kg) | 64 ± 2 | 63 ± 2 | 0.365 |
BMI | 22.1 ± 0.6 | 22.2 ± 0.6 | 0.352 |
Waist (cm) | 76 ± 1 | 76 ± 1 | 0.549 |
WHR | 0.80 ± 0.01 | 0.79 ± 0.01 | 0.822 |
Clinical measurements | |||
DBP (mmHg) | 79 ± 2 | 73 ± 2 | 0.074 |
SBP (mmHg) | 119 ± 4 | 118 ± 3 | 0.979 |
Heart rate (bpm) | 70 ± 3 | 66 ± 2 | 0.326 |
Biochemical measurements | |||
CRP (mg/dL) | 0.17 ± 0.07 | 0.26 ± 0.11 | 0.438 |
HDL (mg/dL) | 62 ± 4 | 60 ± 4 | 0.301 |
LDL (mg/dL) | 92 ± 9 | 90 ± 7 | 0.653 |
Total cholesterol (mg/dL) | 168 ± 9 | 164 ± 7 | 0.494 |
Triglycerides (mg/dL) | 66 ± 4 | 68 ± 4 | 0.421 |
Urea (mg/dL) | 29 ± 2 | 29 ± 2 | 0.913 |
Creatinine (mg/dL) | 0.80 ± 0.03 | 0.79 ± 0.02 | 0.763 |
Uric acid (mg/dL) | 4.55 ± 0.29 | 4.68 ± 0.26 | 0.456 |
Total proteins (g/L) | 73 ± 1 | 71 ± 1 | 0.145 |
Albumin (g/L) | 44 ± 1 | 43 ± 1 | 0.136 |
OD | CD | p | |
---|---|---|---|
Na (ppm) | 2991 ± 20 | 2992 ± 19 | 0.445 |
K (ppm) | 839 ± 14 | 844 ± 11 | 0.778 |
Ca (ppm) | 88 ± 1 | 88 ± 1 | 0.717 |
Mg (ppm) | 18 ± 0 | 18 ± 0 | 0.778 |
P (ppm) | 104 ± 3 | 100 ± 3 | 0.136 |
Fe (ppb) | 1252 ± 127 | 1339 ± 107 | 0.601 |
Zn (ppb) | 778 ± 98 | 785 ± 46 | 0.376 |
Cu (ppb) | 858 ± 64 | 856 ± 71 | 0.904 |
As (ppb) | 4.35 ± 2.27 | 3.99 ± 0.95 | 0.221 |
Pb (ppb) | BLD | BLD | - |
Cd (ppb) | BLD | BLD | - |
U (ppb) | BLD | BLD | - |
OD | CD | p | |
---|---|---|---|
Phenylacetic acids | |||
3,4-DHPAA (nmol) | 90 ± 35 | 35 ± 9 | 0.42 |
3-HPAA (nmol) | 943 ± 594 | 941 ± 440 | 0.717 |
Homovanillic (nmol) | 154 ± 60 | 108 ± 27 | 0.868 |
Phenylpropionic acids | |||
3,4-HPPA (nmol) | 10 ± 3 | 27 ± 12 | 0.407 |
DHCA (nmol) | 1.2 ± 0.4 | 1.2 ± 0.4 | 0.955 |
Hydroxybenzoic and derivatives | |||
4-HBA (nmol) | 205 ± 123 | 70 ± 35 | 0.028 * |
4-HH (nmol) | 471 ± 225 | 212 ± 85 | 0.306 |
Hippuric (nmol) | 1281 ± 235 | 1463 ± 211 | 0.231 |
Hydroxycinnamic and derivatives | |||
CA (nmol) | 7 ± 2 | 10 ± 2 | 0.349 |
m-Cou (nmol) | 0.5 ± 0.3 | 0.26 ± 0.07 | 0.501 |
p-Cou (nmol) | 0.3 ± 0.7 | 0.54 ± 0.19 | 0.554 |
GA (nmol) | 0.48 ± 0.45 | 0.07 ± 0.03 | 0.878 |
OD | CD | p | |
---|---|---|---|
α-carotene (nmol/mL) | 0.39 ± 0.09 | 0.27 ± 0.06 | 0.552 |
β-carotene (nmol/mL) | 1.03 ± 0.24 | 0.95 ± 0.22 | 0.744 |
E-lycopene (nmol/mL) | 0.7 ± 0.17 | 0.78 ± 0.18 | 0.913 |
Z-lycopene (nmol/mL) | 0.15 ± 0.04 | 0.20 ± 0.05 | 0.379 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hurtado-Barroso, S.; Quifer-Rada, P.; Marhuenda-Muñoz, M.; Rinaldi de Alvarenga, J.F.; Tresserra-Rimbau, A.; Lamuela-Raventós, R.M. Increase of 4-Hydroxybenzoic, a Bioactive Phenolic Compound, after an Organic Intervention Diet. Antioxidants 2019, 8, 340. https://doi.org/10.3390/antiox8090340
Hurtado-Barroso S, Quifer-Rada P, Marhuenda-Muñoz M, Rinaldi de Alvarenga JF, Tresserra-Rimbau A, Lamuela-Raventós RM. Increase of 4-Hydroxybenzoic, a Bioactive Phenolic Compound, after an Organic Intervention Diet. Antioxidants. 2019; 8(9):340. https://doi.org/10.3390/antiox8090340
Chicago/Turabian StyleHurtado-Barroso, Sara, Paola Quifer-Rada, María Marhuenda-Muñoz, Jose Fernando Rinaldi de Alvarenga, Anna Tresserra-Rimbau, and Rosa M. Lamuela-Raventós. 2019. "Increase of 4-Hydroxybenzoic, a Bioactive Phenolic Compound, after an Organic Intervention Diet" Antioxidants 8, no. 9: 340. https://doi.org/10.3390/antiox8090340
APA StyleHurtado-Barroso, S., Quifer-Rada, P., Marhuenda-Muñoz, M., Rinaldi de Alvarenga, J. F., Tresserra-Rimbau, A., & Lamuela-Raventós, R. M. (2019). Increase of 4-Hydroxybenzoic, a Bioactive Phenolic Compound, after an Organic Intervention Diet. Antioxidants, 8(9), 340. https://doi.org/10.3390/antiox8090340