Antioxidant Activity and Phenolic Profile of Selected Organic and Conventional Honeys from Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Samples
2.3. Sample Preparation
2.4. Characterization of Chemical Components Using Folin–Ciocalteau Assay
2.5. Quantification of Chemical Components Using LC-DAD/ESI-MSD
2.6. RP-HPLC-Online-TEAC
2.7. Color
2.8. Statistical Analysis
3. Results and Discussion
3.1. Phenolic Compound Profiles
3.2. Total Phenolic Content (TPC)
3.3. Total Antioxidant Activity (AOX)
3.4. Color Parameters (L*, a*, b*)
3.5. Comparison of Organic and Conventional Samples
3.6. Correlations between Tested Parameters of Honey
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- David, W.B. The chemical composition of honey. J. Chem. Educ. 2007, 84, 1647. [Google Scholar]
- Al-Mamary, M.; Al-Meeri, A.; Al-Habori, M. Antioxidant activities and total phenolics of different types of honey. Nutr. Res. 2002, 22, 1041–1047. [Google Scholar] [CrossRef]
- Gheldof, N.; Wang, X.; Engeseth, N.J. Identification and quantification of antioxidant components of honeys from various floral sources. J. Agric. Food Chem. 2002, 50, 5870–5877. [Google Scholar] [CrossRef]
- Schramm, D.D.; Karim, M.; Schrader, H.R.; Holt, R.R.; Cardetti, M.; Keen, C.L. Honey with high levels of antioxidants can provide protection to healthy human subjects. J. Agric. Food Chem. 2003, 51, 1732–1735. [Google Scholar] [CrossRef]
- Vela, L.; de Lorenzo, C.; Pérez, R.A. Antioxidant capacity of Spanish honeys and its correlation with polyphenol content and other physicochemical properties. J. Sci. Food Agric. 2007, 87, 1069–1075. [Google Scholar] [CrossRef]
- Chua, L.S.; Rahaman, N.L.A.; Adnan, N.A.; Eddie Tan, T.T. Antioxidant activity of three honey samples in relation with their biochemical components. J. Anal. Methods Chem. 2013, 8. [Google Scholar] [CrossRef]
- Elbanna, K.; Attalla, K.; Elbadry, M.; Abdeltawab, A.; Gamal-Eldin, H.; Fawzy Ramadan, M. Impact of floral sources and processing on the antimicrobial activities of different unifloral honeys. Asian Pacific J. Trop. Diss. 2014, 4, 194–200. [Google Scholar] [CrossRef]
- Flanjak, I.; Kenjeric, D.; Bubalo, D.; Primorac, L. Characterisation of selected Croatian honey types based on the combination of antioxidant capacity, quality parameters, and chemometrics. Eur. Food Res. Technol. 2016, 242, 467–475. [Google Scholar] [CrossRef]
- Kıvrak, S.; Kıvrak, I. Assessment of phenolic profile of Turkish honeys. Int. J. Food Prop. 2017, 20, 864–876. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Suarez, J.M.; Giampieri, F.; Battino, M. Honey as a source of dietary antioxidants: Structures, bioavailability and evidence of protective effects against human chronic diseases. Curr. Med. Chem. 2013, 20, 621–638. [Google Scholar] [CrossRef] [PubMed]
- Sousa, J.M.; de Souza, E.L.; Marques, G.; Meireles, B.; de Magalhães Cordeiro, Â.T.; Gullón, B.; Pintado, M.M.; Magnani, M. Polyphenolic profile and antioxidant and antibacterial activities of monofloral honeys produced by Meliponini in the Brazilian semiarid region. Food Res. Int. 2016, 84, 61–68. [Google Scholar] [CrossRef]
- Baek, Y.; Kim, Y.J.; Baik, M.; Kim, D.; Lee, H. Total Phenolic Contents and Antioxidant Activities of Korean Domestic Honey from Different Floral Sources. Food Sci. Biotechnol. 2015, 24, 1453–1457. [Google Scholar] [CrossRef]
- Badolato, M.; Carullo, G.; Cione, E.; Aiello, F.; Caroleo, M.C. From the hive: Honey, a novel weapon against cancer. Eur. J. Med. Chem. 2017, 142, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Anklam, E.A. Review of the analytical methods to determine the geographical and botanical origin of honey. Food Chem. 1998, 63, 549–562. [Google Scholar] [CrossRef]
- Kavanagh, S.; Gunnoo, J.; Passos, T.M.; Stout, J.C.; White, B. Physicochemical properties and phenolic content of honey from different floral origins and from rural versus urban landscapes. Food Chem. 2019, 272, 66–75. [Google Scholar] [CrossRef]
- Subramanian, A.P.; John, A.A.; Vellayappan, M.V.; Balaji, A.; Jaganathan, S.K.; Mandal, M.; Supriyant, E. Honey and its phytochemicals: Plausible agents in combating colon cancer through its diversified action. J. Food Biochem. 2016, 40, 613–629. [Google Scholar] [CrossRef]
- Di Marco, G.; Manfredini, A.; Leonardi, D.; Canuti, L.; Impei, S.; Gismondi, A.; Canini, A. Geographical, botanical and chemical profile of monofloral Italian honeys as food quality guarantee and territory brand. Plant. Biosyst. 2017, 151, 450–463. [Google Scholar] [CrossRef]
- Al, M.L.; Daniel, D.; Moise, A.; Bobis, O.; Laslo, L.; Bogdanov, S. Physicochemical and bioactive properties of different floral origin honeys from Romania. Food Chem. 2009, 112, 863–867. [Google Scholar] [CrossRef]
- Pichichero, E.; Canuti, L.; Canini, A. Characterisation of the phenolic and flavonoid fractions and antioxidant power of Italian honeys of different botanical origin. J. Sci. Food Agric. 2009, 89, 609–616. [Google Scholar] [CrossRef]
- Paramas, A.M.G.; Barez, J.A.G.; Marcos, C.C.; Garcıa-Villanova, R.J.; Sanchez, J.S. HPLC-fluorimetric method for analysis of amino acids in products of the hive (honey and bee-pollen). Food Chem. 2006, 95, 146–156. [Google Scholar] [CrossRef]
- Blasa, M.; Candiracci, M.; Accorsi, A.; Piacentini, M.P.; Albertini, M.C.; Piatti, E. Raw Millefiori honey is packed full of antioxidants. Food Chem. 2006, 97, 217–222. [Google Scholar] [CrossRef]
- Wesołowska, M.; Dżugan, M. The Use of the PHOTOCHEM Device in Evaluation of Antioxidant Activity of Polish Honey. Food Anal. Methods 2017, 10, 1568–1574. [Google Scholar] [CrossRef]
- Jasicka-Misiak, I.; Poliwoda, A.; Dereń, M.; Kafarski, P. Phenolic compounds and abscisic acid as potential markers for the floral origin of two Polish unifloral honeys. Food Chem. 2012, 131, 1149–1156. [Google Scholar] [CrossRef]
- Tezcan, F.; Kolayli, S.; Sahin, H.; Ulusoy, E.; Erim, F.B. Evaluation of organic acid, saccharide composition and antioxidant properties of some authentic Turkish honeys. J. Food Nutr. Res. 2011, 50, 33–40. [Google Scholar]
- Matt, D.; Rembiałkowska, E.; Luik, A.; Peetsmann, E.; Pehme, S. Quality of Organic vs Conventional Food and Effects on Health: Report; Estonian University of Life Sciences: Tartu, Estonia, 2011. [Google Scholar]
- Wilczyńska, A.; Przybyłowski, P.; Rój, A. Próba identyfikacji związków fenolowych w miodach pszczelich (An attempt to identify by the phenolics content of honey). Bromat. Chem. Toksykol. 2005, XXXVII, 197–201. [Google Scholar]
- Wilczyńska, A.; Przybyłowski, P.; Rój, A. Investigations of phenolic acids and abscisic acid in different types of honey. In Current Trends in Commodity Science, Proceedings of the 8th International Commodity Science Conference; Poznan University of Economics Publishing: Tartu, Estonia, 2005; pp. 1298–1303. [Google Scholar]
- Wilczyńska, A. Phenolic content and antioxidant activity of different types of polish honey—A short report. Pol. J. Food Nutr. Sci. 2010, 60, 309–313. [Google Scholar]
- Socha, R.; Juszczak, L.; Pietrzyk, S.; Gałkowska, D.; Fortuna, T.; Witczak, T. Phenolic profile and antioxidant properties of Polish honeys. Int. J. Food Sci. Technol. 2011, 46, 528–534. [Google Scholar] [CrossRef]
- Louveaux, J.; Maurizio, A.; Vorwohl, G. Methods of melissopalynology (republished and updated). Bee World 1978, 59, 139–157. [Google Scholar] [CrossRef]
- Flores, M.S.R.; Escuredo, O.; Seijo, M.C. Assessment of physicochemical and antioxidant characteristics of Quercus pyrenaica honeydew honeys. Food Chem. 2015, 166, 101–106. [Google Scholar] [CrossRef]
- Moar, N.T. Pollen analysis of New Zealand honey. New Zeal. J. Agr. Res. 1985, 28, 39–70. [Google Scholar] [CrossRef]
- Yao, L.; Jiang, Y.; Singanusong, R.; Datta, N.; Raymont, K. Phenolic acids and abscisic acid in Australian Eucalyptus honeys and their potential for floral authentication. Food Chem. 2004, 86, 169–177. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar]
- Pedan, V.; Popp, M.; Rohn, S.; Nyfeler, M.; Bongartz, A. Characterization of Phenolic Compounds and Their Contribution to Sensory Properties of Olive Oil. Molecules 2019, 24, 2041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLaren, K. The development of the CIE 1976 (L*a*b*) Uniform Colour-Space and Colour-Difference Formula. J. Soc. Dyers Colour. 1976, 92, 338–341. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Hinkle, D.E.; Wiersma, W.; Jurs, S.G. Applied Statistics for the Behavioral Sciences, 5th ed.; Houghton Mifflin: Boston, MA, USA, 2003. [Google Scholar]
- Jasicka-Misiak, I.; Makowicz, E.; Stanek, N. Polish Yellow Sweet Clover (Melilotus officinalis L.) Honey, Chromatographic Fingerprints, and Chemical Markers. Molecules 2017, 22, 138. [Google Scholar] [CrossRef] [Green Version]
- Gašić, U.; Kečkeš, S.; Dabić, D.; Trifković, J.; Milojković-Opsenica, D.; Natić, M.; Tešić, Ž. Phenolic profile and antioxidant activity of Serbian polyfloral honeys. Food Chem. 2014, 145, 599–607. [Google Scholar] [CrossRef]
- Habib, H.M.; Al Meqbali, F.T.; Kamal, H.; Souka, U.D.; Ibrahim, W.H. Bioactive components, antioxidant and DNA damage inhibitory activities of honeys from arid regions. Food Chem. 2014, 153, 28–34. [Google Scholar] [CrossRef]
- Can, Z.; Oktay, Y.; Sahin, H.; Turumtay, E.A.; Silic, S.; Kolayli, S. An investigation of Turkish honeys: Their physicochemical properties, antioxidant capacities and phenolic profiles. Food Chem. 2015, 180, 133–141. [Google Scholar] [CrossRef]
- Do Nascimento, K.S.; Sattler, J.A.G.; Macedo, L.F.L.; González, C.V.S.; de Melo, I.L.P.; da Silva Araújo, E.; Granato, D.; Sattler, A.; de Almeida-Muradian, L.B. Phenolic compounds, antioxidant capacity and physicochemical properties of Brazilian Apis mellifera honeys. LWT-Food Sci. Technol. 2018, 91, 85–94. [Google Scholar] [CrossRef]
- Zhao, H.; Cheng, N.; He, L.; Peng, G.; Xue, X.; Wu, L.; Cao, W. Antioxidant and hepatoprotective effects of A. cerana honey against acute alcohol-induced liver damage in mice. Food Res. Int. 2017, 101, 35–44. [Google Scholar] [CrossRef]
- Oroian, M.; Ropciuc, S. Romanian honey authentication using voltammetric electronic tongue. Correlation of voltammetric data with physico-chemical parameters and phenolic compounds. Comput. Electron. Agr. 2019, 157, 371–379. [Google Scholar] [CrossRef]
- Salonen, A.; Virjamo, V.; Tammela, P.; Fauch, L.; Julkunen-Tiitto, R. Screening bioactivity and bioactive constituents of Nordic unifloral honeys. Food Chem. 2017, 237, 214–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moskwa, J.; Borawska, M.H.; Markiewicz-Zukowska, R.; Puscion-Jakubik, A.; Naliwajko, S.K.; Socha, K.; Soroczynska, J. Polish Natural Bee Honeys Are Anti-Proliferative and Anti-Metastatic Agents in Human Glioblastoma multiforme U87MG Cell Line. PLoS ONE 2014, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kuś, P.M.; Congiu, F.; Teper, D.; Sroka, Z.; Jerković, I.; Tuberoso, C.I.G. Antioxidant activity, color characteristics, total phenol content and general HPLC fingerprints of six Polish unifloral honey types. LWT-Food Sci. Technol. 2014, 55, 124–130. [Google Scholar] [CrossRef]
- Moise, A.; Liviu, A.M.; Dezmirean, D.; Bobis, O. Nutraceutical properties of Romanian heather honey. Nutr. Food Sci. 2013, 43, 218–227. [Google Scholar] [CrossRef]
- Pérez Martín, R.A.; Hortigüela, L.V.; Lozano, P.L.; Cortina, M.D.R.; de Lorenzo Carretero, C. In Vitro Antioxidant and Antimicrobial Activities of Spanish Honeys. Int. J. Food Prop. 2008, 11, 727–737. [Google Scholar] [CrossRef]
- Bertoncelj, J.; Doberšek, U.; Jamnik, M.; Golob, T. Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem. 2007, 105, 822–828. [Google Scholar] [CrossRef]
- Bueno-Costa, F.M.; Zambiazi, R.C.; Bohmer, B.W.; Chaves, F.C.; da Silva, W.P.; Zanusso, J.T.; Dutra, I. Antibacterial and antioxidant activity of honeys from the state of Rio Grande do Sul. Brazil. LWT-Food Sci. Technol. 2016, 65, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Attanzio, A.; Tesoriere, L.; Allegra, M.; Livrea, M.A. Monofloral honeys by Sicilian black honeybee (Apis mellifera ssp. sicula) have high reducing power and antioxidant capacity. Food Sci. 2016, 2, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Boussaid, A.; Chouaibi, M.; Rezig, L.; Hellal, R.; Donsì, F.; Ferrari, G.; Hamdi, S. Physicochemical and bioactive properties of six honey samples from various floral origins from Tunisia. Arab. J. Chem. 2014, 11, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Suarez, J.M.; Giampieri, F.; Brenciani, A.; Mazzoni, L.; Gasparrini, M.; González--Paramás, A.M.; Santos-Buelga, C.; Morroni, G.; Simoni, S.; Forbes-Hernández, T.Y.; et al. Apis mellifera vs melipona beecheii cuban polifloral honeys: A comparison based on their physicochemical parameters, chemical composition and biological properties. LWT–Food Sci. Technol. 2018, 87, 272–279. [Google Scholar] [CrossRef]
- Serem, J.C.; Bester, M.J. Physicochemical properties, antioxidant activity and cellular protective effects of honeys from southern Africa. Food Chem. 2012, 133, 1544–1550. [Google Scholar] [CrossRef]
- Escuredo, O.; Miguez, M.; Maria Fernandez-Gonzalez, M.; Seijo, M.C. Nutritional value and antioxidant activity of honeys produced in a European Atlantic area. Food Chem. 2013, 138, 851–856. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Deng, Q.; Lu, Q. Anti-alcoholic effects of honeys from different floral origins and their correlation with honey chemical compositions. Food Chem. 2019, 286, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Noor, N.; Sarfraz, R.A.; Ali, S.; Shahid, M. Antitumour and antioxidant potential of some selected Pakistani honeys. Food Chem. 2014, 143, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Imtara, H.; Elamine, Y.; Lyoussi, B. Physicochemical characterization and antioxidant activity of Palestinian honey samples. Food Sci. Nutr. 2018, 6, 2056–2065. [Google Scholar] [CrossRef]
- Lachman, J.; Orsák, M.; Hejtmánková, A.; Kovářová, E. Evaluation of antioxidant activity and total phenolics of selected Czech honeys. LWT-Food Sci. Technol. 2010, 43, 52–58. [Google Scholar] [CrossRef]
- Al-Farsi, M.; Al-Amri, A.; Al-Hadhrami, A.; Al-Belushi, S. Color, flavonoids, phenolics and antioxidants of Omani honey. Heliyon 2018, 4, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Nicolas, J.J.; Richard-Forget, F.C.; Goupy, P.M.; Amoit, M.; Aubert, S.Y. Enzymatic browning reactions in apple and apple products. Crit. Rev. Food Sci. Nutr. 1994, 34, 109–157. [Google Scholar] [CrossRef]
- Brudzynski, K.; Miotto, D. Honey melanoidins: Analysis of the compositions of the high molecular weight melanoidins exhibiting radical-scavenging activity. Food Chem. 2011, 127, 1023–1030. [Google Scholar] [CrossRef]
- Yao, Z.-Y.; Qi, J.-H. Comparison of Antioxidant Activities of Melanin Fractions from Chestnut Shell. Molecules 2016, 21, 487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langner, E.; Rzeski, W. Biological Properties of Melanoidins: A Review. Int. J. Food Prop. 2014, 17, 344–353. [Google Scholar] [CrossRef]
- Manzocco, L.; Calligaris, S.; Mastrocola, D.; Nicoli, M.C.; Lerici, C.R. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends Food Sci. Tech. 2000, 11, 340–346. [Google Scholar] [CrossRef]
- Brudzynski, K.; Sjaarda, C.; Maldonado-Alvarez, L. A new look on protein-polyphenol complexation during honey storage: Is this a random or organized event with the help of dirigent-like proteins? PLoS ONE 2013, 8, e72897. [Google Scholar] [CrossRef] [Green Version]
- Khalil, M.I.; Sulaiman, S.A.; Boukraa, L. Antioxidant Properties of Honey and Its Role in Preventing Health Disorder. Open Nutraceuticals J. 2010, 3, 6–16. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, X.; Zhang, G.; Kong, L.; Peng, W.; Zhang, H. Galangin and Pinocembrin from Propolis Ameliorate Insulin Resistance in HepG2 Cells via Regulating Akt/mTOR Signaling. Evid-Based Compl. Alt. 2018, 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Meda, A.; Lamien, C.E.; Romito, M.; Millogo, J.; Nacoulma, O.G. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 2005, 91, 571–577. [Google Scholar] [CrossRef]
- Gheldof, N.; Wang, X.H.; Engeseth, N.J. Buckwheat honey increases serum antioxidant capacity in humans. J. Agric. Food Chem. 2003, 51, 1500–1505. [Google Scholar] [CrossRef]
- Gheldof, N.; Engeseth, N.J. Antioxidant capacity of honeys from various floral sources based on the determination of oxygen radical absorbance capacity and inhibition of in vitro lipoprotein oxidation in human serum samples. J. Agric. Food Chem. 2002, 50, 3050–3055. [Google Scholar] [CrossRef]
- Küçük, M.; Kolayli, S.; Karaoǧlu, Ş.; Ulusoy, E.; Baltaci, C.; Candan, F. Biological activities and chemical composition of three honeys of different types from Anatolia. Food Chem. 2007, 100, 526–534. [Google Scholar] [CrossRef]
- Gül, A.; Pehlivan, T. Antioxidant activities of some monofloral honey types produced across Turkey. Saudi J. Biol. Sci. 2018, 25, 1056–1065. [Google Scholar] [CrossRef] [PubMed]
Sample No | Variety-Declaration by Producer | The Determined Pollens of Nectar Honeys/the Determined Conductivity of Honeydew Honeys | Variety According to Pollen Analysis Results | ||||
---|---|---|---|---|---|---|---|
Dominant Pollens >45%/Conductivity | Accompanying Pollens <15–45% | Important Pollens <3–15% | Other Pollens <3% | Wind Pollinating and no Nectar Producing Plants Pollens | |||
1 | Linden * | linden: 22.7% white/sweet clover: 19.4% | Brassicaceae: 12.9% chervil: 12.4% plum/apple tree: 7.1% willow: 7.0% red clover: 4.8% thistle: 3.2% | dandelion: 2.2% blue cornflower: 1.6% other: 6.7% | oak: 2.1% sorrel: 1.5% Plantago lanceolata L.: 2.0% | Multifloral | |
2 | Linden ** | Brassicaceae: 42.3% | white/sweet clover: 12.7% chervil: 8.5% plum/apple tree: 7.4% linden: 6.3% blue cornflower: 5.8% red clover: 3.2% | dandelion: 2.6% vicia: 2.5% thistle: 2.1% phacelia: 1.1% other: 5.5% | oak: 5.8% sorrel: 2.4% | Multifloral | |
4 | Goldenrod * | Brassicaceae: 43.4% goldenrod: 25.5% | plum/apple tree: 11.1% heather: 4.8% white/sweet clover: 3.4% | phacelia: 2.7% red clover: 2.1% linden: 0.7% other: 5.5% | goosefoot: 0.7% corn: 0.5% pine: 0.3% | ||
3 | Goldenrod ** | goldenrod: 55.8% | phacelia: 21.5% | heather: 7.7% buckwheat: 6.1% Brassicaceae: 5.5% | blue cornflower: 1.1% other: 2.3% | mugwort: 1.1% sorrel: 0.6% Plantago lanceolata L.: 0.5% | Goldenrod |
5 | Dandelion* | rapeseed: 79.7% | willow: 11.1% plum/apple tree: 6.1% | other: 3.1% | oak: 0.9% | Rapeseed | |
6 | Dandelion ** | rapeseed: 53.4% | willow: 27.7% | raspberry: 6.5% plum/apple tree: 5.9% chervil: 5.6% | other: 0.9% | Plantago lanceolata L.: 3.3% | Rapeseed |
8 | Heather * | heather: 65.6% | phacelia: 10.0% buckwheat: 9.7% rapeseed: 4.3% blue cornflower: 3.8% | Achillea millefolium L.: 2.2% linden: 0.9% other: 5.4% | sorrel: 1.2% | Heather | |
7 | Heather ** | heather: 47.9% | phacelia: 12.7% rapeseed: 11.9% blue cornflower: 7.3% white/sweet clover: 5.7% red clover: 4.6% buckwheat: 4.5% | other: 5.4% | Heather | ||
9 | Acacia * | rapeseed: 41.2% raspberry: 21.8% | maple: 10.1% Frangula alnus Mill.: 8.4% willow: 7.6% blue cornflower: 5.1% | other: 5.8% | Multifloral | ||
10 | Acacia ** | rapeseed: 50.1% | phacelia: 37.4% | plum/apple tree: 3.7% | Achillea millefolium L.: 2.6% sunflower: 2.1% blue cornflower: 1.7% vicia: 1.1% | Rapeseed | |
12 | Buckwheat * | rapeseed: 45.5% | buckwheat: 19.9% | sunflower: 10.9% white/sweet clover: 9.6% vicia: 3.8% thistle: 3.2% | other: 7.1% | mugwort: 5.8% corn: 1.7% Plantago lanceolata L.: 0.6% | Rapeseed |
11 | Buckwheat ** | white/sweet clover: 39.7% phacelia: 19.6% buckwheat: 17.2% | blue cornflower: 9.5% red clover: 7.1% | other: 6.9% | pine: 0.9% oak: 0.8% | Multifloral | |
14 | Honeydew * | Conductivity: 1.05 mS/cm | raspberry/blueberry, white clover, Plantago lanceolata L., Frangula alnus Mill., blue cornflower. | Coniferous honeydew | |||
13 | Honeydew ** | Conductivity: 0.67 mS/cm | raspberry/blueberry, Impatiens L., linden, Heracleum L., linden, grass, dandelion, Achillea millefolium L., red clover. | Nectar-honeydew | |||
15 | Bean * | rapeseed: 44.6% white/sweet clover: 17.1% | raspberry: 12.7% Asteraceae: 10.6% thistle: 4.2% | phacelia: 2.1% other: 8.7% | mugwort: 62.2% corn: 0.8% Plantago lanceolata L.: 1.5% | Multifloral | |
16 | Bean ** | rapeseed: 59.8% | Medicago sativa L.: 10.7% raspberry: 8.1% white/sweet clover: 6.3% blue cornflower: 3.6% | chervil: 2.7% vicia: 2.6% thistle: 1.8% other: 4.4% | Rapeseed | ||
18 | Rapeseed * | rapeseed: 86.4% | willow: 6.8% maple: 3.1% | plum/apple tree: 2.1% other: 1.6% | Rapeseed | ||
17 | Rapeseed ** | rapeseed: 86.2% | willow: 7.7% plum/apple tree: 4.5% | other: 1.6% | pine: 2.1% | Rapeseed | |
19 | Wild raspberry * | rapeseed: 79.6% | phacelia: 13.4% | willow: 2.2%; blue cornflower: 2.1% red clover: 0.9% other: 1.8% | pine: 3.9% | Rapeseed | |
20 | Wild raspberry ** | rapeseed: 54.6% | raspberry: 26.6% | plum/apple tree: 8.5% phacelia: 4.1% | buckwheat: 1.5% dandelion: 1.1% Asteraceae: 0.7% other: 2.9% | oak: 0.7% | Rapeseed |
21 | Forest * | rapeseed: 56.1% | willow: 15.2% | Frangula alnus Mill.: 11.7% raspberry: 8.4% white/sweet clover: 3.6% | red clover: 0.8% other: 4.2% | oak: 2.6% Plantago lanceolata L.: 3.5% sorrel: 1.7% goosefoot: 1.4% | Rapeseed |
22 | Forest ** | rapeseed: 38.9% | willow: 14.6% chervil: 13.7% maple: 8.9% linden: 7.3% white/sweet clover: 6.6% raspberry: 4.3% | Frangula alnus Mill.: 1.9% sunflower: 0.6% Other: 3.2% | oak: 0.9% sorrel: 0.3% | Multifloral |
Sample No | 1 * | 2 ** | 3 ** | 4 * | 5 * | 6 ** | 7 ** | 8 * | 9 * | 10 ** | 11 ** | 12 * | 13 ** | 14 * | 15 * | 16 ** | 17 ** | 18 * | 19 * | 20 ** | 21 * | 22 ** |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AOX [mg GAE/100 g] | 53.33 (2.36) | 71.58 (10.03) | 77.58 (2.42) | 53.94 (0.90) | 54.42 (2.04) | 45.65 (2.54) | 56.25 (8.73) | 47.63 (4.08) | 46.23 (12.47) | 55.12 (2.02) | 67.28 (4.14) | 58.30 (0.18) | 45.58 (0.20) | 50.24 (0.65) | 51.81 (1.77) | 83.16 (2.56) | 53.37 (3.43) | 54.37 (1.95) | 54.66 (1.03) | 52.90 (7.45) | 41.42 (1.50) | 55.75 (0.97) |
TPC [mg GAE/100 g] | 3.96 (0.49) | 3.86 (0.38) | 8.15 (0.49) | 5.81 (0.50) | 5.26 (0.64) | 4.08 (0.22) | 14.08 (1.66) | 12.40 (0.77) | 4.15 (0.07) | 4.15 (0.04) | 22.33 (0.81) | 17.95 (1.57) | 6.79 (0.76) | 7.24 (0.24) | 4.07 (0.14) | 3.73 (0.26) | 3.43 (0.19) | 3.93 (0.21) | 4.21 (0.48) | 6.38 (0.07) | 5.69 (0.45) | 4.05 (0.02) |
Chrysin [µg/100 g] | 86 (46) | 79 (23) | 54 (10) | 101 (5) | 85 (11) | 89 (18) | 69 (8) | 108 (7) | 79 (7) | 66 (2) | 67 (4) | 79 (3) | 60 (11) | 71 (3) | 89 (14) | 79 (5) | 53 (6) | 66 (3) | 59 (11) | 38 (6) | 58 (5) | 74 (5) |
Caffeic acid [µg/100 g] | 120 (16) | 98 (0) | 70 (3) | 46 (0) | 56 (0) | 54 (2) | 51 (9) | 194 (24) | 215 (68) | 184 (75) | 110 (38) | 72 (6) | 94 (17) | 37 (6) | 203 (28) | 157 (18) | 52 (3) | 61 (4) | 42 (0) | 107 (20) | 76 (2) | 97 (2) |
p-Coumaric acid [µg/100 g] | 181 (54) | 291 (15) | 526 (35) | 327 (21) | 338 (14) | 166 (157) | 266 (125) | 407 (8) | 272 (13) | 164 (6) | 788 (48) | 427 (7) | 473 (43) | 423 (16) | 539 (55) | 510 (65) | 288 (10) | 210 (13) | 276 (9) | 534 (26) | 170 (10) | 310 (17) |
Pinocembrin [µg/100 g] | 113 (32) | 98 (6) | 30 (3) | 49 (2) | 29 (2) | 51 (14) | 40 (2) | 76 (3) | 69 (16) | 38 (3) | 71 (6) | 59 (1) | 27 (23) | 35 (4) | 63 (9) | 59 (4) | 41 (5) | 48 (4) | 33 (3) | 35 (6) | 42 (10) | 58 (6) |
Luteolin [µg/100 g] | 105 (24) | 56 (6) | nd | nd | 19 (1) | 9 (1) | 8 (0) | 11 (2) | 4 (2) | nd | 3 (1) | 7 (1) | 10 (3) | 9 (0) | 4 (1) | 2 (0) | nd | 1 (0) | nd | 5 (3) | 45 (1) | 64 (10) |
Quercetin [µg/100 g] | 483 (131) | 248 (53) | 35 (4) | 36 (2) | 42 (2) | 37 (4) | 31 (3) | 19 (3) | 25 (1) | 22 (4) | 27 (0) | 57 (4) | 49 (1) | 7 (1) | 2 (8) | 11 (0) | 43 (1) | 20 (14) | 10 (4) | 33 (18) | 63 (2) | 233 (35) |
Kaempferol [µg/100 g] | 36 (19) | 99 (12) | 51 (6) | 76 (5) | 146 (4) | 117 (44) | 80 (34) | 68 (7) | 80 (5) | 105 (5) | 35 (2) | 40 (1) | 92 (38) | 25 (2) | 88 (10) | 71 (9) | 161 (11) | 158 (14) | 99 (2) | 54 (7) | 63 (2) | 63 (10) |
Galangin [mg/100 g] | 126 (89) | 64 (16) | 40 (9) | 63 (0) | 35 (0) | 91 (14) | 63 (15) | 154 (34) | 118 (11) | 58 (5) | 70 (3) | 68 (2) | 51 (10) | 58 (2) | 107 (9) | 143 (10) | 86 (10) | 117 (9) | 54 (5) | 61 (8) | 37 (2) | 63 (5) |
trans-Ferulic acid [µg/100 g] | 252 (66) | 184 (20) | 229 (13) | 170 (15) | 79 (102) | 70 (37) | 81 (33) | 167 (7) | 128 (17) | 84 (4) | 115 (14) | 47 (4) | 204 (115) | 221 (12) | 283 (28) | 213 (32) | 106 (9) | 112 (7) | 87 (1) | 315 (15) | 128 (6) | 179 (4) |
Apigenin [µg/100 g] | 7 (2) | 22 (7) | 10 (1) | 12 (1) | 13 (0) | 17 (3) | 18 (3) | 45 (1) | 15 (0) | 7 (0) | 15 (2) | 11 (1) | 13 (1) | 11 (0) | 29 (3) | 23 (2) | 10 (1) | 13 (1) | 11 (0) | 8 (1) | 11 (0) | 9 (0) |
L * | 59.91 (0.42) | 59.07 (0.10) | 29.26 (0.53) | 52.83 (0.67) | 41.06 (1.05) | 52.46 (0.74) | 29.27 (0.08) | 25.58 (0.26) | 36.42 (0.68) | 55.83 (0.46) | 27.71 (0.45) | 36.04 (0.68) | 33.32 (0.97) | 23.18 (1.24) | 47.48 (0.35) | 34.38 (0.84) | 54.55 (0.36) | 52.47 (0.35) | 43.82 (1.25) | 38.13 (1.73) | 35.26 (0.54) | 57.91 (0.68) |
a * | −1.61 (0.12) | −1.23 (0.19) | 1.89 (0.48) | −0.39 (0.09) | 0.38 (0.11) | −0.91 (0.04) | 7.40 (0.17) | 5.30 (0.27) | −1.38 (0.07) | −1.12 (0.00) | 11.60 (0.68) | 10.14 (0.42) | 6.04 (0.16) | 5.02 (0.16) | −1.03 (0.00) | −1.00 (0.00) | −1.17 (0.01) | −1.02 (0.05) | −1.17 (0.09) | 1.53 (0.26) | 0.98 (0.02) | −0.84 (0.17) |
b * | 11.49 (0.91) | 13.07 (0.33) | 21.61 (0.78) | 16.01 (0.09) | 20.19 (0.16) | 15.52 (0.07) | 29.06 (0.78) | 24.32 (0.44) | 15.97 (0.56) | 12.86 (0.26) | 31.33 (1.41) | 30.45 (1.30) | 27.51 (0.54) | 23.55 (0.62) | 9.96 (0.17) | 7.59 (0.30) | 13.35 (4.87) | 13.71 (0.31) | 13.46 (0.28) | 22.10 (0.37) | 20.01 (0.34) | 15.36 (0.12) |
Parameter | Conventional (N = 11) | Organic (N = 11) | p * |
---|---|---|---|
Chrysin [mg/100 g] | 0.066 (0.014) | 0.08 (0.016) | 0.045 (P) |
Caffeic acid [mg/100 g] | 0.098 (0.043) | 0.102 (0.069) | 0.797 (NP) |
p-Coumaric acid [mg/100 g] | 0.392 (0.19) | 0.325 (0.117) | 0.326 (P) |
Pinocembrin [mg/100 g] | 0.05 (0.021) | 0.056 (0.024) | 0.529 (P) |
Luteolin [mg/100 g] | 0.014 (0.023) | 0.018 (0.032) | 0.817 (NP) |
Quercetin [mg/100 g] | 0.068 (0.086) | 0.069 (0.139) | 0.511 (NP) |
Kaempferol [mg/100 g] | 0.084 (0.036) | 0.08 (0.042) | 0.792 (P) |
Galangin [mg/100 g] | 0.072 (0.028) | 0.085 (0.040) | 0.669 (NP) |
trans-Ferulic acid [mg/100 g] | 0.162 (0.077) | 0.152 (0.075) | 0.769 (P) |
Apigenin [mg/100 g] | 0.014 (0.006) | 0.016 (0.011) | 0.792 (NP) |
AOX [mg GAE/100 g] | 60.38 (12.57) | 51.49 (5.44) | 0.054 (P) |
TPC [mg GAE/100 g] | 7.37 (5.61) | 6.79 (4.27) | 0.748 (NP) |
L * | 42.899 (12.926) | 41.277 (11.455) | 0.898 (NP) |
a * | 2.017 (4.400) | 1.383 (3.800) | 0.606 (NP) |
b * | 19.032 (7.761) | 18.101 (6.234) | 0.760 (P) |
Variables | Correlation Coefficient | p * Pearson’s Correlation Coefficient | Dependency Direction | Dependence Strength | ||
---|---|---|---|---|---|---|
Buckwheat pollen | TPC | 0.755 | p < 0.001 NP | positive | strong | |
Buckwheat pollen | a * | 0.708 | p < 0.001 NP | positive | strong | |
Buckwheat pollen | b * | 0.705 | p < 0.001 NP | positive | strong | |
White/sweet clover pollen | pinocembrin | 0.659 | p = 0.001 NP | positive | moderate | |
Plum/apple tree pollen | L * | 0.653 | p = 0.001 NP | positive | moderate | |
Willow pollen | p-coumaric acid | −0.591 | p = 0.004 NP | negative | moderate | |
Rapeseed pollen | kaempferol | 0.574 | p = 0.005 NP | positive | moderate | |
Buckwheat pollen | L * | −0.567 | p = 0.006 NP | negative | moderate | |
Chervil pollen | TPC | −0.559 | p = 0.007 NP | negative | moderate | |
Chervil pollen | luteolin | 0.522 | p = 0.013 NP | positive | moderate | |
Chervil pollen | L * | 0.516 | p = 0.014 NP | positive | moderate | |
Buckwheat pollen | kaempferol | −0.51 | p = 0.015 NP | negative | moderate | |
Chervil pollen | b * | −0.485 | p = 0.022 NP | negative | weak | |
Chervil pollen | pinocembrin | 0.483 | p = 0.023 NP | positive | weak | |
Heather pollen | TPC | 0.476 | p = 0.025 NP | positive | weak | |
Buckwheat pollen | p-coumaric acid | 0.46 | p = 0.031 NP | positive | weak | |
Willow pollen | TPC | −0.455 | p = 0.033 NP | negative | weak | |
Chervil pollen | quercetin | 0.447 | p = 0.037 NP | positive | weak | |
Brassicaceae pollen | quercetin | 0.445 | p = 0.038 NP | positive | weak | |
Rapeseed pollen | trans-ferulic acid | −0.44 | p = 0.04 NP | negative | weak | |
Raspberry pollen | caffeic acid | 0.439 | p = 0.041 NP | positive | weak | |
Phacelia pollen | TPC | 0.43 | p = 0.046 NP | positive | weak | |
a * | b * | 0.888 | p < 0.001 NP | positive | strong | |
Pinocembrin | galangin | 0.801 | p < 0.001 NP | positive | strong | |
TPC | b * | 0.8 | p < 0.001 NP | positive | strong | |
L * | a * | −0.758 | p < 0.001 NP | negative | strong | |
L * | b * | −0.695 | p < 0.001 P | negative | moderate | |
TPC | a * | 0.661 | p = 0.001 NP | positive | moderate | |
TPC | L * | −0.651 | p = 0.001 NP | negative | moderate | |
Luteolin | quercetin | 0.649 | p = 0.001 NP | positive | moderate | |
Chrysin | pinocembrin | 0.596 | p = 0.003 NP | positive | moderate | |
Caffeic acid | pinocembrin | 0.568 | p = 0.006 NP | positive | moderate | |
p-Coumaric acid | L * | −0.564 | p = 0.006 P | negative | moderate | |
AOX | L * | −0.542 | p = 0.009 NP | negative | moderate | |
AOX | TPC | 0.541 | p = 0.009 NP | positive | moderate | |
Chrysin | apigenin | 0.527 | p = 0.012 NP | positive | moderate | |
Chrysin | galangin | 0.514 | p = 0.014 NP | positive | moderate | |
Aox | b * | 0.505 | p = 0.017 NP | positive | moderate | |
p-Coumaric acid | a * | 0.496 | p = 0.02 NP | positive | weak | |
Caffeic acid | galangin | 0.48 | p = 0.024 NP | positive | weak | |
Kaempferol | a * | −0.47 | p = 0.027 NP | negative | weak | |
Kaempferol | L * | 0.465 | p = 0.029 P | positive | weak | |
p-Coumaric acid | kaempferol | −0.439 | p = 0.041 P | negative | weak | |
Quercetin | AOX | −0.437 | p = 0.042 NP | negative | weak | |
p-Coumaric acid | b * | 0.432 | p = 0.045 P | positive | weak | |
Galangin | apigenin | 0.432 | p = 0.045 NP | positive | weak | |
Kaempferol | trans-ferulic acid | −0.423 | p = 0.05 P | negative | weak |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halagarda, M.; Groth, S.; Popek, S.; Rohn, S.; Pedan, V. Antioxidant Activity and Phenolic Profile of Selected Organic and Conventional Honeys from Poland. Antioxidants 2020, 9, 44. https://doi.org/10.3390/antiox9010044
Halagarda M, Groth S, Popek S, Rohn S, Pedan V. Antioxidant Activity and Phenolic Profile of Selected Organic and Conventional Honeys from Poland. Antioxidants. 2020; 9(1):44. https://doi.org/10.3390/antiox9010044
Chicago/Turabian StyleHalagarda, Michał, Sabrina Groth, Stanisław Popek, Sascha Rohn, and Vasilisa Pedan. 2020. "Antioxidant Activity and Phenolic Profile of Selected Organic and Conventional Honeys from Poland" Antioxidants 9, no. 1: 44. https://doi.org/10.3390/antiox9010044
APA StyleHalagarda, M., Groth, S., Popek, S., Rohn, S., & Pedan, V. (2020). Antioxidant Activity and Phenolic Profile of Selected Organic and Conventional Honeys from Poland. Antioxidants, 9(1), 44. https://doi.org/10.3390/antiox9010044