Variability in Bulb Organosulfur Compounds, Sugars, Phenolics, and Pyruvate among Greek Garlic Genotypes: Association with Antioxidant Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Preparation of Extracts
2.3. Determination of Dry Weight
2.4. GC–MS Analysis of Volatiles in Nonpolar Extracts
2.5. Determination of Pyruvic Acid, Total Sugars, Total Phenolics, and Antioxidant Activity of Hydromethanolic Extracts
2.6. Statistical Analysis
3. Results and Discussion
3.1. Extraction Protocol, Volatiles, and Pyruvic Acid
3.2. Total Sugars, Phenolics, and Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brewster, J.L. Onions and Other Vegetable Alliums, 2nd ed.; Brewster, J.L., Ed.; CABI: Wallingford, UK, 2008; pp. 1–22. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). FAO Statistics Division. Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 9 September 2020).
- Petropoulos, S.A.; Di Gioia, F.; Ntatsi, G. Vegetable organosulfur compounds and their health promoting effects. Curr. Pharm. Des. 2017, 23, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.A.; Di Gioia, F.; Polyzos, N.; Tzortzakis, N. Natural antioxidants, health effects and bioactive properties of wild Allium species. Curr. Pharm. Des. 2020, 26, 1816–1837. [Google Scholar] [CrossRef] [PubMed]
- Batiha, G.E.S.; Beshbishy, A.M.; Wasef, L.G.; Elewa, Y.H.A.; Al-Sagan, A.A.; El-Hack, M.E.A.; Taha, A.E.; Abd-Elhakim, Y.M.; Devkota, H.P. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients 2020, 12, 872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, K.; Hori, Y.; Myoda, T. Volatile compounds of fresh and processed garlic (Review). Exp. Ther. Med. 2020, 19, 1585–1593. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, Y.; Kumagai, H. Characteristics, biosynthesis, decomposition, metabolism and functions of the garlic odour precursor, S-allyl-l-cysteine sulfoxide (Review). Exp. Ther. Med. 2019, 19, 1528–1535. [Google Scholar] [CrossRef]
- Putnik, P.; Gabrić, D.; Roohinejad, S.; Barba, F.J.; Granato, D.; Mallikarjunan, K.; Lorenzo, J.M.; Kovačević, D.B. An overview of organosulfur compounds from Allium spp.: From processing and preservation to evaluation of their bioavailability, antimicrobial, and anti-inflammatory properties. Food Chem. 2019, 276, 680–691. [Google Scholar] [CrossRef]
- Hirata, S.; Abdelrahman, M.; Yamauchi, N.; Shigyo, M. Diversity evaluation based on morphological, physiological and isozyme variation in genetic resources of garlic (Allium sativum L.) collected worldwide. Genes Genet. Syst. 2016, 91, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Nencini, C.; Menchiari, A.; Franchi, G.G.; Micheli, L. In vitro antioxidant activity of aged extracts of some Italian Allium species. Plant Foods Hum. Nutr. 2011, 66, 11–16. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Ntatsi, G.; Petrotos, K.; Barros, L.; Ferreira, I.C.F.R. Nutritional value, chemical characterization and bulb morphology of Greek Garlic landraces. Molecules 2018, 23, 319. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.; Fernandes, Â.; Barros, L.; Ciric, A.; Sokovic, M.; Ferreira, I.C.F.R. Antimicrobial and antioxidant properties of various Greek garlic genotypes. Food Chem. 2018, 245, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Bota, J.; Conesa, M.À.; Ochogavia, J.M.; Medrano, H.; Francis, D.M.; Cifre, J. Characterization of a landrace collection for Tomàtiga de Ramellet (Solanum lycopersicum L.) from the Balearic Islands. Genet. Resour. Crop Evol. 2014, 61, 1131–1146. [Google Scholar] [CrossRef]
- Missio, C.J.; Rivera, A.; Figàs, M.R.; Casanova, C.; Camí, B.; Soler, S.; Simó, J. A comparison of landraces vs. modern varieties of lettuce in organic farming during the winter in the Mediterranean area: An approach considering the viewpoints of breeders, consumers and farmers. Front Plant Sci. 2018, 9, 1491. [Google Scholar] [CrossRef]
- Polyzos, N.; Papasotiropoulos, V.; Lamari, F.N.; Petropoulos, S.A.; Bebeli, J. Phenotypic characterization and quality traits of Greek garlic (Allium sativum L.) germplasm cultivated at two different locations. Genet. Resour. Crop Evol. 2019, 66, 1671–1689. [Google Scholar] [CrossRef]
- Van den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Metrani, R.; Jayaprakasha, G.K.; Patil, B.S. Optimized method for the quantification of pyruvic acid in onions by microplate reader and confirmation by high resolution mass spectra. Food Chem. 2018, 242, 451–458. [Google Scholar] [CrossRef]
- Laurentin, A.; Edwards, C.A. A microtiter modification of the anthrone-sulfuric acid colorimetric assay for glucose-based carbohydrates. Anal. Biochem. 2003, 315, 143–145. [Google Scholar] [CrossRef]
- Zeliou, K.; Papasotiropoulos, V.; Manoussopoulos, Y.; Lamari, F.N. Physical and chemical quality characteristics and antioxidant properties of strawberry cultivars (Fragaria × ananassa Duch.) in Greece: Assessment of their sensory impact. J. Sci. Food Agric. 2018, 98, 4065–4073. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of ‘“Antioxidant Power”’: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Ruch, R.; Cheng, S.; Klaunig, J.E. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 1989, 10, 1003–1008. [Google Scholar] [CrossRef]
- Kimbaris, A.C.; Siatis, N.G.; Daferera, D.J.; Tarantilis, P.A.; Pappas, C.S.; Polissiou, M.G. Comparison of distillation and ultrasound-assisted extraction methods for the isolation of sensitive aroma compounds from garlic (Allium sativum). Ultrason. Sonochem. 2006, 13, 54–60. [Google Scholar] [CrossRef]
- Satyal, P.; Craft, J.D.; Dosoky, N.S.; Setzer, W.N. The chemical compositions of the volatile oils of garlic (Allium sativum) and wild garlic (Allium vineale). Foods 2017, 6, 63. [Google Scholar] [CrossRef] [Green Version]
- Tocmo, R.; Wang, C.; Liang, D.; Huang, D. Organosulphide profile and hydrogen sulphide- releasing capacity of garlic (Allium sativum L.) scape oil: Effects of pH and cooking. J. Funct. Foods 2015, 17, 410–421. [Google Scholar] [CrossRef]
- Chen, C.W.; Ho, C.T. Thermal degradation of allyl isothiocyanate in aqueous solution. J. Agric. Food Chem. 1998, 46, 220–223. [Google Scholar] [CrossRef]
- Yu, T.-H.; Wu, C.-M.; Liou, Y.-C. Volatile compounds from garlic. J. Agric. Food Chem. 1989, 37, 725–730. [Google Scholar] [CrossRef]
- Yu, T.-H.; Lin, L.Y.; Ho, C.T. Volatile compounds of blanched, fried blanched, and baked blanched garlic slices. J. Agric. Food Chem. 1994, 42, 1342–1347. [Google Scholar] [CrossRef]
- Lee, S.; Kim, N.; Lee, D. Comparative study of extraction techniques for determination of garlic flavor components by gas chromatography—Mass spectrometry. Anal. Bioanal. Chem. 2003, 377, 749–756. [Google Scholar] [CrossRef]
- Pyun, M.; Shin, S.Ã. Antifungal effects of the volatile oils from Allium plants against Trichophyton species and synergism of the oils with ketoconazole. Phytomedicine 2006, 13, 394–400. [Google Scholar] [CrossRef]
- Andriamaharavo, N.R. Retention Data, NIST Mass Spectrometry Data Center; NIST Mass Spectrometry Data Center: Gaithersburg, MD, USA, 2014. [Google Scholar]
- Pino, J.A.; Mesa, J.; Muñoz, Y.; Martí, M.P.; Marbot, R. Volatile components from mango (Mangifera indica L.) Cultivars. J. Agric. Food Chem. 2005, 53, 2213–2223. [Google Scholar] [CrossRef]
- Dethier, B.; Hanon, E.; Maayoufi, S.; Nott, K.; Fauconnier, M.L. Optimization of the formation of vinyldithiins, therapeutic compounds from garlic. Eur. Food Res. Technol. 2013, 237, 83–88. [Google Scholar] [CrossRef]
- Ferioli, F.; Giambanelli, E.; D’Alessandro, V.; D’Antuono, L.F. Comparison of two extraction methods (high pressure extraction vs. maceration) for the total and relative amount of hydrophilic and lipophilic organosulfur compounds in garlic cloves and stems. An application to the Italian ecotype “Aglio Rosso di Sulmona” (Sulmona Red Garlic). Food Chem. 2020, 312, 126086. [Google Scholar]
- González, R.E.; Burba, J.L.; Camargo, A.B. A physiological indicator to estimate allicin content in garlic during storage. J. Food Biochem. 2013, 37, 449–455. [Google Scholar] [CrossRef]
- Cavagnaro, P.F.; Camargo, A.; Galmarini, C.R.; Simon, P.W. Effect of cooking on garlic (Allium sativum L.) antiplatelet activity and thiosulfinates content. J. Agric. Food Chem. 2007, 55, 1280–1288. [Google Scholar] [CrossRef] [PubMed]
- Wall, M.M.; Corgan, J.N. Relationship between pyruvate analysis and flavor perception for onion pungency determination. HortScience 2019, 27, 1029–1030. [Google Scholar] [CrossRef] [Green Version]
- Barboza, K.; Salinas, M.C.; Acuña, C.V.; Bannoud, F.; Beretta, V.; García-Lampasona, S.; Burba, J.L.; Galmarini, C.R.; Cavagnaro, P.F. Assessment of genetic diversity and population structure in a garlic (Allium sativum L.) germplasm collection varying in bulb content of pyruvate, phenolics, and solids. Sci. Hortic. 2020, 261, 108900. [Google Scholar] [CrossRef]
- Queiroz, Y.S.; Ishimoto, E.Y.; Bastos, D.H.M.; Sampaio, G.R.; Torres, E.A.F.S. Garlic (Allium sativum L.) and ready-to-eat garlic products: In vitro antioxidant activity. Food Chem. 2009, 115, 371–374. [Google Scholar] [CrossRef]
Accessions | Collection Site | Prefecture | Latitude | Longitude | Altitude (m) |
---|---|---|---|---|---|
Region of Ionian Islands | |||||
AS01 | Saint Petros | Lefkada | 38°40′ Ν | 20°36′ Ε | 328 |
AS05 | Κarya | Lefkada | 38°45′ Ν | 20°38′ Ε | 510 |
AS06 | Katouna | Lefkada | 38°46′ N | 20°42′ Ε | 165 |
AS08 | Manasi | Lefkada | 38°41′ Ν | 20°36′ Ε | 557 |
AS12 | Κefalonia | Kefalonia | 38°17′ Ν | 20°31′ Ε | 500 |
AS30 | Saint Theodoros | Kefalonia | 38°11′ Ν | 20°28′ Ε | 2 |
Region of Peloponnese | |||||
AS04 | Polichni | Messinia | 37°16′ N | 21°56′ Ε | 432 |
AS11 | Tsoureki | Messinia | 37°19′ Ν | 21°57′ Ε | 467 |
AS13 | Andania | Messinia | 37°15′ Ν | 21°59′ Ε | 85 |
AS15 | Altomira | Messinia | 36°58′ Ν | 22°13′ Ε | 827 |
AS23 | Kakaletri | Messinia | 37°24′ Ν | 22°55′ Ε | 607 |
AS28 | Kitries | Messinia | 36°55′ Ν | 22°08′ Ε | 3 |
AS32 | Megali Mantineia | Messinia | 36°57′ Ν | 22°09′ Ε | 207 |
AS33 | Kato Doloi | Messinia | 36°93′ Ν | 22°17′ Ε | 315 |
AS07 | Tripoli | Arkadia | 37°30′ N | 22°22′ Ε | 662 |
AS17 | Mavriki | Arkadia | 37°23′ Ν | 22°27′ Ε | 950 |
AS19 | Lithovouni | Arkadia | 37°28′ Ν | 22°27′ Ε | 676 |
AS21 | Stadio Tripoleos | Arkadia | 37°27′ N | 22°26′ Ε | 675 |
AS35 | Manthurea | Arkadia | 37°24′ Ν | 22°23′ Ε | 750 |
AS36 | Mavriki | Arkadia | 37°23′ Ν | 22°27′ Ε | 950 |
AS24 | Dermatianika | Lakonia | 36°54′ Ν | 23°02′ Ε | 35 |
AS27 | Neapoli | Lakonia | 36°30′ Ν | 23°03′ Ε | 10 |
Region of Epirus | |||||
AS09 | Vrysoula | Ioannina | 39°40′ Ν | 20°32′ Ε | 220 |
Region of Central Greece | |||||
AS10 | Trachy, Skyros Isl. | Evia | 38°57′ Ν | 24°30′ Ε | 10 |
Region of Thessaly | |||||
AS18 | Rizomylos | Magnesia | 39°25′ Ν | 23°38′ Ε | 62 |
Region of Eastern Macedonia and Thrace | |||||
AS02 | Nea Vyssa | Evros | 41°35′ Ν | 26°32′ Ε | 31 |
AS14 | Komotini | Rodopi | 41°05′ Ν | 25°24′ Ε | 42 |
Region of the South Aegean | |||||
AS25 | Mesa Vouni, Andros Isl. | Cyclades | 37°47′ Ν | 24°55′ Ε | 585 |
AS34 | Milos Isl. | Cyclades | 36°40′ Ν | 24°23′ Ε | 153 |
Imported Genotypes | |||||
Name | Country | ||||
AS16 2 | Gardos | Spain | |||
AS26 3a | Ajo Morado de Las Pedroñeras | Spain | |||
AS31 3b | Ajo Morado de Las Pedroñeras | Spain | |||
AS20 1 | Kineziko | China | |||
AS22 1 | Kineziko | China |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% v/w Extract Yield | EVS | DS | m-xylene | o-xylene | MADS | 3H-1,2-dithiole | 3-methyl-2-cyclopentene-1-thione | 4-methyl cyclopenta-1,3-diene-1-thiol | DDS | 3-dithiane | allyl-prop-1-enyl disulfide | MATS | Unknown C5H10S2 | 3-VDT | 4H-1,2,3- trithiine | 1-dodecene | 2-VDT | 2-vinyl-1,3- dithiane | DATS | Total Identified Organosulfur Compounds2 | |
AS01 | 0.22 | n.d. | 0.049 | n.d. | n.d. | 0.179 | n.d. | n.d. | 0.119 | 0.086 | 0.024 | n.d. | n.d. | 0.684 | 1.499 | 0.021 | n.d. | 1.199 | n.d. | n.q. | 4.332 |
AS02 | 0.08 | n.q. | n.q. | n.d. | n.d. | n.q. | 0.138 | n.d. | n.q. | 0.088 | n.d. | n.q. | n.d. | 0.307 | 1.350 | 0.024 | 0.037 | 0.911 | n.q. | n.d. | 2.820 |
AS04 | 0.22 | 0.786 | 0.961 | n.d. | n.d. | 3.011 | 6.598 | 1.165 | n.d. | 3.617 | 0.914 | 0.031 | 0.462 | 6.898 | 43.714 | 3.956 | n.d. | 11.377 | 0.241 | 0.076 | 89.472 |
AS05 | 0.09 | 0.293 | 0.339 | 0.051 | n.d. | 0.302 | 2.071 | 0.275 | n.d. | 1.316 | 0.056 | 0.043 | 0.013 | 2.727 | 14.812 | 0.464 | 1.236 | 3.794 | 0.109 | 0.042 | 27.188 |
AS06 | 0.04 | n.q. | n.q. | n.d. | n.d. | 0.031 | 0.064 | n.d. | n.q. | 0.106 | n.q. | 0.029 | n.q. | 0.005 | 0.564 | 0.027 | n.d. | 0.505 | 0.017 | n.q. | 1.458 |
AS07 | 0.06 | 0.014 | 0.038 | n.d. | n.d. | 0.046 | 0.285 | n.d. | n.q. | 0.402 | n.q. | 0.083 | n.d. | 0.563 | 2.533 | 0.129 | 0.106 | 2.374 | n.q. | 0.019 | 6.680 |
AS08 | 0.12 | 0.287 | 0.302 | 0.507 | 0.265 | 0.532 | 2.706 | 0.295 | n.d. | 1.575 | 0.096 | 0.156 | 0.054 | 3.551 | 16.952 | 1.001 | 0.684 | 4.621 | 0.132 | 0.095 | 33.386 |
AS09 | 0.05 | 0.044 | 0.077 | n.d. | n.d. | 0.148 | 0.496 | 0.038 | n.d. | 0.509 | 0.030 | 0.096 | n.q. | 0.886 | 4.507 | 0.199 | 0.037 | 3.078 | 0.011 | 0.040 | 10.585 |
AS10 | 0.11 | 0.293 | 0.319 | 0.605 | 0.356 | 0.201 | 2.152 | 0.295 | n.d. | 1.525 | 0.017 | 0.113 | 0.077 | 4.122 | 16.521 | 0.830 | 1.382 | 4.860 | 0.172 | 0.050 | 32.125 |
AS11 | 0.07 | n.d. | 0.153 | 0.178 | 0.072 | 0.048 | 0.936 | 0.090 | n.d. | 0.876 | n.d. | 0.158 | n.d. | 1.433 | 9.993 | 0.301 | 1.109 | 7.834 | 0.042 | 0.080 | 21.860 |
AS12 | 0.15 | 0.753 | 0.688 | 0.249 | 0.171 | 1.027 | 3.948 | 0.624 | n.d. | 3.313 | 0.228 | 0.211 | 0.067 | 4.589 | 38.781 | 1.934 | 0.425 | 26.223 | 0.166 | 0.310 | 84.759 |
AS13 | 0.12 | 0.379 | 0.190 | n.d. | n.d. | 0.254 | 1.731 | 0.060 | 0.809 | 1.415 | n.d. | 0.245 | n.d. | 1.251 | 26.685 | 0.873 | 1.849 | 25.831 | n.d. | 0.254 | 60.796 |
AS14 | 0.08 | n.q. | 0.100 | 0.085 | 0.065 | 0.046 | 0.762 | n.d. | 0.008 | 0.596 | n.q. | n.d. | n.d. | 0.712 | 4.026 | 0.517 | 0.808 | 4.253 | 0.019 | 0.019 | 11.281 |
AS15 | 0.26 | 0.600 | 0.490 | 0.336 | 0.398 | 1.134 | 4.648 | n.d. | 0.647 | 4.498 | 0.310 | 1.042 | n.d. | 3.905 | 91.408 | 2.455 | 2.711 | 66.743 | 0.287 | 0.596 | 181.838 |
AS16 | 0.11 | 0.040 | 0.290 | 0.118 | 0.077 | 0.203 | 2.447 | n.d. | 0.080 | 1.493 | 0.019 | n.q. | n.q. | 2.113 | 8.995 | 0.970 | 1.224 | 8.268 | n.d. | 0.210 | 25.698 |
AS17 | 0.16 | 0.517 | 0.278 | n.d. | n.d. | 0.567 | 3.170 | n.d. | 0.268 | 2.233 | 0.158 | 0.287 | n.d. | 2.897 | 45.424 | 1.438 | 1.559 | 39.238 | 0.363 | 0.277 | 98.599 |
AS18 | 0.10 | 0.718 | 0.292 | n.d. | n.d. | 0.607 | 2.479 | n.d. | 0.155 | 2.598 | 0.077 | 1.319 | n.d. | 1.763 | 18.781 | 1.166 | 1.732 | 15.348 | 0.404 | 0.504 | 47.301 |
AS19 | 0.19 | 0.356 | 0.414 | 0.104 | 0.070 | 0.526 | 3.089 | n.d. | 0.156 | 2.386 | 0.076 | 0.148 | n.d. | 3.460 | 22.746 | 1.497 | 2.501 | 20.609 | 0.168 | 0.234 | 57.156 |
AS20 | 0.12 | n.q. | n.d. | 0.188 | 0.128 | 0.143 | 0.641 | n.d. | 0.038 | 0.580 | 0.024 | 0.072 | n.d. | 0.840 | 14.353 | 0.258 | 2.093 | 14.305 | 0.074 | 0.004 | 32.025 |
AS21 | 0.08 | 0.004 | n.q. | n.d. | n.d. | 0.069 | 0.351 | n.d. | n.q. | 0.206 | n.d. | n.q. | n.q. | 0.425 | 2.663 | 0.143 | n.d. | 2.096 | n.q. | n.d. | 6.303 |
AS22 | 0.11 | 0.093 | n.q. | 0.247 | 0.158 | 0.033 | 1.022 | n.d. | 0.032 | 0.978 | n.d. | 0.048 | n.d. | 0.782 | 9.028 | 0.400 | 1.645 | 10.531 | n.d. | 0.074 | 23.153 |
AS23 | 0.09 | 0.157 | 0.168 | 0.012 | 0.016 | 0.087 | 1.032 | n.d. | 0.041 | 1.018 | n.d. | 0.118 | n.d. | 0.889 | 9.656 | 0.464 | 1.432 | 8.965 | n.d. | 0.105 | 22.992 |
AS24 | 0.08 | 0.106 | n.q. | n.q. | n.d. | 0.262 | n.d. | n.d. | n.q. | 0.567 | 0.037 | 0.467 | n.q. | 0.319 | 2.610 | 0.263 | n.d. | 2.860 | 0.005 | 0.019 | 7.743 |
AS25 | 0.28 | 1.499 | 1.057 | n.d. | n.d. | 1.600 | 8.192 | 1.272 | n.d. | 5.086 | 0.402 | 0.210 | 0.170 | 9.899 | 75.042 | 4.783 | n.d. | 22.327 | 0.456 | 0.192 | 135.787 |
AS26 | 0.20 | 0.480 | 0.520 | 0.163 | 0.200 | 0.684 | 3.246 | n.d. | 0.377 | 2.717 | 0.143 | 0.039 | n.q. | 4.287 | 29.137 | 1.745 | 1.880 | 21.925 | 0.117 | 0.259 | 67.263 |
AS27 | 0.17 | 0.594 | 0.439 | 0.104 | 0.057 | 0.539 | 2.376 | n.d. | 0.119 | 2.039 | 0.056 | 0.182 | n.q. | 2.413 | 16.316 | 1.054 | 0.943 | 15.834 | 0.020 | 0.105 | 43.188 |
AS28 | 0.07 | 0.077 | 0.025 | n.d. | n.d. | n.q | 0.492 | n.d. | n.q. | 0.283 | n.d. | 0.015 | n.d. | 0.325 | 3.616 | 0.238 | n.d. | 1.956 | n.q. | n.q. | 7.080 |
AS30 | 0.11 | 0.349 | 0.173 | n.d. | n.d. | 0.217 | 1.248 | n.d. | 0.083 | 1.209 | 0.002 | 0.538 | n.q. | 1.680 | 10.931 | 0.575 | n.d. | 10.931 | 0.575 | 0.133 | 29.080 |
AS31 | 0.13 | 0.353 | 0.250 | 0.614 | 0.435 | 0.355 | 2.273 | n.d. | 0.328 | 1.455 | 0.069 | 0.016 | n.d. | 3.284 | 22.589 | 1.663 | n.d. | 5.933 | 0.035 | 0.076 | 39.648 |
AS32 | 0.07 | 0.090 | 0.070 | n.d. | n.d. | 0.011 | 0.550 | n.d. | 0.012 | 0.475 | n.d. | 0.017 | n.d. | 0.615 | 4.495 | 0.185 | n.d. | 2.633 | n.q. | n.q. | 9.262 |
AS33 | 0.11 | 0.297 | 0.152 | n.d. | n.d. | 0.136 | 1.297 | n.d. | 0.066 | 1.169 | n.q. | 0.440 | n.d. | 0.800 | 12.022 | 0.442 | n.d. | 9.141 | 0.120 | 0.097 | 26.560 |
AS34 | 0.07 | 0.057 | 0.074 | n.d. | n.d. | 0.045 | 0.649 | n.d. | 0.179 | 0.607 | n.d. | 0.060 | n.d. | 0.999 | 6.702 | 0.292 | n.d. | 5.327 | n.q. | 0.050 | 15.042 |
AS35 | 0.09 | 0.464 | 0.226 | n.d. | n.d. | 0.282 | 2.099 | n.d. | 0.332 | 1.330 | 0.046 | 0.024 | 0.023 | 2.334 | 21.590 | 1.036 | n.d. | 5.515 | 0.101 | 0.150 | 36.177 |
AS36 | 0.30 | 1.458 | 1.078 | n.d. | n.d. | 3.859 | 10.076 | n.d. | 1.661 | 7.403 | 1.057 | 0.183 | 1.016 | 12.326 | 93.943 | 5.391 | n.d. | 27.645 | 0.446 | 0.912 | 175.706 |
Peak No. | Compound | Molecular Formula | M.W. | m/z (%) | AIexp | AIth | Identification |
---|---|---|---|---|---|---|---|
1 | ethyl vinyl sulfide (EVS) [22] | C4H8S | 88.2 | 88 (100), 87 (65), 60 (41), 59 (41), 71 (22), 69 (18), 58 (9), 89 (7), 55 (7), 70 (6) | <800 | 690 [22] | MS, AI |
2 | diallyl sulfide (DS) [22,23,24] | C6H10S | 114.2 | 97 (100), 112 (42), 98 (8), 111 (7), 53 (6), 99 (5), 77 (5), 69 (4), 113 (3), 114 (2) | 854 | 855 [23] | MS, AI |
3 | m-xylene | C8H10 | 106.2 | 91 (100), 106 (57), 105 (26), 77 (14), 97 (11), 79 (10), 51 (10), 103 (8), 81 (8), 92 (7) | 866 | 861.5 [30] | MS, AI |
4 | o-xylene | C8H10 | 106.2 | 91 (100), 106 (52), 105 (20), 77 (12), 51 (9), 79 (8), 92 (7), 103 (7), 78 (6), 65 (6) | 892 | 894 [31] | MS, AI |
5 | methyl allyl disulfide (MADS) [22,23,24,26,27,28] | C4H8S2 | 120.2 | 120 (100), 79 (13), 80 (9), 122 (9), 73 (9), 64 (8), 121 (6), 71 (5), 72 (4), 87 (3) | 915 | 916 [23] | MS, AI |
6 | 3H-1,2-dithiole [24,25] | C3H4S2 | 104.2 | 103 (100), 104 (61), 105 (11), 71 (9), 69 (7), 59 (7), 64 (6), 58 (6), 106 (5), 57 (3) | 951 | 958.6 [30] | MS, AI |
7 | 3-methyl-2-cyclopentene-1-thione [26] | C6H8S | 112.2 | 79 (100), 112 (96), 97 (71), 77 (62), 85 (40), 84 (34), 111 (31) 67 (18) 58 (18), 78 (17) | 1001 | - | MS |
8 | 4-methylcyclopenta-1,3-diene-1-thiol | C6H8S | 112.2 | 79 (100), 77 (44), 85 (36), 97 (30), 112 (26), 111 (21), 71 (21), 80 (20), 84 (15), 53 (15) | 1004 | - | MS |
9 | diallyl disulfide (DDS) [22,23,24,25,26,27,28] | C6H10S2 | 146.3 | 81 (100), 146 (49), 105 (46), 113 (43), 73 (37), 79 (35), 85 (29), 103 (25), 71 (23), 72 (21) | 1077 | 1080 [23] | MS, AI |
10 | 3-dithiane or 3,4-dihydro-1,2-dithiin | C4H6S2 | 118.2 | 118 (100), 72 (78), 71 (51) 103 (27) 85 (23) 73 (13), 120 (10), 69 (7), 119 (7), 117 (5) | 1094 | - | MS |
11 | 1-propenyl allyl disulfide [23,27] | C6H10S2 | 146.3 | 73 (100), 146 (80), 81 (75) 105 (46), 61 (38), 71 (38), 74 (30), 72 (28), 104 (20), 79 (16) | 1097 | 1090 [27] | MS, AI |
12 | allyl methyl trisulfide (MATS) [22,23,24,26,27] | C4H8S3 | 152.3 | 87 (100), 73 (79), 111 (15), 79 (14), 88 (13), 64 (12), 152 (8), 71 (7), 89 (6, 75 (5) | 1134 | 1138 [23] | MS, AI |
13 | unknown | C5H10S2 | 134.3 | 71 (100), 120 (99), 72 (90), 55 (24), 69 (13), 103 (8), 73 (8), 58 (6), 64 (6), 134 (1) | 1170 | - | MS |
14 | 3-vinyl-4H-1,2-dithiin (3-VDT) [22,23,24,26,27,28,29] | C6H8S2 | 144.3 | 111 (100), 144 (85), 97 (66), 103 (55), 71 (47), 77 (44), 72 (40), 79 (38), 85 (16), 67 (12) | 1185 | 1188 [23] | MS, AI |
15 | 4H-1,2,3-trithiine [26] | C3H4S3 | 136.2 | 71 (100), 136 (89), 72 (49), 72 (49), 69 (20), 103 (17), 55 (14), 64 (13),70 (12), 138 (12), 140 (1) | 1192 | 1201.5 [30] | MS, AI |
16 | 1-dodecene | C12H24 | 168.3 | 55 (100), 69 (90), 70 (84), 56 (83), 71 (76), 83 (74), 97 (68), 57 (63), 84 (44), 72 (37), 111 (28), 168 (7) | 1192 | 1192 [30] | MS, AI |
17 | 2-vinyl-4H-1,3-dithiin (2-VDT) [22,23,24,26,27,28,29] | C6H8S2 | 144.3 | 72 (100), 71 (93), 144 (63), 111 (53), 97 (20), 103 (16), 73 (15), 79 (12), 69 (10), 85 (8) | 1209 | 1214 [23] | MS, AI |
18 | 2-vinyl-1,3-dithiane [27] | C6H10S2 | 146.3 | 146 (100), 74 (52), 117 (50), 72 (48), 73 (43), 71 (39), 103 (22), 113 (13), 85 (11), 148 (11) | 1215 | 1208 [27] | MS, AI |
19 | diallyl trisulfide (DATS) [22,23,24,25,26,27,28,29] | C6H10S3 | 178.3 | 73 (100), 113 (87), 71 (19), 72 (16), 74 (12), 103 (12), 79 (10), 64 (9), 85 (9), 104 (9), 146 (8), 178 (7) | 1296 | 1301 [23] | MS, AI |
Antioxidant Activity | |||||
---|---|---|---|---|---|
Total Sugars mg Sucrose Equivalents/100 g F.W. | Total Phenolics mg GA Equivalents/100 g F.W. | Pyruvic Acid μmol Sodium Pyruvate/100g F.W. | FRAP μmol FeSO4 Equivalents/100 g F.W. | H2O2 Scavenging g Ascorbic Acid Equivalents/100 g F.W. | |
AS01 | 233.4 ± 5.5 | 56.7 ± 3.5 | 789.3 ± 56.9 | 301.6 ± 25.5 | 3.3 ± 0.0 |
AS02 | 275.0 ± 43.9 | 16.0 ± 1.1 | 664.9 ± 6.4 | 158.6 ± 12.6 | 0.9 ± 0.1 |
AS04 | 348.4 ± 37.7 | 35.4 ± 3.1 | 5727.7 ± 156.4 | 262.3 ± 16.2 | 2.6 ± 0.0 |
AS05 | 211.9 ± 17.0 | 48.8 ± 2.6 | 4152.4 ± 107.5 | 328.5 ± 16.8 | 3.3 ± 0.0 |
AS06 | 404.3 ± 33.0 | 17.0 ± 1.4 | 927.8 ± 83.8 | 114.0 ± 10.7 | 1.2 ± 0.0 |
AS07 | 184.8 ± 22.5 | 12.3 ± 1.3 | 369.5 ± 46.5 | 106.5 ± 8.0 | 1.0 ± 0.2 |
AS08 | 758.1 ± 20.1 | 32.6 ± 3.3 | 4342.9 ± 104.3 | 280.0 ± 17.4 | 2.1 ± 0.0 |
AS09 | 97.3 ± 8.1 | 13.0 ± 1.0 | 494.4 ± 58.2 | 78.6 ± 2.7 | 3.3 ± 0.0 |
AS10 | 552.2 ± 30.9 | 43.7 ± 3.3 | 2070.9 ± 287.5 | 275.6 ± 21.3 | 3.9 ± 0.1 |
AS11 | 254.9 ± 37.5 | 11.7 ± 0.7 | 1675.2 ± 129.5 | 133.9 ± 10.2 | 1.7 ± 0.0 |
AS12 | 628.7 ± 72.1 | 37.1 ± 3.0 | 7246.7 ± 527.7 | 339.2 ± 9.8 | 1.9 ± 0.0 |
AS13 | 365.0 ± 15.1 | 33.6 ± 2.4 | 2397.9 ± 249.2 | 207.4 ± 10.5 | 2.9 ± 0.1 |
AS14 | 174.2 ± 19.4 | 30.3 ± 2.5 | 2283.8 ± 248.6 | 172.5 ± 2.4 | 1.1 ± 0.1 |
AS15 | 503.9 ± 84.6 | 63.7 ± 5.4 | 5647.5 ± 237.9 | 336.3 ± 15.5 | 3.4 ± 0.1 |
AS16 | 450.1 ± 39.6 | 48.1 ± 3.0 | 2989.3 ± 243.3 | 260.8 ± 21.1 | 4.7 ± 0.0 |
AS17 | 323.6 ± 15.5 | 51.6 ± 3.6 | 4881.7 ± 259.2 | 412.2 ± 32.7 | 3.4 ± 0.1 |
AS18 | 113.6 ± 11.5 | 29.9 ± 1.6 | 1451.7 ± 84.6 | 238.9 ± 20.8 | 1.6 ± 0.0 |
AS19 | 147.4 ± 16.0 | 25.8 ± 1.1 | 2548.8 ± 156.2 | 193.7 ± 3.6 | 2.0 ± 0.1 |
AS20 | 125.0 ± 7.0 | 40.6 ± 3.2 | 2144.3 ± 203.0 | 269.2 ± 12.5 | 2.6 ± 0.0 |
AS21 | 381.9 ± 47.8 | 32.1 ± 2.5 | 1136.7 ± 38.0 | 251.8 ± 22.0 | 1.7 ± 0.1 |
AS22 | 336.4 ± 25.9 | 18.7 ± 1.8 | 1403.6 ± 112.8 | 123.7 ± 10.3 | 0.8 ± 0.2 |
AS23 | 439.9 ±41.6 | 25.9 ± 2.7 | 1823.1 ± 213.8 | 182.5 ± 14.5 | 0.8 ± 0.0 |
AS24 | 298.2 ± 27.4 | 50.9 ± 3.8 | 3143.6 ± 147.6 | 260.2 ± 3.7 | 2.3 ± 0.7 |
AS25 | 404.2 ± 24.5 | 38.9 ± 3.0 | 4993.1 ± 105.1 | 270.8 ± 9.9 | 4.1 ± 0.0 |
AS26 | 291.7 ± 28.1 | 46.3 ± 4.0 | 3364.7 ± 300.1 | 308.1 ± 19.5 | 2.5 ± 0.3 |
AS27 | 355.1 ± 26.9 | 43.6 ± 2.3 | 3616.2 ± 259.4 | 353.6 ± 31.0 | 2.0 ± 0.1 |
AS28 | 231.7 ± 18.5 | 19.8 ± 1.8 | 1242.6 ± 110.9 | 147.9 ± 19.3 | 1.4 ± 0.1 |
AS30 | 534.5 ± 17.3 | 53.9 ± 3.9 | 6790.6 ± 255.8 | 320.2 ± 6.7 | 2.8 ± 0.2 |
AS31 | 943.0 ± 11.4 | 81.9 ± 6.5 | 3673.9 ± 278.5 | 705.3 ± 70.0 | 2.2 ± 0.1 |
AS32 | 447.0 ± 49.5 | 28.2 ± 2.2 | 1161.5 ± 48.1 | 198.5 ± 23.2 | 1.7 ± 0.0 |
AS33 | 131.7 ± 5.9 | 27.4 ± 2.6 | 1272.7 ± 120.8 | 180.9 ± 17.2 | 1.0 ± 0.03 |
AS34 | 701.3 ± 91.2 | 47.2 ± 3.9 | 1864.7 ± 142.6 | 265.2 ± 9.2 | 1.9 ± 0.0 |
AS35 | 335.1 ± 109.7 | 50.4 ± 4.6 | 3311.9 ± 163.7 | 280.2 ± 33.7 | 4.1 ± 0.0 |
AS36 | 597.3 ± 53.5 | 51.2 ± 4.4 | 7066.4 ± 251.4 | 285.6 ± 26.9 | 2.8 ± 0.1 |
Sugars | Phenolics | Pyruvic | FRAP | H2O2 | |
---|---|---|---|---|---|
Sugars | 1 | ||||
Phenolics | 0.427 * | 1 | |||
Pyruvic | 0.476 * | 0.660 ** | 1 | ||
FRAP | 0.468 ** | 0.880 ** | 0.764 ** | 1 | |
H2O2 | 0.191 | 0.690 ** | 0.521 ** | 0.599 ** | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avgeri, I.; Zeliou, K.; Petropoulos, S.A.; Bebeli, P.J.; Papasotiropoulos, V.; Lamari, F.N. Variability in Bulb Organosulfur Compounds, Sugars, Phenolics, and Pyruvate among Greek Garlic Genotypes: Association with Antioxidant Properties. Antioxidants 2020, 9, 967. https://doi.org/10.3390/antiox9100967
Avgeri I, Zeliou K, Petropoulos SA, Bebeli PJ, Papasotiropoulos V, Lamari FN. Variability in Bulb Organosulfur Compounds, Sugars, Phenolics, and Pyruvate among Greek Garlic Genotypes: Association with Antioxidant Properties. Antioxidants. 2020; 9(10):967. https://doi.org/10.3390/antiox9100967
Chicago/Turabian StyleAvgeri, Ioanna, Konstantina Zeliou, Spyridon A. Petropoulos, Penelope J. Bebeli, Vasileios Papasotiropoulos, and Fotini N. Lamari. 2020. "Variability in Bulb Organosulfur Compounds, Sugars, Phenolics, and Pyruvate among Greek Garlic Genotypes: Association with Antioxidant Properties" Antioxidants 9, no. 10: 967. https://doi.org/10.3390/antiox9100967
APA StyleAvgeri, I., Zeliou, K., Petropoulos, S. A., Bebeli, P. J., Papasotiropoulos, V., & Lamari, F. N. (2020). Variability in Bulb Organosulfur Compounds, Sugars, Phenolics, and Pyruvate among Greek Garlic Genotypes: Association with Antioxidant Properties. Antioxidants, 9(10), 967. https://doi.org/10.3390/antiox9100967