Berberis microphylla G. Forst (Calafate) Berry Extract Reduces Oxidative Stress and Lipid Peroxidation of Human LDL
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Vegetable Material
2.2. Instrumentation
2.3. Comprehensive Chemical Characterization of Calafate
2.3.1. Extraction Protocols
2.3.2. Identification and Quantitation of Anthocyanins
2.3.3. Hydroxycinnamic Acid Derivatives (HCAD) Analysis by LC-MS
2.3.4. Metal Profile Analysis
2.3.5. Analysis of Fatty Acid Profile
2.4. In Vitro Assays
2.4.1. Antioxidant Capacity and Total Phenolic Compounds
2.4.2. Cell Culture
Viability Assay
ROS Measurement
2.4.3. LDL Isolation
LDL Oxidation
MDA Assay
2.5. Statistical Analysis
3. Results and Discussion
3.1. Phenolic Profile in Calafate Fruit by UHPLC-DAD-ESI-QTOF-MS/MS
3.2. Fatty Acid Profile of Calafate Berry by GC-MS
3.3. Metal Contents in Calafate Berry by TXRF
3.4. Concentration of Main Compounds in the Extracts
3.5. Antioxidant Capacity of Calafate Extracts
3.6. Calafate Extracts Reduced ROS Production Caused by H2O2 in HUVECs
3.7. Calafate Extract Reduced Lipidic Peroxidation Caused by CuSO4 in Human LDL
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soares, S.; Silva, M.S.; García-Estévez, I.; Groβmann, P.; Brás, N.F.; Brandão, E.; Mateus, N.; De Freitas, V.; Behrens, M.; Meyerhof, W. Human Bitter Taste Receptors Are Activated by Different Classes of Polyphenols. J. Agric. Food Chem. 2018, 66, 8814–8823. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Suleria, H.A.R. Natural polyphenols: An overview. Int. J. Food Prop. 2016, 20, 1689–1699. [Google Scholar] [CrossRef] [Green Version]
- Andriantsitohaina, R.; Auger, C.; Chataigneau, T.; Étienne-Selloum, N.; Li, H.; Martínez, M.C.; Schini-Kerth, V.B.; Laher, I. Molecular mechanisms of the cardiovascular protective effects of polyphenols. Br. J. Nutr. 2012, 108, 1532–1549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campos, J.; Schmeda-Hirschmann, G.; Leiva, E.; Guzmán, L.; Orrego, R.; Fernández, P.; González, M.; Radojkovic, C.; Zuñiga, F.; Lamperti, L.; et al. Lemon grass (Cymbopogon citratus (D.C) Stapf) polyphenols protect human umbilical vein endothelial cell (HUVECs) from oxidative damage induced by high glucose, hydrogen peroxide and oxidised low-density lipoprotein. Food Chem. 2014, 151, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Tresserra-Rimbau, A.; Rimm, E.; Medina-Remón, A.; Martínez-González, M.; De La Torre, R.; Corella, D.; Salas-Salvadó, J.; Gómez-Gracia, E.; Lapetra, J.; Arós, F.; et al. Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Sarr, M.; Chataigneau, M.; Martins, S.; Schott, C.; El Bedoui, J.; Oak, M.-H.; Muller, B.; Schini-Kerth, V.B. Red wine polyphenols prevent angiotensin II-induced hypertension and endothelial dysfunction in rats: Role of NADPH oxidase. Cardiovasc. Res. 2006, 71, 794–802. [Google Scholar] [CrossRef]
- Ruiz, A.; Hermosín-Gutiérrez, I.; Mardones, C.; Vergara, C.; Herlitz, E.; Vega, M.; Dorau, C.; Winterhalter, P.; Von Baer, D. Polyphenols and Antioxidant Activity of Calafate (Berberis microphylla) Fruits and Other Native Berries from Southern Chile. J. Agric. Food Chem. 2010, 58, 6081–6089. [Google Scholar] [CrossRef]
- Ruiz, A.; Mardones, C.; Vergara, C.; Von Baer, D.; Gómez-Alonso, S.; Gómez, M.V.; Hermosín-Gutiérrez, I. Isolation and Structural Elucidation of Anthocyanidin 3,7-β-O-Diglucosides and Caffeoyl-glucaric Acids from Calafate Berries. J. Agric. Food Chem. 2014, 62, 6918–6925. [Google Scholar] [CrossRef]
- Ruiz, A.; Zapata, M.; Sabando, C.; Bustamante, L.; Von Baer, D.; Vergara, C.; Mardones, C. Flavonols, Alkaloids, and Antioxidant Capacity of Edible WildBerberisSpecies from Patagonia. J. Agric. Food Chem. 2014, 62, 12407–12417. [Google Scholar] [CrossRef]
- Ruiz, A.; Hermosín-Gutiérrez, I.; Vergara, C.; Von Baer, D.; Zapata, M.; Hitschfeld, A.; Obando, L.; Mardones, C. Anthocyanin profiles in south Patagonian wild berries by HPLC-DAD-ESI-MS/MS. Food Res. Int. 2013, 51, 706–713. [Google Scholar] [CrossRef]
- Ruiz, A.; Mardones, C.; Vergara, C.; Hermosín-Gutiérrez, I.; Von Baer, D.; Hinrichsen, P.; Rodríguez, R.; Arribillaga, D.; Dominguez, E. Analysis of hydroxycinnamic acids derivatives in calafate (Berberis microphylla G. Forst) berries by liquid chromatography with photodiode array and mass spectrometry detection. J. Chromatogr. A 2013, 1281, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Schmeda-Hirschmann, G.; Jiménez-Aspee, F.; Theoduloz, C.; Ladio, A. Patagonian berries as native food and medicine. J. Ethnopharmacol. 2019, 241, 111979. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, J.E.; Zambrano, R.; Sepúlveda, B.; Kennelly, E.J.; Simirgiotis, M. Anthocyanins and antioxidant capacities of six Chilean berries by HPLC–HR-ESI-ToF-MS. Food Chem. 2015, 176, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Shao, D.; Lian, Z.; Di, Y.; Zhang, L.; Rajoka, M.S.R.; Zhang, Y.; Kong, J.; Jiang, C.; Shi, J. Dietary compounds have potential in controlling atherosclerosis by modulating macrophage cholesterol metabolism and inflammation via miRNA. NPJ Sci. Food 2018, 2, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Farias, M.; Vasquez, K.; Fuentes, F.; Ovalle-Marin, A.; Parra-Ruiz, C.; Zamora, O.; Pino, M.; Quitral, V.; Jimenez, P.; Garcia, L.; et al. Extracts of Chilean native fruits inhibit oxidative stress, inflammation and insulin-resistance linked to the pathogenic interaction between adipocytes and macrophages. J. Funct. Foods 2016, 27, 69–83. [Google Scholar] [CrossRef]
- Reyes-Farias, M.; Vasquez, K.; Ovalle-Marin, A.; Fuentes, F.; Parra, C.; Quitral, V.; Jimenez, P.; Garcia-Diaz, D.F. Chilean Native Fruit Extracts Inhibit Inflammation Linked to the Pathogenic Interaction Between Adipocytes and Macrophages. J. Med. Food 2015, 18, 601–608. [Google Scholar] [CrossRef] [Green Version]
- Calfío, C.; Huidobro-Toro, J.P. Potent Vasodilator and Cellular Antioxidant Activity of Endemic Patagonian Calafate Berries (Berberis microphylla) with Nutraceutical Potential. Molecules 2019, 24, 2700. [Google Scholar] [CrossRef] [Green Version]
- Casas, R.; Castro-Barquero, S.; Estruch, R.; Sacanella, E. Nutrition and Cardiovascular Health. Int. J. Mol. Sci. 2018, 19, 3988. [Google Scholar] [CrossRef] [Green Version]
- Fukai, T.; Ushio-Fukai, M. Superoxide Dismutases: Role in Redox Signaling, Vascular Function, and Diseases. Antioxidants Redox Signal. 2011, 15, 1583–1606. [Google Scholar] [CrossRef] [Green Version]
- González, G.M.; Castillo, R.D.P.; Neira, J.Y. Multivariate calibration for the improvement of the quantification of cadmium in the presence of potassium as interferent by total reflection X-ray fluorescence. X-ray Spectrom. 2019, 48, 700–707. [Google Scholar] [CrossRef]
- Ramos, L.L.P.; Jiménez-Aspee, F.; Gil-Izquierdo, Á.; Burgos-Edwards, A.; Domínguez-Perles, R.; Oger, C.; Durand, T.; Gil-Izquierdo, Á.; Bustamante, L.; Mardones, C.; et al. Phenolic, oxylipin and fatty acid profiles of the Chilean hazelnut (Gevuina avellana): Antioxidant activity and inhibition of pro-inflammatory and metabolic syndrome-associated enzymes. Food Chem. 2019, 298, 125026. [Google Scholar] [CrossRef] [PubMed]
- Ou, B.; Chang, T.; Huang, D.; Prior, R.L. Determination of Total Antioxidant Capacity by Oxygen Radical Absorbance Capacity (ORAC) Using Fluorescein as the Fluorescence Probe: First Action 2012. J. AOAC Int. 2013, 96, 1372–1376. [Google Scholar] [CrossRef]
- González, M.; Rojas, S.; Avila, P.; Cabrera, L.; Villalobos, R.; Palma, C.; Aguayo, C.; Peña, E.; Gallardo, V.; Guzmán-Gutiérrez, E.; et al. Insulin Reverses D-Glucose–Increased Nitric Oxide and Reactive Oxygen Species Generation in Human Umbilical Vein Endothelial Cells. PLoS ONE 2015, 10, e0122398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Havel, R.J.; Eder, H.A.; Bragdon, J.H. The Distribution and Chemical Composition of Ultracentrifugally Separated Lipoproteins in Human Serum. J. Clin. Investig. 1955, 34, 1345–1353. [Google Scholar] [CrossRef] [Green Version]
- Richard, M.J.; Portal, B.; Meo, J.; Coudray, C.; Hadjian, A.; Favier, A. Malondialdehyde Kit Evaluated for Determining Plasma and Lipoprotein Fractions that React with Thiobarbituric Acid. Clin. Chem. 1992, 38, 704–709. [Google Scholar] [CrossRef]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J.; et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Fang, J. Bioavailability of anthocyanins. Drug Metab. Rev. 2014, 46, 508–520. [Google Scholar] [CrossRef]
- Chamorro, M.F.; Reiner, G.; Theoduloz, C.; Ladio, A.; Schmeda-Hirschmann, G.; Gómez-Alonso, S.; Jiménez-Aspee, F. Polyphenol Composition and (Bio)Activity of Berberis Species and Wild Strawberry from the Argentinean Patagonia. Molecules 2019, 24, 3331. [Google Scholar] [CrossRef] [Green Version]
- Karar, M.G.E.; Kuhnert, N. UPLC-ESI-Q-TOF-MS/MS Characterization of Phenolics from Crataegus monogyna and Crataegus laevigata (Hawthorn) Leaves, Fruits and their Herbal Derived Drops (Crataegutt Tropfen). J. Chem. Biol. Ther. 2016, 1, 102. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.J.H.; Senanayake, V.K.; Pu, S.; Jenkins, A.D.J.; Connelly, P.W.; Lamarche, B.; Couture, P.; Charest, A.; Baril-Gravel, L.; West, S.G.; et al. DHA-enriched high–oleic acid canola oil improves lipid profile and lowers predicted cardiovascular disease risk in the canola oil multicenter randomized controlled trial. Am. J. Clin. Nutr. 2014, 100, 88–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massaro, M.; Scoditti, E.; Carluccio, M.A.; De Caterina, R. Nutraceuticals and Prevention of Atherosclerosis: Focus on ω-3 Polyunsaturated Fatty Acids and Mediterranean Diet Polyphenols. Cardiovasc. Ther. 2010, 28, e13–e19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, M.; Zhang, H.; Zhai, L.; Ye, B.; Cheng, Y.; Zhai, C. ALA/LA ameliorates glucose toxicity on HK-2 cells by attenuating oxidative stress and apoptosis through the ROS/p38/TGF-β1 pathway. Lipids Health Dis. 2017, 16, 216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gama, E.M.; Nascentes, C.C.; Matos, R.P.; Rodrigues, G.D.C.; Rodrigues, G.D. A simple method for the multi-elemental analysis of beer using total reflection X-ray fluorescence. Talanta 2017, 174, 274–278. [Google Scholar] [CrossRef]
- Mitić, S.S.; Obradović, M.V.; Mitić, M.N.; Kostić, D.A.; Pavlović, A.N.; Tošić, S.B.; Stojković, M.D. Elemental Composition of Various Sour Cherry and Table Grape Cultivars Using Inductively Coupled Plasma Atomic Emission Spectrometry Method (ICP-OES). Food Anal. Methods 2011, 5, 279–286. [Google Scholar] [CrossRef]
- Maro, L.A.C.; Guedes, M.N.S.; Curi, P.N.; Pio, R.; De Abreu, C.M.P. Bioactive compounds, antioxidant activity and mineral composition of fruits of raspberry cultivars grown in subtropical areas in Brazil. Fruits 2013, 68, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Zúñiga, M.C.; Pérez-Roa, R.E.; Olea-Azar, C.; Laurie, V.F.; Agosin, E. Contribution of metals, sulfur-dioxide and phenolic compounds to the antioxidant capacity of Carménère wines. J. Food Compos. Anal. 2014, 35, 37–43. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Y.; Liu, W.-W.; Shi, A.-W.; Gu, N. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway. Molecules 2016, 21, 1033. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-Y.; Yi, L.; Jin, X.; Mi, M.-T.; Zhang, T.; Ling, W.-H.; Yu, B. Delphinidin attenuates stress injury induced by oxidized low-density lipoprotein in human umbilical vein endothelial cells. Chem. Interact. 2010, 183, 105–112. [Google Scholar] [CrossRef]
- Saravanan, S.; Parimelazhagan, T. In vitro antioxidant, antimicrobial and anti-diabetic properties of polyphenols of Passiflora ligularis Juss. fruit pulp. Food Sci. Hum. Wellness 2014, 3, 56–64. [Google Scholar] [CrossRef] [Green Version]
Nº Peak | tR e (min) | λ f (nm) | Molecular Formula | [M]+ or [M-H]− | ESI | Fragments g | Error (ppm) | mσ h | Annotation | Ref and/or DB |
---|---|---|---|---|---|---|---|---|---|---|
1 c | 7.6 | 276; 523 | C27H31O17+ | 627.1527 | + | 303.0499; 229.0495; 465.1028 | 4.6 | 4.2 | delphinidin-3,7-β-O-diglucoside | [8,9,18] M, K |
2 b | 8.1 | 276; 524 | C28H33O17+ | 641.1678 | + | 317.0656 | 5.4 | 5.5 | petunidin- 3,7-β-O- diglucoside | [8,9,18] |
3 b | 8.7 | - | C29H35O17+ | 655.1840 | + | 331.0812 | 4.3 | 18.1 | malvidin- 3,7-β-O-diglucoside | [8,9,18] |
4 c | 9.8 | 277; 525 | C27H31O16+ | 611.1582 | + | 303.0499; 229.0495 | 4.1 | 4.3 | delphinidin 3-rutinoside | [8,11], M, K |
5 c | 9.9 | 276; 525 | C21H21O12+ | 465.0989 | + | 303.0499; 229.0495 | 8.4 | 5.6 | delphinidin 3-glucoside | [8,11,14,18] M, K |
6 c | 12.0 | 280; 519 | C27H31O15+ | 595.1646 | + | 287.0550; 242.0574 | 1.9 | 14.0 | cyanidin 3-rutinoside | [8,11,14], M, K |
7 c | 12.1 | 279; 519 | C21H21O11+ | 449.1059 | + | 287.0550; 115.0542 | 4.3 | 0.9 | cyanidin 3-glucoside | [8,11,14,18], M, K |
8 c | 12.1 | 279; 519 | C22H23O12+ | 479.1170 | + | 317.0656; 217.0495; 302.0421; 245.0444; 174.0311; 192.0417; 229.0495; 274.0472 | 3.0 | 6.0 | petunidin 3-glucoside | [8,11,14,18], H |
9 b | 12.3 | 281; 524 | C28H33O16+ | 625.1764 | + | 317.0656 | 0.1 | 4.9 | petunidin 3-rutinoside | [8,11,14] |
10 b | 14.7 | 277; 529 | C29H35O16+ | 639.1923 | + | 331.0812 | −0.5 | 3.1 | malvinidin 3-rutinoside | [8,11] |
11 c | 14.7 | 278; 529 | C22H23O11+ | 463.1228 | + | 301.0707; 286.0472; 229.0495; 187.0390; 213.0546; 203.0339 | 1.5 | 4.0 | peonidin 3-glucoside | [8,11,14,18], M, K |
12 c | 14.8 | 277; 529 | C23H25O12+ | 493.1338 | + | 331.0812; 287.0550; 316.0578; 242.0574; 245.0444; 217.0495 | 0.6 | 5.3 | malvidin 3-glucoside | [8,11,18], M, K |
13 b | 28.3 | 221; 251; 350 | C20H20NO4+ | 338.1371 | + | 294.1099; 323.1191; 280.0955 | 5.5 | jatrorrhizine | [10] | |
14 c | 32.4 | 221; 251; 350 | C20H18NO4+ | 336.1213 | + | 292.0968; 306.0761; 321.0996; 278.0812 | 5.3 | 16.7 | berberine | [10], M, K |
15 c | 11.3 | 326 | C15H16O11 | 371.0606 | - | 209.0303; 191.0197; 135.0452; 179.0350; 147.0299 | 3.8 | 4.3 | 3- or 4-trans- caffeoyl-glucaric acid | [9,12,30], M, K |
16 c | 12.1 | 326 | C15H16O11 | 371.0619 | - | 209.0303; 191.0197; 135.0452; 147.0299; 179.0350; 129.0193; 193.0506 | 0.1 | 9.0 | 3- or 4-trans- caffeoyl-glucaric acid | [9,12,30], M, K |
17 c | 12.7 | 325 | C15H16O11 | 371.0619 | - | 209.0303; 163.0401; 191.0197; 119.0502; 135.0452; 147.0299; 179.0350 | 0.1 | 10.8 | 2- or 5-trans-caffeoyl-glucaric acid | [9,12,30], M, K |
18 c | 13.4 | - | C16H18O9 | 353.0889 | - | 191.0561; 135.0452; 179.0350; 93.0346; 161.0244 | −3.0 | 18.3 | caffeoylquinic acid isomer | [12,30,31], M, K |
19 a | 13.7 A | - | C15H18O11 | 355.0660 [M-H2O-H]− | - | 209.0303; 147.0299; 239.0561; 119.0502 | 3.0 | 16.9 | syringic acid glucuronide | H |
20 c | 13.8 | - | C15H16O11 | 371.0619 | - | 209.0303; 191.0197; 135.0452; 147.0299; 115.0037; 173.0092 | 0.1 | 9.4 | caffeoyl glucaric isomer | [12,30], M, K |
21 c | 14.1 B | - | C15H16O11 | 371.0626 | - | 209.0303; 191.0197; 135.0452; 173.0092 | −1.7 | 2.6 | caffeoyl glucaric isomer | [12,30], M, K |
22 a | 14.7 | - | C15H12O9 | 335.0409 | - | 183.0299; 177.0193 | −0.2 | 4 | 3-hydroxy-4-metoxy-5-(3,4,5-trihydroxybenzoyloxy) benzoic acid | H |
23 a | 14.9 | 327 | C15H14O10 | 353.0521 | - | 191.0197; 135.0452; 147.0299; 179.0350; 161.0244 | −2.0 | 18.4 | caffeoyl isocitrate isomer | P, M, K |
24 | 15.6 | - | C13H24O9 | 323.1345 | - | 113.0244; 179.0561; 101.0244; 161.0455 | 0.8 | 2.4 | unidentified | |
25 d | 16.0 | 326 | C16H18O9 | 353.0866 | - | 191.0561; 127.0401; 161.0244; 93.0346 | 3.3 | 1.5 | 3-caffeoyl quinic acid | [12,30,31], M, K |
26 a | 16.6 | - | C15H14O10 | 353.0506 | - | 161.0244; 191.0197; 147.0299; 135.0452; 117.0346 | 2.4 | 4.2 | caffeoyl lisocitrate isomer | P, M, K |
27 c | 16.8 | - | C15H18O8 | 325.0920 | - | 119.0502; 163.0401 | 1.6 | 2.7 | coumaroyl hexoside | [31], M, K |
28 a | 17.5 | 329 | C15H14O10 | 353.0491 | - | 191.0197; 147.0299; 135.0452; 179.0350 | 6.5 | 12.0 | caffeoyl isocitrate isomer | P, M, K |
29 a | 17.5 A | 329 | C16H18O11 | 385.0758 | - | 191.0197; 223.0459; 179.0350 | 4.8 | 10.9 | O-feruloyl galactaric acid | M, K |
30c | 18.1 | - | C18H26O10 | 401.1425 | - | 161.0455 | 7.1 | 4.6 | benzyl O-(arabino furanosyl-glucoside) | [31], H |
31 b | 18.3 | - | C24H22O14 | 533.0911 | - | 209.0303; 191.0197 | 4.9 | 9.0 | dicaffeoyl glucaric acid isomer | [12,30] |
32 b | 18.6 | - | C24H22O14 | 533.0896 | - | 209.0303; 191.0197 | 7.6 | 4,1 | dicaffeoyl glucaric acid isomer | [12,30] |
33 c | 18.7 | - | C15H18O8 | 325.0904 | - | 145.0295; 117.0346 | 7.6 | 15.5 | coumaroyl hexoside | [31], M, K |
34 c | 19.0 | - | C16H18O9 | 353.0851 | - | 191.0561; 161.0244; 93.0346; 127.0401; 133.0295 | 7.6 | 19.4 | caffeoylquinic acid isomer | [12,30,31], M, K |
35 a | 20.1 | - | C21H22O11 | 449.1064 | - | 259.0612; 191.0561; 97.0295 | 5.6 | 17.2 | 2′,3,4,4′,6′-Pentahydroxychalcone 4′-O-glucoside | M, K |
36 c | 20.4 | - | C16H18O8 | 337.0899 | - | 191.0561; 119.0502; 93.0346; 163.0401; 145.0295; 155.0350 | 8.9 | 5.1 | coumaroyl quinic acid | [12,30,31], M, K |
37 a | 21.9 | - | C17H20O11 | 399.0911 | - | 161.0244; 191.0197; 173.0092; 367.0671 | 5.6 | 5.1 | sinapinic acid-O-glucuronide | H |
38 c | 22.5 | 354 | C27H30O16 | 609.1435 | - | 301.0354; 255.0299; 151.0037; 178.9986 | 4.3 | 5.7 | quercetin-3-rutinoside | [10,18,30,31], M, K |
39 | 23.1 | - | C18H32O12 | 439.1799 | - | 149.0455; 179.0561; 119.0350; 101.0244; 251.0772 | 5.0 | 15.3 | unidentified | |
40 c | 23.4 A | - | C17H20O9 | 367.1003 | - | 135.0452; 161.0244; 179.0350; 191.0561; 137.0244; 127.0401; 117.0346 | 8.6 | 8.2 | feruloylquinic acid isomer | [12,30,31], M, K |
41 a | 23.4 | - | C15H14O10 | 353.0489 | - | 135.0452; 129.0193; 179.0350; 161.0244; 173.0092; 219.0299; 151.0401; 335.0409 | 7.1 | 15.1 | caffeoyl isocitrate isomer | P, M, K |
42 b | 24.6 | 355 | C21H20O12 | 271.0248; 301.0354; 255.0299; 151.0037; 216.0428 | 3.9 | 7.4 | quercetin-3-galactoside | [10] | ||
43 d | 24.9 | 354 | C21H20O12 | 463.0861 | - | 271.0248; 301.0354; 255.0299; 151.0037; 245.0455; 178.9986 | 4.5 | 7.5 | quercetin-3-glucoside | [10], M, K |
44 | 25.0 | - | C18H32O10 | 407.1903 | - | 227.1289; 138.1050 | 4.7 | 10.4 | Unidentified | |
45 c | 25.4 | - | C27H30O15 | 593.1499 | - | 285.0405; 257.0397; 549.1250 | 2.1 | 19.1 | kaempferol-3-O-rutinoside | [30], M, K |
46 b | 25.8 | 355 | C28H32O16 | 623.1592 | - | 315.0510; 300.0276; 287.0561 | 4.1 | 2.6 | isorhamnetin 3-O-(6-O-rhamnosyl-glucoside | [31] |
47 c | 26.5 | - | C24H22O15 | 549.0878 | - | 505.0972; 271.0248; 301.0295; 301.0354; 255.0299; 151.0037; 178.9986; 187.0401 | 1.8 | 13.4 | quercetin-3-malonyl galactoside | [10], M, K |
48 c | 27.1 | 353 | C24H22O15 | 549.0895 | - | 505.0988; 255.0299; 463.0882; 178.9986; 151.0037; 283.0248 | 0.7 | 10.3 | quercetin-3-malonyl glucoside | [10], M, K |
49 b | 27.8 | - | C22H22O12 | 477.1033 | - | 243.0299; 271.0248; 257.0455; 286.0483; 300.0276; 215.0350 | 1.2 | 9.9 | isorhamnetin-3-glucoside | [10,30,31] |
50 c | 28.5 | 348 | C21H20O11 | 447.0929 | - | 271.0248; 301.0354; 255.0299; 151.0037; 245.0397; 178.9986; 109.0295; 121.0295; 135.0088 | 0.9 | 2.9 | quercetin 3-L-rhamnoside | [10,30,31], M, K |
51 c | 29.6 | - | C25H24O12 | 515.1194 | - | 353.0878; 173.0455; 179.0350; 191.0561; 135.0452; 155.0350; 93.0346; 161.0244; 318.0686; 137.0244; 203.0350; 356.0902; 111.0452 | 0.1 | 16.0 | 3,5-dicaffeoyl quinic acid | [12,31], M, K |
52 b | 30.0 | - | C24H24O13 | 519.1134 | - | 300.0276; 315.0510; 227.0350; 177.0193; 204.0428; 204.0487 | 2.0 | 3.2 | isorhamnetin-3-malonyl-hexoside | [10] |
53 c | 31.7 | - | C21H20O10 | 431.0974 | 285.0405; 255.0299; 244.0377; 267.0358 | 2.3 | 6.4 | kaempferol rhamnoside | [10,30,31], M, K |
tR (min) | Formula | Assigned Identity | Mass (Da) | Concentration (mg/g FW a) |
---|---|---|---|---|
19.972 | C15H30O2 | Methyl tetradecanoate (Myristic acid methyl ester) | 242.2 | 0.16 ± 0.01 |
22.443 | C17H34O2 | Hexadecanoic acid, methyl ester | 270.3 | 0.08 ± 0.02 |
24.708 | C19H38O2 | Octadecanoic acid, methyl ester | 298.3 | 0.06 ± 0.00 |
25.507 | C19H36O2 | 9-Octadecenoic acid, methyl ester, (Z) (Oleic acid methyl ester) | 296.3 | 0.04 ± 0.01 |
26.783 | C19H34O2 | 9,12-Octadecadienoic acid (Z,Z)-, methyl ester (Linoleic acid methyl ester ω6) | 294.3 | 0.07 ± 0.03 |
28.160 | C19H32O2 | 9,12,15-Octadecatrienoic acid, methyl ester, (Z,Z,Z)- (Linolenic acid methyl ester ω3) | 292.2 | 0.09 ± 0.04 |
29.473 | C23H44O2 | 13-Docosenoic acid, methyl ester, (Z)- (Erucic acid methyl ester) | 352.3 | 0.08 ± 0.01 |
Metals | Calafate mg/g FW b |
---|---|
Aluminum | ND |
Phosphorus | 0.830 ± 0.040 |
Sulfur | 0.610 ± 0.010 |
Potassium | 3.460 ± 0.110 |
Calcium | 0.550 ± 0.020 |
Manganese | 0.006 ± 0.000 |
Copper | 0.006 ± 0.000 |
Zinc | 0.007 ± 0.000 |
Lead | 0.001 ± 0.000 |
Iron a | <0.00071 |
Extract | Total Anthocyanins | Total Hydroxycinnamic Acids | Total Fatty Acids | TEACABTS | TEACCUPRAC | TEACORAC | Folin–Ciocalteu |
---|---|---|---|---|---|---|---|
(μmol/mL) | (μmol/mL) | (mg/mL) | (Trolox Equivalents μmol/mL) | (Equi-Valents. Gallic Acid mg/mL) | |||
Methanolic | 2.22 ± 0.18 | 0.35 ± 0.01 | 0.37 ± 0.04 | 13.74 ± 0.76 | 21.14 ± 0.28 | 21.38 ± 0.64 | 1.90 ± 0.04 |
Ethanolic | 2.16 ± 0.07 | 0.28 ± 0.02 | 0.51 ± 0.04 | 10.88 ± 0.72 * | 19.36 ± 0.14 * | 21.60 ± 0.86 | 1.60 ± 0.02 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olivares-Caro, L.; Radojkovic, C.; Chau, S.Y.; Nova, D.; Bustamante, L.; Neira, J.Y.; Perez, A.J.; Mardones, C. Berberis microphylla G. Forst (Calafate) Berry Extract Reduces Oxidative Stress and Lipid Peroxidation of Human LDL. Antioxidants 2020, 9, 1171. https://doi.org/10.3390/antiox9121171
Olivares-Caro L, Radojkovic C, Chau SY, Nova D, Bustamante L, Neira JY, Perez AJ, Mardones C. Berberis microphylla G. Forst (Calafate) Berry Extract Reduces Oxidative Stress and Lipid Peroxidation of Human LDL. Antioxidants. 2020; 9(12):1171. https://doi.org/10.3390/antiox9121171
Chicago/Turabian StyleOlivares-Caro, Lia, Claudia Radojkovic, Si Yen Chau, Daniela Nova, Luis Bustamante, Jose Yamil Neira, Andy J. Perez, and Claudia Mardones. 2020. "Berberis microphylla G. Forst (Calafate) Berry Extract Reduces Oxidative Stress and Lipid Peroxidation of Human LDL" Antioxidants 9, no. 12: 1171. https://doi.org/10.3390/antiox9121171
APA StyleOlivares-Caro, L., Radojkovic, C., Chau, S. Y., Nova, D., Bustamante, L., Neira, J. Y., Perez, A. J., & Mardones, C. (2020). Berberis microphylla G. Forst (Calafate) Berry Extract Reduces Oxidative Stress and Lipid Peroxidation of Human LDL. Antioxidants, 9(12), 1171. https://doi.org/10.3390/antiox9121171