Xenopus gpx3 Mediates Posterior Development by Regulating Cell Death during Embryogenesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Xenopus Growth Conditions and In Vitro Fertilization
2.2. Plasmids and mRNA Synthesis
2.3. MO Design and Xenopus Embryo Microinjection
2.4. Whole-Mount In Situ Hybridization
2.5. Reverse Transcription Polymerase Chain Reaction
2.6. Transcriptomic Analysis
2.7. Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling (TUNEL) and Phospho-Histone 3 (PH3) Staining
2.8. In Vivo Imaging of ROS
2.9. Statistical Analysis
3. Results
3.1. Gpx3 Spatiotemporal Expression Pattern during Xenopus Embryogenesis
3.2. Gpx3 Knockdown Leads to a Reduced Post-Anal Tail during Embryonic Development
3.3. Gpx3 Mediates Tailbud Development through Wnt, Notch, and FGF Signaling Pathway Regulation
3.4. Gpx3 Knockdown Does Not Perturb Early Tailbud Gene Expression
3.5. Gpx3 Regulates ROS Level in the Tailbud Region
3.6. Gpx3 Is Required for Regulating Programmed Cell Death during Xenopus Embryogenesis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ismail, T.; Kim, Y.; Lee, H.; Lee, D.S.; Lee, H.S. Interplay between mitochondrial peroxiredoxins and ROS in cancer development and progression. Int. J. Mol. Sci. 2019, 20, 4407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brieger, K.; Schiavone, S.; Miller, F.J., Jr.; Krause, K.H. Reactive oxygen species: From health to disease. Swiss Med. Wkly. 2012, 142, w13659. [Google Scholar] [CrossRef] [PubMed]
- Finkel, T. Signal transduction by reactive oxygen species. J. Cell Biol. 2011, 194, 7–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Covarrubias, L.; Hernández-García, D.; Schnabel, D.; Salas-Vidal, E.; Castro-Obregón, S. Function of reactive oxygen species during animal development: Passive or active? Dev. Biol. 2008, 320, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-García, D.; Wood, C.D.; Castro-Obregón, S.; Covarrubias, L. Reactive oxygen species: A radical role in development? Free Radic. Biol. Med. 2010, 49, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Oxidative stress: Oxidants and antioxidants. Exp. Physiol. 1997, 82, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015, 97, 55–74. [Google Scholar] [CrossRef]
- Flohé, L. The fairytale of the GSSG/GSH redox potential. Biochim. Biophys. Acta 2013, 1830, 3139–3142. [Google Scholar] [CrossRef]
- Flohe, L.; Günzler, W.A.; Schock, H.H. Glutathione peroxidase: A selenoenzyme. FEBS Lett. 1973, 32, 132–134. [Google Scholar] [CrossRef] [Green Version]
- Margis, R.; Dunand, C.; Teixeira, F.K.; Margis-Pinheiro, M. Glutathione peroxidase family–an evolutionary overview. FEBS J. 2008, 275, 3959–3970. [Google Scholar] [CrossRef]
- Wendel, A. Glutathione peroxidase. Methods Enzymol. 1981, 77, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Leng, J.Y.; Gao, F.; Zhao, Z.A.; Deng, W.B.; Liang, X.H.; Zhang, Y.J.; Zhang, Z.R.; Li, M.; Sha, A.G.; et al. Differential expression and anti-oxidant function of glutathione peroxidase 3 in mouse uterus during decidualization. FEBS Lett. 2014, 588, 1580–1589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwaab, V.; Faure, J.; Dufaure, J.P.; Drevet, J.R. GPx3: The plasma-type glutathione peroxidase is expressed under androgenic control in the mouse epididymis and vas deferens. Mol. Reprod. Dev. 1998, 51, 362–372. [Google Scholar] [CrossRef]
- Kho, C.W.; Lee, P.Y.; Bae, K.H.; Kang, S.; Cho, S.; Lee, D.H.; Sun, C.H.; Yi, G.S.; Park, B.C.; Park, S.G. Gpx3-dependent responses against oxidative stress in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 2008, 18, 270–282. [Google Scholar]
- Barrett, C.W.; Ning, W.; Chen, X.; Smith, J.J.; Washington, M.K.; Hill, K.E.; Coburn, L.A.; Peek, R.M.; Chaturvedi, R.; Wilson, K.T.; et al. Tumor suppressor function of the plasma glutathione peroxidase gpx3 in colitis-associated carcinoma. Cancer Res. 2013, 73, 1245–1255. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.-N.; Lee, J.M.; Oh, H.; Park, J.H. Glutathione peroxidase 3 inhibits prostate tumorigenesis in TRAMP mice. Prostate 2016, 76, 1387–1398. [Google Scholar] [CrossRef]
- An, B.C.; Choi, Y.D.; Oh, I.J.; Kim, J.H.; Park, J.I.; Lee, S.W. GPx3-mediated redox signaling arrests the cell cycle and acts as a tumor suppressor in lung cancer cell lines. PLoS ONE 2018, 13, e0204170. [Google Scholar] [CrossRef] [Green Version]
- Cai, M.; Sikong, Y.; Wang, Q.; Zhu, S.; Pang, F.; Cui, X. Gpx3 prevents migration and invasion in gastric cancer by targeting NFKB/Wnt5a/JNK signaling. Int. J. Clin. Exp. Pathol. 2019, 12, 1194–1203. [Google Scholar]
- Worley, B.L.; Kim, Y.S.; Mardini, J.; Zaman, R.; Leon, K.E.; Vallur, P.G.; Nduwumwami, A.; Warrick, J.I.; Timmins, P.F.; Kesterson, J.P.; et al. GPx3 supports ovarian cancer progression by manipulating the extracellular redox environment. Redox Biol. 2019, 25, 101051. [Google Scholar] [CrossRef]
- Zhao, H.; Li, J.; Li, X.; Han, C.; Zhang, Y.; Zheng, L.; Guo, M. Silencing GPX3 Expression promotes tumor metastasis in human thyroid cancer. Curr. Protein Pept. Sci. 2015, 16, 316–321. [Google Scholar] [CrossRef]
- Zhou, C.; Pan, R.; Li, B.; Huang, T.; Zhao, J.; Ying, J.; Duan, S. GPX3 hypermethylation in gastric cancer and its prognostic value in patients aged over 60. Future Oncol. 2019, 15, 1279–1289. [Google Scholar] [CrossRef] [PubMed]
- Buijsse, B.; Lee, D.H.; Steffen, L.; Erickson, R.R.; Luepker, R.V.; Jacobs, D.R., Jr.; Holtzman, J.L. Low serum glutathione peroxidase activity is associated with increased cardiovascular mortality in individuals with low HDLc’s. PLoS ONE 2012, 7, e38901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, S.; Yan, B.; Lu, Y.; Zhang, G.; Li, J.; Zhai, W.; Guo, W.; Zhang, S. Methylation of promoter and expression silencing of GPX3 gene in hepatocellular carcinoma tissue. Clin. Res. Hepatol. Gastroenterol. 2015, 39, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Kanno, S.I.; Tomizawa, A.; Yomogida, S.; Hara, A. Glutathione peroxidase 3 is a protective factor against acetaminophen-induced hepatotoxicity in vivo and in vitro. Int. J. Mol. Med. 2017, 40, 748–754. [Google Scholar] [CrossRef]
- Chae, S.; Lee, H.K.; Kim, Y.K.; Jung Sim, H.; Ji, Y.; Kim, C.; Ismail, T.; Park, J.W.; Kwon, O.S.; Kang, B.S.; et al. Peroxiredoxin1, a novel regulator of pronephros development, influences retinoic acid and Wnt signaling by controlling ROS levels. Sci. Rep. 2017, 7, 8874. [Google Scholar] [CrossRef] [Green Version]
- Session, A.M.; Uno, Y.; Kwon, T.; Chapman, J.A.; Toyoda, A.; Takahashi, S.; Fukui, A.; Hikosaka, A.; Suzuki, A.; Kondo, M.; et al. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 2016, 538, 336–343. [Google Scholar] [CrossRef] [Green Version]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Jeong, Y.; Kwon, K.; Ismail, T.; Lee, H.K.; Kim, C.; Park, J.W.; Kwon, O.S.; Kang, B.S.; Lee, D.S.; et al. Physiological effects of KDM5C on neural crest migration and eye formation during vertebrate development. Epigenetics Chromatin. 2018, 11, 72. [Google Scholar] [CrossRef]
- Nakamura, Y.; Feng, Q.; Kumagai, T.; Torikai, K.; Ohigashi, H.; Osawa, T.; Noguchi, N.; Niki, E.; Uchida, K. Ebselen, a glutathione peroxidase mimetic seleno-organic compound, as a multifunctional antioxidant. Implication for inflammation-associated carcinogenesis. J. Biol. Chem. 2002, 277, 2687–2694. [Google Scholar] [CrossRef] [Green Version]
- Beck, C.W. Development of the vertebrate tailbud. Wiley Interdiscip. Rev. Dev. Biol. 2015, 4, 33–44. [Google Scholar] [CrossRef]
- Beck, C.W.; Slack, J.M. A developmental pathway controlling outgrowth of the Xenopus tail bud. Development 1999, 126, 1611–1620. [Google Scholar] [PubMed]
- Beck, C.W.; Slack, J.M. Notch is required for outgrowth of the Xenopus tail bud. Int. J. Dev. Biol. 2002, 46, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Beck, C.W.; Whitman, M.; Slack, J.M.W. The role of BMP signaling in outgrowth and patterning of the Xenopus tail bud. Dev. Biol. 2001, 238, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Lou, X.; Fang, P.; Li, S.; Hu, R.-Y.; Kuerner, K.M.; Steinbeisser, H.; Ding, X. Xenopus Tbx6 mediates posterior patterning via activation of Wnt and FGF signalling. Cell Res. 2006, 16, 771–779. [Google Scholar] [CrossRef] [Green Version]
- Davis, R.L.; Kirschner, M.W. The fate of cells in the tailbud of Xenopus laevis. Development 2000, 127, 255–267. [Google Scholar]
- Gont, L.K.; Steinbeisser, H.; Blumberg, B.; de Robertis, E.M. Tail formation as a continuation of gastrulation: The multiple cell populations of the Xenopus tailbud derive from the late blastopore lip. Development 1993, 119, 991–1004. [Google Scholar]
- Ho, D.M.; Yeo, C.Y.; Whitman, M. The role and regulation of GDF11 in Smad2 activation during tailbud formation in the Xenopus embryo. Mech. Dev. 2010, 127, 485–495. [Google Scholar] [CrossRef]
- Gong, Y.; Yang, J.; Cai, J.; Liu, Q.; Zhang, J.m.; Zhang, Z. Effect of Gpx3 gene silencing by siRNA on apoptosis and autophagy in chicken cardiomyocytes. J. Cell. Physiol. 2019, 234, 7828–7838. [Google Scholar] [CrossRef]
- Pastori, D.; Pignatelli, P.; Farcomeni, A.; Menichelli, D.; Nocella, C.; Carnevale, R.; Violi, F. Aging-related decline of glutathione peroxidase 3 and risk of cardiovascular events in patients with atrial fibrillation. J. Am. Heart Assoc. 2016, 5. [Google Scholar] [CrossRef] [Green Version]
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef]
- Higuchi, M.; Honda, T.; Proske, R.J.; Yeh, E.T. Regulation of reactive oxygen species-induced apoptosis and necrosis by caspase 3-like proteases. Oncogene 1998, 17, 2753–2760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene | Forward Primer Sequence | Reverse Primer Sequence |
---|---|---|
odc | 5′-CAGCTAGCTGTGGTGTGG-3′ | 5′-CAACATGGAAACTCACACC-3′ |
wnt5b | 5′-AAGCAGAGAGGCGGCATTT-3′ | 5′-CCGAGACACCATGGCACTT-3′ |
notch1 | 5′-ACCTACAAATGCTCCTGCCC-3′ | 5′-AACAAGGGTGGGAAGCACAA-3′ |
tbx6 | 5′-TATCCGGGGGAAGAGGAAGG-3′ | 5′-CCCTTGACTGTGGCTGATGT-3′ |
Xnot2 | 5′-TAATCTCCTGCACCCCCAGA-3′ | 5′-TTGATGCGTCGGTTCTGGAA-3′ |
fgf8 | 5′-CCAACTGGCAACTGAGCAAC-3′ | 5′-ACCGTGTCCTACCGAGAACT-3′ |
Xbra | 5′-CGTGCAGTACCGGGTAGATC-3′ | 5′-TGGCAAATGGGTTGTGCTTG-3′ |
wnt3a | 5′-TCCTCTGTGGGCTACACCAA-3′ | 5′-CGCCAATCACCCTGAAGTCT-3′ |
wnt5a | 5′-GGCAGTGCAATGGTCTCTCA-3′ | 5′-GCGACATCAGCCAAGGTACT-3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Ismail, T.; Kim, Y.; Chae, S.; Ryu, H.-Y.; Lee, D.-S.; Kwon, T.K.; Park, T.J.; Kwon, T.; Lee, H.-S. Xenopus gpx3 Mediates Posterior Development by Regulating Cell Death during Embryogenesis. Antioxidants 2020, 9, 1265. https://doi.org/10.3390/antiox9121265
Lee H, Ismail T, Kim Y, Chae S, Ryu H-Y, Lee D-S, Kwon TK, Park TJ, Kwon T, Lee H-S. Xenopus gpx3 Mediates Posterior Development by Regulating Cell Death during Embryogenesis. Antioxidants. 2020; 9(12):1265. https://doi.org/10.3390/antiox9121265
Chicago/Turabian StyleLee, Hongchan, Tayaba Ismail, Youni Kim, Shinhyeok Chae, Hong-Yeoul Ryu, Dong-Seok Lee, Taeg Kyu Kwon, Tae Joo Park, Taejoon Kwon, and Hyun-Shik Lee. 2020. "Xenopus gpx3 Mediates Posterior Development by Regulating Cell Death during Embryogenesis" Antioxidants 9, no. 12: 1265. https://doi.org/10.3390/antiox9121265
APA StyleLee, H., Ismail, T., Kim, Y., Chae, S., Ryu, H. -Y., Lee, D. -S., Kwon, T. K., Park, T. J., Kwon, T., & Lee, H. -S. (2020). Xenopus gpx3 Mediates Posterior Development by Regulating Cell Death during Embryogenesis. Antioxidants, 9(12), 1265. https://doi.org/10.3390/antiox9121265